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P R E F A C E

I came to the position that mathematical analysis is not one of many

ways of doing economic theory: It is the only way. Economic theory

is mathematical analysis. Everything else is just pictures and talk.

—R. E. Lucas, Jr. (2001)

Purpose

The subject matter that modern economics students are expected to master makes signi-
ficant mathematical demands. This is true even of the less technical “applied” literature
that students will be expected to read for courses in fields such as public finance, industrial
organization, and labour economics, amongst several others. Indeed, the most relevant lit-
erature typically presumes familiarity with several important mathematical tools, especially
calculus for functions of one and several variables, as well as a basic understanding of mul-
tivariable optimization problems with or without constraints. Linear algebra is also used to
some extent in economic theory, and a great deal more in econometrics.

The purpose of Essential Mathematics for Economic Analysis, therefore, is to help eco-
nomics students acquire enough mathematical skill to access the literature that is most
relevant to their undergraduate study. This should include what some students will need to
conduct successfully an undergraduate research project or honours thesis.

As the title suggests, this is a book on mathematics, whose material is arranged to allow
progressive learning of mathematical topics. That said, we do frequently emphasize eco-
nomic applications. These not only help motivate particular mathematical topics; we also
want to help prospective economists acquire mutually reinforcing intuition in both math-
ematics and economics. Indeed, as the list of examples on the inside front cover suggests,
a considerable number of economic concepts and ideas receive some attention.

We emphasize, however, that this is not a book about economics or even about mathemat-
ical economics. Students should learn economic theory systematically from other courses,
which use other textbooks. We will have succeeded if they can concentrate on the economics
in these courses, having already thoroughly mastered the relevant mathematical tools this
book presents.



Essential Math. for Econ. Analysis, 4th edn EME4_A03.TEX, 16 May 2012, 14:24 Page xi

P R E F A C E

I came to the position that mathematical analysis is not one of many

ways of doing economic theory: It is the only way. Economic theory

is mathematical analysis. Everything else is just pictures and talk.

—R. E. Lucas, Jr. (2001)

Purpose

The subject matter that modern economics students are expected to master makes signi-
ficant mathematical demands. This is true even of the less technical “applied” literature
that students will be expected to read for courses in fields such as public finance, industrial
organization, and labour economics, amongst several others. Indeed, the most relevant lit-
erature typically presumes familiarity with several important mathematical tools, especially
calculus for functions of one and several variables, as well as a basic understanding of mul-
tivariable optimization problems with or without constraints. Linear algebra is also used to
some extent in economic theory, and a great deal more in econometrics.

The purpose of Essential Mathematics for Economic Analysis, therefore, is to help eco-
nomics students acquire enough mathematical skill to access the literature that is most
relevant to their undergraduate study. This should include what some students will need to
conduct successfully an undergraduate research project or honours thesis.

As the title suggests, this is a book on mathematics, whose material is arranged to allow
progressive learning of mathematical topics. That said, we do frequently emphasize eco-
nomic applications. These not only help motivate particular mathematical topics; we also
want to help prospective economists acquire mutually reinforcing intuition in both math-
ematics and economics. Indeed, as the list of examples on the inside front cover suggests,
a considerable number of economic concepts and ideas receive some attention.

We emphasize, however, that this is not a book about economics or even about mathemat-
ical economics. Students should learn economic theory systematically from other courses,
which use other textbooks. We will have succeeded if they can concentrate on the economics
in these courses, having already thoroughly mastered the relevant mathematical tools this
book presents.



xii	 P R E FA C E

Essential Math. for Econ. Analysis, 4th edn EME4_A03.TEX, 16 May 2012, 14:24 Page xii

xii P R E F A C E

Special Features and Accompanying Material

All sections of the book, except one, conclude with problems, often quite numerous. There
are also many review problems at the end of each chapter. Answers to almost all problems
are provided at the end of the book, sometimes with several steps of the solution laid out.

There are two main sources of supplementary material. The first, for both students and
their instructors, is via MyMathLab Global. Students who have arranged access to this web
site for our book will be able to generate a practically unlimited number of additional prob-
lems which test how well some of the key ideas presented in the text have been understood.
More explanation of this system is offered after this preface. The same web page also has
a “student resources” tab with access to a Student’s Manual with more extensive answers
(or, in the case of a few of the most theoretical or difficult problems in the book, the only
answers) to problems marked with the symbol ⊂SM⊃ .

The second source, for instructors who adopt the book for their course, is an Instructor’s
Manual that may be downloaded from the publisher’s Instructor Resource Centre.

In addition, for courses with special needs, there is a brief online appendix on trigono-
metric functions and complex numbers. This is also available via MyMathLab Global.

Prerequisites

Experience suggests that it is quite difficult to start a book like this at a level that is really
too elementary.1 These days, in many parts of the world, students who enter college or uni-
versity and specialize in economics have an enormous range of mathematical backgrounds
and aptitudes. These range from, at the low end, a rather shaky command of elementary
algebra, up to real facility in the calculus of functions of one variable. Furthermore, for
many economics students, it may be some years since their last formal mathematics course.
Accordingly, as mathematics becomes increasingly essential for specialist studies in eco-
nomics, we feel obliged to provide as much quite elementary material as is reasonably
possible. Our aim here is to give those with weaker mathematical backgrounds the chance
to get started, and even to acquire a little confidence with some easy problems they can
really solve on their own.

To help instructors judge how much of the elementary material students really know
before starting a course, the Instructor’s Manual provides some diagnostic test material.
Although each instructor will obviously want to adjust the starting point and pace of a course
to match the students’abilities, it is perhaps even more important that each individual student
appreciates his or her own strengths and weaknesses, and receives some help and guidance
in overcoming any of the latter. This makes it quite likely that weaker students will benefit
significantly from the opportunity to work through the early more elementary chapters, even
if they may not be part of the course itself.

As for our economic discussions, students should find it easier to understand them if
they already have a certain very rudimentary background in economics. Nevertheless, the
text has often been used to teach mathematics for economics to students who are studying
elementary economics at the same time. Nor do we see any reason why this material cannot

1 In a recent test for 120 first-year students intending to take an elementary economics course, there
were 35 different answers to the problem of expanding (a + 2b)2.
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be mastered by students interested in economics before they have begun studying the subject
in a formal university course.

Topics Covered

After the introductory material in Chapters 1 to 3, a fairly leisurely treatment of single-
variable differential calculus is contained in Chapters 4 to 8. This is followed by integration
in Chapter 9, and by the application to interest rates and present values in Chapter 10. This
may be as far as some elementary courses will go. Students who already have a thorough
grounding in single variable calculus, however, may only need to go fairly quickly over some
special topics in these chapters such as elasticity and conditions for global optimization that
are often not thoroughly covered in standard calculus courses.

We have already suggested the importance for budding economists of multivariable
calculus (Chapters 11 and 12), of optimization theory with and without constraints (Chapters
13 and 14), and of the algebra of matrices and determinants (Chapters 15 and 16). These six
chapters in some sense represent the heart of the book, on which students with a thorough
grounding in single variable calculus can probably afford to concentrate. In addition, several
instructors who have used previous editions report that they like to teach the elementary
theory of linear programming, which is therefore covered in Chapter 17.

The ordering of the chapters is fairly logical, with each chapter building on material in
previous chapters. The main exception concerns Chapters 15 and 16 on linear algebra, as
well as Chapter 17 on linear programming, most of which could be fitted in almost anywhere
after Chapter 3. Indeed, some instructors may reasonably prefer to cover some concepts of
linear algebra before moving on to multivariable calculus, or to cover linear programming
before multivariable optimization with inequality constraints.

Satisfying Diverse Requirements

The less ambitious student can concentrate on learning the key concepts and techniques
of each chapter. Often, these appear boxed and/or in colour, in order to emphasize their
importance. Problems are essential to the learning process, and the easier ones should
definitely be attempted. These basics should provide enough mathematical background for
the student to be able to understand much of the economic theory that is embodied in applied
work at the advanced undergraduate level.

Students who are more ambitious, or who are led on by more demanding teachers, can
try the more difficult problems. They can also study the material in smaller print. The latter
is intended to encourage students to ask why a result is true, or why a problem should be
tackled in a particular way. If more readers gain at least a little additional mathematical
insight from working through these parts of our book, so much the better.

The most able students, especially those intending to undertake postgraduate study in
economics or some related subject, will benefit from a fuller explanation of some topics
than we have been able to provide here. On a few occasions, therefore, we take the liberty
of referring to our more advanced companion volume, Further Mathematics for Economic
Analysis (usually abbreviated to FMEA). This is written jointly with our respective col-
leagues Atle Seierstad and Arne Strøm in Oslo and, in a new forthcoming edition, with
Andrés Carvajal at Warwick. In particular, FMEA offers a proper treatment of topics like
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to match the students’abilities, it is perhaps even more important that each individual student
appreciates his or her own strengths and weaknesses, and receives some help and guidance
in overcoming any of the latter. This makes it quite likely that weaker students will benefit
significantly from the opportunity to work through the early more elementary chapters, even
if they may not be part of the course itself.

As for our economic discussions, students should find it easier to understand them if
they already have a certain very rudimentary background in economics. Nevertheless, the
text has often been used to teach mathematics for economics to students who are studying
elementary economics at the same time. Nor do we see any reason why this material cannot

1 In a recent test for 120 first-year students intending to take an elementary economics course, there
were 35 different answers to the problem of expanding (a + 2b)2.
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be mastered by students interested in economics before they have begun studying the subject
in a formal university course.

Topics Covered

After the introductory material in Chapters 1 to 3, a fairly leisurely treatment of single-
variable differential calculus is contained in Chapters 4 to 8. This is followed by integration
in Chapter 9, and by the application to interest rates and present values in Chapter 10. This
may be as far as some elementary courses will go. Students who already have a thorough
grounding in single variable calculus, however, may only need to go fairly quickly over some
special topics in these chapters such as elasticity and conditions for global optimization that
are often not thoroughly covered in standard calculus courses.

We have already suggested the importance for budding economists of multivariable
calculus (Chapters 11 and 12), of optimization theory with and without constraints (Chapters
13 and 14), and of the algebra of matrices and determinants (Chapters 15 and 16). These six
chapters in some sense represent the heart of the book, on which students with a thorough
grounding in single variable calculus can probably afford to concentrate. In addition, several
instructors who have used previous editions report that they like to teach the elementary
theory of linear programming, which is therefore covered in Chapter 17.

The ordering of the chapters is fairly logical, with each chapter building on material in
previous chapters. The main exception concerns Chapters 15 and 16 on linear algebra, as
well as Chapter 17 on linear programming, most of which could be fitted in almost anywhere
after Chapter 3. Indeed, some instructors may reasonably prefer to cover some concepts of
linear algebra before moving on to multivariable calculus, or to cover linear programming
before multivariable optimization with inequality constraints.

Satisfying Diverse Requirements

The less ambitious student can concentrate on learning the key concepts and techniques
of each chapter. Often, these appear boxed and/or in colour, in order to emphasize their
importance. Problems are essential to the learning process, and the easier ones should
definitely be attempted. These basics should provide enough mathematical background for
the student to be able to understand much of the economic theory that is embodied in applied
work at the advanced undergraduate level.

Students who are more ambitious, or who are led on by more demanding teachers, can
try the more difficult problems. They can also study the material in smaller print. The latter
is intended to encourage students to ask why a result is true, or why a problem should be
tackled in a particular way. If more readers gain at least a little additional mathematical
insight from working through these parts of our book, so much the better.

The most able students, especially those intending to undertake postgraduate study in
economics or some related subject, will benefit from a fuller explanation of some topics
than we have been able to provide here. On a few occasions, therefore, we take the liberty
of referring to our more advanced companion volume, Further Mathematics for Economic
Analysis (usually abbreviated to FMEA). This is written jointly with our respective col-
leagues Atle Seierstad and Arne Strøm in Oslo and, in a new forthcoming edition, with
Andrés Carvajal at Warwick. In particular, FMEA offers a proper treatment of topics like
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second-order conditions for optimization, and the concavity or convexity of functions of
more than two variables—topics that we think go rather beyond what is really “essential”
for all economics students.

Changes in the Fourth Edition

We have been gratified by the number of students and their instructors from many parts of the
world who appear to have found the first three editions useful.2 We have accordingly been
encouraged to revise the text thoroughly once again. There are numerous minor changes
and improvements, including the following in particular:

(1) The main new feature is MyMathLab Global, explained on the page after this preface,
as well as on the back cover.

(2) New problems have been added for each chapter.

(3) Some of the figures have been improved.
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1 I N T R O D U C T O R Y T O P I C S I :

A L G E B R A

Is it right I ask;

is it even prudence;

to bore thyself and bore the students?

—Mephistopheles to Faust (From Goethe’s Faust.)

This introductory chapter basically deals with elementary algebra, but we also briefly consider

a few other topics that you might find that you need to review. Indeed, tests reveal that

even students with a good background in mathematics often benefit from a brief review of what

they learned in the past. These students should browse through the material and do some of

the less simple problems. Students with a weaker background in mathematics, or who have

been away from mathematics for a long time, should read the text carefully and then do most of

the problems. Finally, those students who have considerable difficulties with this chapter should

turn to a more elementary book on algebra.

1.1 The Real Numbers
We start by reviewing some important facts and concepts concerning numbers. The basic
numbers are

1, 2, 3, 4, . . . (natural numbers)

also called positive integers. Of these 2, 4, 6, 8, . . . are the even numbers, whereas 1, 3, 5,
7, . . . are the odd numbers. Though familiar, such numbers are in reality rather abstract and
advanced concepts. Civilization crossed a significant threshold when it grasped the idea that
a flock of four sheep and a collection of four stones have something in common, namely
“fourness”. This idea came to be represented by symbols such as the primitive :: (still
used on dominoes or playing cards), the Roman numeral IV, and eventually the modern 4.
This key notion is grasped and then continually refined as young children develop their
mathematical skills.

The positive integers, together with 0 and the negative integers −1, −2, −3, −4, . . . ,
make up the integers, which are

0, ±1, ±2, ±3, ±4, . . . (integers)
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They can be represented on a number line like the one shown in Fig. 1 (where the arrow
gives the direction in which the numbers increase).

�5 �4 �3 �2 �1 0 1 2 3 4 5

Figure 1 The number line

The rational numbers are those like 3/5 that can be written in the form a/b, where a and b

are both integers. An integer n is also a rational number, because n = n/1. Other examples
of rational numbers are

1

2
,

11

70
,

125

7
, −10

11
, 0 = 0

1
, −19, −1.26 = −126

100

The rational numbers can also be represented on the number line. Imagine that we first
mark 1/2 and all the multiples of 1/2. Then we mark 1/3 and all the multiples of 1/3, and
so forth. You can be excused for thinking that “finally” there will be no more places left for
putting more points on the line. But in fact this is quite wrong. The ancient Greeks already
understood that “holes” would remain in the number line even after all the rational numbers
had been marked off. For instance, there are no integers p and q such that

√
2 = p/q.

Hence,
√

2 is not a rational number. (Euclid proved this fact in around the year 300 BC.)
The rational numbers are therefore insufficient for measuring all possible lengths, let

alone areas and volumes. This deficiency can be remedied by extending the concept of
numbers to allow for the so-called irrational numbers. This extension can be carried out
rather naturally by using decimal notation for numbers, as explained below.

The way most people write numbers today is called the decimal system, or the base 10
system. It is a positional system with 10 as the base number. Every natural number can be
written using only the symbols, 0, 1, 2, . . . , 9, which are called digits. You may recall that
a digit is either a finger or a thumb, and that most humans have 10 digits. The positional
system defines each combination of digits as a sum of powers of 10. For example,

1984 = 1 · 103 + 9 · 102 + 8 · 101 + 4 · 100

Each natural number can be uniquely expressed in this manner. With the use of the signs
+ and −, all integers, positive or negative, can be written in the same way. Decimal points
also enable us to express rational numbers other than natural numbers. For example,

3.1415 = 3 + 1/101 + 4/102 + 1/103 + 5/104

Rational numbers that can be written exactly using only a finite number of decimal places
are called finite decimal fractions.

Each finite decimal fraction is a rational number, but not every rational number can be
written as a finite decimal fraction. We also need to allow for infinite decimal fractions
such as

100/3 = 33.333 . . .

where the three dots indicate that the digit 3 is repeated indefinitely.
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If the decimal fraction is a rational number, then it will always be recurring or periodic—
that is, after a certain place in the decimal expansion, it either stops or continues to repeat a
finite sequence of digits. For example, 11/70 = 0.1 571428︸ ︷︷ ︸ 571428︸ ︷︷ ︸ 5 . . . with the sequence

of six digits 571428 repeated infinitely often.
The definition of a real number follows from the previous discussion. We define a real

number as an arbitrary infinite decimal fraction. Hence, a real number is of the form
x = ±m.α1α2α3 . . . , where m is a nonnegative integer, and αn (n = 1, 2 . . .) is an infinite
series of digits, each in the range 0 to 9. We have already identified the periodic decimal
fractions with the rational numbers. In addition, there are infinitely many new numbers
given by the nonperiodic decimal fractions. These are called irrational numbers. Examples
include

√
2, −√

5, π , 2
√

2, and 0.12112111211112 . . . .
We mentioned earlier that each rational number can be represented by a point on the

number line. But not all points on the number line represent rational numbers. It is as if the
irrational numbers “close up” the remaining holes on the number line after all the rational
numbers have been positioned. Hence, an unbroken and endless straight line with an origin
and a positive unit of length is a satisfactory model for the real numbers. We frequently
state that there is a one-to-one correspondence between the real numbers and the points on
a number line. Often, too, one speaks of the “real line” rather than the “number line”.

The set of rational numbers as well as the set of irrational numbers are said to be “dense”
on the number line. This means that between any two different real numbers, irrespective
of how close they are to each other, we can always find both a rational and an irrational
number—in fact, we can always find infinitely many of each.

When applied to the real numbers, the four basic arithmetic operations always result in
a real number. The only exception is that we cannot divide by 0.1

p

0
is not defined for any real number p

This is very important and should not be confused with 0/a = 0, for all a �= 0. Notice
especially that 0/0 is not defined as any real number. For example, if a car requires 60
litres of fuel to go 600 kilometres, then its fuel consumption is 60/600 = 10 litres per 100
kilometres. However, if told that a car uses 0 litres of fuel to go 0 kilometres, we know
nothing about its fuel consumption; 0/0 is completely undefined.

1 “Black holes are where God divided by zero.” (Steven Wright)
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P R O B L E M S F O R S E C T I O N 1 . 1

1. Which of the following statements are true?

(a) 1984 is a natural number. (b) −5 is to the right of −3 on the number line.

(c) −13 is a natural number. (d) There is no natural number that is not rational.

(e) 3.1415 is not rational. (f) The sum of two irrational numbers is irrational.

(g) −3/4 is rational. (h) All rational numbers are real.

2. Explain why the infinite decimal expansion 1.01001000100001000001 . . . is not a rational
number.

1.2 Integer Powers
You should recall that we often write 34 instead of the product 3 · 3 · 3 · 3, that 1

2 · 1
2 · 1

2 · 1
2 · 1

2

can be written as
( 1

2

)5
, and that (−10)3 = (−10)(−10)(−10) = −1000. If a is any number

and n is any natural number, then an is defined by

an = a · a · . . . · a︸ ︷︷ ︸
n factors

The expression an is called the nth power of a; here a is the base, and n is the exponent.
We have, for example, a2 = a · a, x4 = x · x · x · x, and

(
p

q

)5

= p

q
· p

q
· p

q
· p

q
· p

q

where a = p/q, and n = 5. By convention, a1 = a, a “product” with only one factor.
We usually drop the multiplication sign if this is unlikely to create misunderstanding.

For example, we write abc instead of a · b · c, but it is safest to keep the multiplication sign
in 1.053 = 1.05 · 1.05 · 1.05.

We define further
a0 = 1 for a �= 0

Thus, 50 = 1, (−16.2)0 = 1, and (x · y)0 = 1 (if x · y �= 0). But if a = 0, we do not assign
a numerical value to a0; the expression 00 is undefined.

We also need to define powers with negative exponents. What do we mean by 3−2? It
turns out that the sensible definition is to set 3−2 equal to 1/32 = 1/9. In general,

a−n = 1

an

whenever n is a natural number and a �= 0. In particular, a−1 = 1/a. In this way we have
defined ax for all integers x.
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Calculators usually have a power key, denoted by yx or ax , which can be used to

compute powers. Make sure you know how to use it by computing 23 (which is 8),
32 (which is 9), and 25−3 (which is 0.000064).

Properties of Powers

There are some rules for powers that you really must not only know by heart, but understand
why they are true. The two most important are:

(i) ar · as = ar+s (ii) (ar)s = ars

Note carefully what these rules say. According to rule (i), powers with the same base are
multiplied by adding the exponents. For example,

a3 · a5 = a · a · a︸ ︷︷ ︸
3 factors

· a · a · a · a · a︸ ︷︷ ︸
5 factors

= a · a · a · a · a · a · a · a︸ ︷︷ ︸
3 + 5 = 8 factors

= a3+5 = a8

Here is an example of rule (ii):

(a2)4 = a · a︸︷︷︸
2 factors

· a · a︸︷︷︸
2 factors

· a · a︸︷︷︸
2 factors

· a · a︸︷︷︸
2 factors

= a · a · a · a · a · a · a · a︸ ︷︷ ︸
2 · 4 = 8 factors

= a2 · 4 = a8

Division of two powers with the same base goes like this:

ar ÷ as = ar

as
= ar 1

as
= ar · a−s = ar−s

Thus we divide two powers with the same base by subtracting the exponent in the denom-
inator from that in the numerator. For example, a3 ÷ a5 = a3−5 = a−2.

Finally, note that

(ab)r = ab · ab · . . . · ab︸ ︷︷ ︸
r factors

= a · a · . . . · a︸ ︷︷ ︸
r factors

· b · b · . . . · b︸ ︷︷ ︸
r factors

= arbr

and (a

b

)r = a

b
· a

b
· . . . · a

b︸ ︷︷ ︸
r factors

=
r factors︷ ︸︸ ︷

a · a · . . . · a

b · b · . . . · b︸ ︷︷ ︸
r factors

= ar

br
= arb−r

These rules can be extended to cases where there are several factors. For instance,

(abcde)r = arbrcrdrer

We saw that (ab)r = arbr . What about (a + b)r? One of the most common errors
committed in elementary algebra is to equate this to ar + br . For example, (2 + 3)3 = 53 =
125, but 23 + 33 = 8 + 27 = 35. Thus,

(a + b)r �= ar + br (in general)
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E X A M P L E 1 Simplify2 (a) xpx2p (b) t s ÷ t s−1 (c) a2b3a−1b5 (d)
tptq−1

t r t s−1
.

Solution:

(a) xpx2p = xp+2p = x3p

(b) t s ÷ t s−1 = t s−(s−1) = t s−s+1 = t1 = t

(c) a2b3a−1b5 = a2a−1b3b5 = a2−1b3+5 = a1b8 = ab8

(d)
tp · tq−1

t r · t s−1
= tp+q−1

t r+s−1
= tp+q−1−(r+s−1) = tp+q−1−r−s+1 = tp+q−r−s

E X A M P L E 2 If x−2y3 = 5, compute x−4y6, x6y−9, and x2y−3 + 2x−10y15.

Solution: In computing x−4y6, how can we make use of the assumption that x−2y3 = 5?
A moment’s reflection might lead you to see that (x−2y3)2 = x−4y6, and hence x−4y6 =
52 = 25. Similarly,

x6y−9 = (x−2y3)−3 = 5−3 = 1/125

x2y−3 + 2x−10y15 = (x−2y3)−1 + 2(x−2y3)5 = 5−1 + 2 · 55 = 6250.2

NOTE 1 An important motivation for introducing the definitions a0 = 1 and a−n = 1/an

is that we want the rules for powers to be valid for negative and zero exponents as well as for
positive ones. For example, we want ar · as = ar+s to be valid when r = 5 and s = 0. This
requires that a5 · a0 = a5+0 = a5, so we must choose a0 = 1. If an · am = an+m is to be
valid when m = −n, we must have an ·a−n = an+(−n) = a0 = 1. Because an · (1/an) = 1,
we must define a−n to be 1/an.

NOTE 2 It is easy to make mistakes when dealing with powers. The following examples
highlight some common sources of confusion.

(a) There is an important difference between (−10)2 = (−10)(−10) = 100, and −102 =
−(10 · 10) = −100. The square of minus 10 is not equal to minus the square of 10.

(b) Note that (2x)−1 = 1/(2x). Here the product 2x is raised to the power of −1. On
the other hand, in the expression 2x−1 only x is raised to the power −1, so 2x−1 =
2 · (1/x) = 2/x.

(c) The volume of a ball with radius r is 4
3πr3. What will the volume be if the radius is

doubled? The new volume is 4
3π(2r)3 = 4

3π(2r)(2r)(2r) = 4
3π8r3 = 8

( 4
3πr3

)
, so

the volume is 8 times the initial one. (If we made the mistake of “simplifying” (2r)3 to
2r3, the result would imply only a doubling of the volume; this should be contrary to
common sense.)

Compound Interest

Powers are used in practically every branch of applied mathematics, including economics.
To illustrate their use, recall how they are needed to calculate compound interest.

2 Here and throughout the book we strongly suggest that when you attempt to solve a problem, you
cover the solution and then gradually reveal the proposed answer to see if you are right.
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Suppose you deposit $1000 in a bank account paying 8% interest at the end of each year.3

After one year you will have earned $1000 · 0.08 = $80 in interest, so the amount in your
bank account will be $1080. This can be rewritten as

1000 + 1000 · 8

100
= 1000

(
1 + 8

100

)
= 1000 · 1.08

Suppose this new amount of $1000 · 1.08 is left in the bank for another year at an interest
rate of 8%. After a second year, the extra interest will be $1000 · 1.08 · 0.08. So the total
amount will have grown to

1000 · 1.08 + (1000 · 1.08) · 0.08 = 1000 · 1.08(1 + 0.08) = 1000 · (1.08)2

Each year the amount will increase by the factor 1.08, and we see that at the end of t years
it will have grown to $1000 · (1.08)t .

If the original amount is $K and the interest rate is p% per year, by the end of the first
year, the amount will be K + K · p/100 = K(1 + p/100) dollars. The growth factor per
year is thus 1 + p/100. In general, after t (whole) years, the original investment of $K will
have grown to an amount

K
(

1 + p

100

)t

when the interest rate is p% per year (and interest is added to the capital every year—that
is, there is compound interest).

This example illustrates a general principle:

A quantity K which increases by p% per year will have increased after t years to

K
(

1 + p

100

)t

Here 1 + p

100
is called the growth factor for a growth of p%.

If you see an expression like (1.08)t you should immediately be able to recognize it
as the amount to which $1 has grown after t years when the interest rate is 8% per year.
How should you interpret (1.08)0? You deposit $1 at 8% per year, and leave the amount
for 0 years. Then you still have only $1, because there has been no time to accumulate any
interest, so that (1.08)0 must equal 1.

NOTE 3 1000·(1.08)5 is the amount you will have in your account after 5 years if you invest
$1000 at 8% interest per year. Using a calculator, you find that you will have approximately
$1469.33. A rather common mistake is to put 1000 · (1.08)5 = (1000 · 1.08)5 = (1080)5.
This is 1012 (or a trillion) times the right answer.

3 Remember that 1% means one in a hundred, or 0.01. So 23%, for example, is 23 · 0.01 = 0.23.

To calculate 23% of 4000, we write 4000 · 23
100 = 920 or 4000 · 0.23 = 920.
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E X A M P L E 3 A new car has been bought for $15 000 and is assumed to decrease in value (depreciate)
by 15% per year over a six-year period. What is its value after 6 years?

Solution: After one year its value is down to

15 000 − 15 000 · 15

100
= 15 000

(
1 − 15

100

)
= 15 000 · 0.85 = 12 750

After two years its value is 15 000 · (0.85)2 = 10 837.50, and so on. After six years we
realize that its value must be 15 000 · (0.85)6 ≈ 5 657.

This example illustrates a general principle:

A quantity K which decreases by p% per year, will after t years have decreased to

K
(

1 − p

100

)t

Here 1 − p

100
is called the growth factor for a decline of p%.

Do We Really Need Negative Exponents?
How much money should you have deposited in a bank 5 years ago in order to have $1000
today, given that the interest rate has been 8% per year over this period? If we call this
amount x, the requirement is that x · (1.08)5 must equal $1000, or that x · (1.08)5 = 1000.
Dividing by 1.085 on both sides yields

x = 1000

(1.08)5
= 1000 · (1.08)−5

(which is approximately $681). Thus, $(1.08)−5 is what you should have deposited 5 years
ago in order to have $1 today, given the constant interest rate of 8%.

In general, $P(1 + p/100)−t is what you should have deposited t years ago in order to
have $P today, if the interest rate has been p% every year.

P R O B L E M S F O R S E C T I O N 1 . 2

1. Compute: (a) 103 (b) (−0.3)2 (c) 4−2 (d) (0.1)−1

2. Write as powers of 2: (a) 4 (b) 1 (c) 64 (d) 1/16

3. Write as powers:

(a) 15 · 15 · 15 (b)
(− 1

3

) (− 1
3

) (− 1
3

)
(c) 1

10 (d) 0.0000001

(e) t t t t t t (f) (a − b)(a − b)(a − b) (g) a a b b b b (h) (−a)(−a)(−a)

In Problems 4–6 expand and simplify.

4. (a) 25 · 25 (b) 38 · 3−2 · 3−3 (c) (2x)3 (d) (−3xy2)3
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5. (a)
p24p3

p4p
(b)

a4b−3

(a2b−3)2
(c)

34(32)6

(−3)1537
(d)

pγ (pq)σ

p2γ+σ qσ−2

6. (a) 20 · 21 · 22 · 23 (b)

(
4

3

)3

(c)
42 · 62

33 · 23

(d) x5x4 (e) y5y4y3 (f) (2xy)3

(g)
102 · 10−4 · 103

100 · 10−2 · 105
(h)

(k2)3k4

(k3)2
(i)

(x + 1)3(x + 1)−2

(x + 1)2(x + 1)−3

7. The surface area of a sphere with radius r is 4πr2.

(a) By what factor will the surface area increase if the radius is tripled?

(b) If the radius increases by 16%, by how many % will the surface area increase?

8. Which of the following equalities are true and which are false? Justify your answers. (Note:
a and b are positive, m and n are integers.)

(a) a0 = 0 (b) (a + b)−n = 1/(a + b)n (c) am · am = a2m

(d) am · bm = (ab)2m (e) (a + b)m = am + bm (f) an · bm = (ab)n+m

9. Complete the following:

(a) xy = 3 implies x3y3 = . . . (b) ab = −2 implies (ab)4 = . . .

(c) a2 = 4 implies (a8)0 = . . . (d) n integer implies (−1)2n = . . .

10. Compute the following: (a) 13% of 150 (b) 6% of 2400 (c) 5.5% of 200

11. A box containing 5 balls costs $8.50. If the balls are bought individually, they cost $2.00 each.
How much cheaper is it, in percentage terms, to buy the box as opposed to buying 5 individual
balls?

12. Give economic interpretations to each of the following expressions and then use a calculator to
find the approximate values:

(a) 50 · (1.11)8 (b) 10 000 · (1.12)20 (c) 5000 · (1.07)−10

13. (a) $12 000 is deposited in an account earning 4% interest per year. What is the amount after
15 years?

(b) If the interest rate is 6% each year, how much money should you have deposited in a bank
5 years ago to have $50 000 today?

14. A quantity increases by 25% each year for 3 years. How much is the combined percentage
growth p over the three year period?

15. (a) A firm’s profit increased from 1990 to 1991 by 20%, but it decreased by 17% from 1991 to
1992. Which of the years 1990 and 1992 had the higher profit?

(b) What percentage decrease in profits from 1991 to 1992 would imply that profits were equal
in 1990 and 1992?
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1.3 Rules of Algebra
You are certainly already familiar with the most common rules of algebra. We have already
used some in this chapter. Nevertheless, it may be useful to recall those that are most
important. If a, b, and c are arbitrary numbers, then:

(a) a + b = b + a (g) 1 · a = a

(b) (a + b) + c = a + (b + c) (h) aa−1 = 1 for a �= 0

(c) a + 0 = a (i) (−a)b = a(−b) = −ab

(d) a + (−a) = 0 (j) (−a)(−b) = ab

(e) ab = ba (k) a(b + c) = ab + ac

(f) (ab)c = a(bc) (l) (a + b)c = ac + bc

These rules are used in the following examples:
5 + x2 = x2 + 5 (a + 2b) + 3b = a + (2b + 3b) = a + 5b

x 1
3 = 1

3x (xy)y−1 = x(yy−1) = x

(−3)5 = 3(−5) = −(3 · 5) = −15 (−6)(−20) = 120

3x(y + 2z) = 3xy + 6xz (t2 + 2t)4t3 = t24t3 + 2t4t3 = 4t5 + 8t4

The algebraic rules can be combined in several ways to give:

a(b − c) = a[b + (−c)] = ab + a(−c) = ab − ac

x(a + b − c + d) = xa + xb − xc + xd

(a + b)(c + d) = ac + ad + bc + bd

Figure 1 provides a geometric argument for the last of these algebraic rules for the case
in which the numbers a, b, c, and d are all positive. The area (a + b)(c + d) of the large
rectangle is the sum of the areas of the four small rectangles.

c d

c � d

b

a

a � b

ac

bc bd

ad

Figure 1

Recall the following three “quadratic identities”, which are so important that you should
definitely memorize them.

(a + b)2 = a2 + 2ab + b2

(a − b)2 = a2 − 2ab + b2

(a + b)(a − b) = a2 − b2
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The last of these is called the difference-of-squares formula. The proofs are very easy. For
example, (a +b)2 means (a +b)(a +b), which equals aa +ab+ba +bb = a2 +2ab+b2.

E X A M P L E 1 Expand: (a) (3x + 2y)2 (b) (1 − 2z)2 (c) (4p + 5q)(4p − 5q).

Solution:

(a) (3x + 2y)2 = (3x)2 + 2(3x)(2y) + (2y)2 = 9x2 + 12xy + 4y2

(b) (1 − 2z)2 = 1 − 2 · 1 · 2 · z + (2z)2 = 1 − 4z + 4z2

(c) (4p + 5q)(4p − 5q) = (4p)2 − (5q)2 = 16p2 − 25q2

We often encounter parentheses with a minus sign in front. Because (−1)x = −x,

−(a + b − c + d) = −a − b + c − d

In words: When removing a pair of parentheses with a minus in front, change the signs of
all the terms within the parentheses—do not leave any out.

We saw how to multiply two factors, (a+b) and (c+d). How do we compute such products
when there are several factors? Here is an example:

(a + b)(c + d)(e + f ) = [
(a + b)(c + d)

]
(e + f ) = (

ac + ad + bc + bd
)
(e + f )

= (ac + ad + bc + bd)e + (ac + ad + bc + bd)f

= ace + ade + bce + bde + acf + adf + bcf + bdf

Alternatively, write (a + b)(c + d)(e + f ) = (a + b)
[
(c + d)(e + f )

]
, then expand and

show that you get the same answer.

E X A M P L E 2 Expand (r + 1)3.

Solution:

(r + 1)3 = [
(r + 1)(r + 1)

]
(r + 1) = (r2 + 2r + 1)(r + 1) = r3 + 3r2 + 3r + 1

Illustration: A ball with radius r metres has a volume of 4
3πr3 cubic metres. By how much

does the volume expand if the radius increases by 1 metre? The solution is

4
3π(r + 1)3 − 4

3πr3 = 4
3π(r3 + 3r2 + 3r + 1) − 4

3πr3 = 4
3π(3r2 + 3r + 1)

Algebraic Expressions

Expressions involving letters such as 3xy − 5x2y3 + 2xy + 6y3x2 − 3x + 5yx + 8 are
called algebraic expressions. We call 3xy, −5x2y3, 2xy, 6y3x2, −3x, 5yx, and 8 the terms
in the expression that is formed by adding all the terms together. The numbers 3, −5, 2, 6,
−3, and 5 are the numerical coefficients of the first six terms. Two terms where only the
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numerical coefficients are different, such as −5x2y3 and 6y3x2, are called terms of the same
type. In order to simplify expressions, we collect terms of the same type. Then within each
term, we put numerical coefficients first and place the letters in alphabetical order. Thus,

3xy − 5x2y3 + 2xy + 6y3x2 − 3x + 5yx + 8 = x2y3 + 10xy − 3x + 8

E X A M P L E 3 Expand and simplify: (2pq − 3p2)(p + 2q) − (q2 − 2pq)(2p − q).

Solution:

(2pq − 3p2)(p + 2q) − (q2 − 2pq)(2p − q)

= 2pqp + 2pq2q − 3p3 − 6p2q − (q22p − q3 − 4pqp + 2pq2)

= 2p2q + 4pq2 − 3p3 − 6p2q − 2pq2 + q3 + 4p2q − 2pq2

= −3p3 + q3

Factoring
When we write 49 = 7 · 7 and 672 = 2 · 2 · 2 · 2 · 2 · 3 · 7, we have factored these numbers.
Algebraic expressions can often be factored in a similar way. For example, 6x2y = 2·3·x·x·y
and 5x2y3 − 15xy2 = 5 · x · y · y(xy − 3).

E X A M P L E 4 Factor each of the following:

(a) 5x2 + 15x (b) − 18b2 + 9ab (c) K(1 + r)+K(1 + r)r (d) δL−3 + (1 − δ)L−2

Solution:

(a) 5x2 + 15x = 5x(x + 3)

(b) −18b2 + 9ab = 9ab − 18b2 = 3 · 3b(a − 2b)

(c) K(1 + r) + K(1 + r)r = K(1 + r)(1 + r) = K(1 + r)2

(d) δL−3 + (1 − δ)L−2 = L−3 [δ + (1 − δ)L]

The “quadratic identities” can often be used in reverse for factoring. They sometimes enable
us to factor expressions that otherwise appear to have no factors.

E X A M P L E 5 Factor each of the following:

(a) 16a2 − 1 (b) x2y2 − 25z2 (c) 4u2 + 8u + 4 (d) x2 − x + 1
4

Solution:

(a) 16a2 − 1 = (4a + 1)(4a − 1)

(b) x2y2 − 25z2 = (xy + 5z)(xy − 5z)

(c) 4u2 + 8u + 4 = 4(u2 + 2u + 1) = 4(u + 1)2

(d) x2 − x + 1
4 = (x − 1

2 )2
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NOTE 1 To factor an expression means to express it as a product of simpler factors. Note
that 9x2 − 25y2 = 3 · 3 · x · x − 5 · 5 · y · y does not factor 9x2 − 25y2. A correct factoring
is 9x2 − 25y2 = (3x − 5y)(3x + 5y).

Sometimes one has to show a measure of inventiveness to find a factoring:

4x2 − y2 + 6x2 + 3xy = (4x2 − y2) + 3x(2x + y)

= (2x + y)(2x − y) + 3x(2x + y)

= (2x + y)(2x − y + 3x)

= (2x + y)(5x − y)

Although it might be difficult, or impossible, to find a factoring, it is very easy to verify that
an algebraic expression has been factored correctly by simply multiplying the factors. For
example, we check that

x2 − (a + b)x + ab = (x − a)(x − b)

by expanding (x − a)(x − b).
Most algebraic expressions cannot be factored. For example, there is no way to write

x2 + 10x + 50 as a product of simpler factors.4

P R O B L E M S F O R S E C T I O N 1 . 3

In Problems 1–5, expand and simplify.

1. (a) −3 + (−4) − (−8) (b) (−3)(2 − 4) (c) (−3)(−12)(−1

2
)

(d) −3[4 − (−2)] (e) −3(−x − 4) (f) (5x − 3y)9

(g) 2x

(
3

2x

)
(h) 0 · (1 − x) (i) −7x

2

14x

2. (a) 5a2 − 3b − (−a2 − b) − 3(a2 + b) (b) −x(2x − y) + y(1 − x) + 3(x + y)

(c) 12t2 − 3t + 16 − 2(6t2 − 2t + 8) (d) r3 − 3r2s + s3 − (−s3 − r3 + 3r2s)

3. (a) −3(n2 − 2n + 3) (b) x2(1 + x3) (c) (4n − 3)(n − 2)

(d) 6a2b(5ab − 3ab2) (e) (a2b − ab2)(a + b) (f) (x − y)(x − 2y)(x − 3y)

4. (a) (ax + b)(cx + d) (b) (2 − t2)(2 + t2) (c) (u − v)2(u + v)2

⊂SM⊃5. (a) (2t − 1)(t2 − 2t + 1) (b) (a + 1)2 + (a − 1)2 − 2(a + 1)(a − 1)

(c) (x + y + z)2 (d) (x + y + z)2 − (x − y − z)2

4 If we introduce complex numbers, however, then x2 + 10x + 50 can be factored.
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6. Expand each of the following:

(a) (x + 2y)2 (b)

(
1

x
− x

)2

(c) (3u − 5v)2 (d) (2z − 5w)(2z + 5w)

7. (a) 2012 − 1992 = (b) If u2 − 4u + 4 = 1, then u = (c)
(a + 1)2 − (a − 1)2

(b + 1)2 − (b − 1)2
=

8. Compute 10002/(2522 − 2482) without using a calculator.

9. Verify the following cubic identities, which are occasionally useful:

(a) (a + b)3 = a3 + 3a2b + 3ab2 + b3 (b) (a − b)3 = a3 − 3a2b + 3ab2 − b3

(c) a3 − b3 = (a − b)(a2 + ab + b2) (d) a3 + b3 = (a + b)(a2 − ab + b2)

In Problems 10 to 15, factor the given expressions.

10. (a) 21x2y3 (b) 3x − 9y + 27z (c) a3 − a2b (d) 8x2y2 − 16xy

11. (a) 28a2b3 (b) 4x + 8y − 24z (c) 2x2 − 6xy (d) 4a2b3 + 6a3b2

(e) 7x2 − 49xy (f) 5xy2 − 45x3y2 (g) 16 − b2 (h) 3x2 − 12

12. (a) x2 − 4x + 4 (b) 4t2s − 8ts2 (c) 16a2 + 16ab + 4b2 (d) 5x3 − 10xy2

⊂SM⊃13. (a) a2 + 4ab + 4b2 (b) K2L − L2K (c) K−4 − LK−5

(d) 9z2 − 16w2 (e) − 1
5 x2 + 2xy − 5y2 (f) a4 − b4

14. (a) 5x + 5y + ax + ay (b) u2 − v2 + 3v + 3u (c) P 3 + Q3 + Q2P + P 2Q

15. (a) K3 − K2L (b) KL3 + KL (c) L2 − K2

(d) K2 − 2KL + L2 (e) K3L − 4K2L2 + 4KL3 (f) K−3 − K−6

1.4 Fractions
Recall that

a ÷ b = a

b

← numerator
← denominator

For example, 5 ÷ 8 = 5
8 . For typographical reasons we often write 5/8 instead of 5

8 . Of
course, 5 ÷ 8 = 0.625. In this case, we have written the fraction as a decimal number. The
fraction 5/8 is called a proper fraction because 5 is less than 8. The fraction 19/8 is an
improper fraction because the numerator is larger than (or equal to) the denominator. An
improper fraction can be written as a mixed number:

19

8
= 2 + 3

8
= 2

3

8
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Here 2 3
8 means 2 plus 3/8. On the other hand, 2 · 3

8 = 2·3
8 = 3

4 (by the rules reviewed in
what follows). Note, however, that 2 x

8 means 2 · x
8 ; the notation 2x

8 or 2x/8 is obviously
preferable in this case. Indeed, 19

8 or 19/8 is probably better than 2 3
8 because it also helps

avoid ambiguity.
The most important properties of fractions are listed below, with simple numerical ex-

amples. It is absolutely essential for you to master these rules, so you should carefully check
that you know each of them.

Rule: Example:

(1)
a · c\
b · c\ = a

b
(b �= 0 and c �= 0)

21

15
= 7 · 3\

5 · 3\ = 7

5

(2)
−a

−b
= (−a) · (−1)

(−b) · (−1)
= a

b

−5

−6
= 5

6

(3) − a

b
= (−1)

a

b
= (−1)a

b
= −a

b
−13

15
= (−1)

13

15
= (−1)13

15
= −13

15

(4)
a

c
+ b

c
= a + b

c

5

3
+ 13

3
= 18

3
= 6

(5)
a

b
+ c

d
= a · d + b · c

b · d

3

5
+ 1

6
= 3 · 6 + 5 · 1

5 · 6
= 23

30

(6) a + b

c
= a · c + b

c
5 + 3

5
= 5 · 5 + 3

5
= 28

5

(7) a · b

c
= a · b

c
7 · 3

5
= 21

5

(8)
a

b
· c

d
= a · c

b · d

4

7
· 5

8
= 4 · 5

7 · 8
= 4\ · 5

7 · 2 · 4\ = 5

14

(9)
a

b
÷ c

d
= a

b
· d

c
= a · d

b · c

3

8
÷ 6

14
= 3

8
· 14

6
= 3\ · 2\ · 7

2\ · 2 · 2 · 2 · 3\ = 7

8

Rule (1) is very important. It is the rule used to reduce fractions by factoring the numerator
and the denominator, then cancelling common factors (that is, dividing both the numerator
and denominator by the same nonzero quantity).

E X A M P L E 1 Simplify: (a)
5x2yz3

25xy2z
(b)

x2 + xy

x2 − y2
(c)

4 − 4a + a2

a2 − 4

Solution:

(a)
5x2yz3

25xy2z
= 5\ · x\ · x · y\ · z\ · z · z

5\ · 5 · x\ · y\ · y · z\ = xz2

5y
(b)

x2 + xy

x2 − y2
= x(x + y)

(x − y)(x + y)
= x

x − y

(c)
4 − 4a + a2

a2 − 4
= (a − 2)(a − 2)

(a − 2)(a + 2)
= a − 2

a + 2
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When we use rule (1) in reverse, we are expanding the fraction. For example, 5/8 =
5 · 125/8 · 125 = 625/1000 = 0.625.

When we simplify fractions, only common factors can be removed. A frequently occur-
ring error is illustrated in the following example.

Wrong! → 2x\ + 3y

x\y = 2 + 3y\
y\ = 2 + 3

1
= 5

In fact, the numerator and the denominator in the fraction (2x + 3y)/xy do not have any
common factors. But a correct simplification is this: (2x + 3y)/xy = 2/y + 3/x.

Another error is shown in the next example.

Wrong! → x

x2 + 2x
= x

x2
+ x

2x
= 1

x
+ 1

2

A correct way of simplifying the fraction is to cancel the common factor x, which yields
the fraction 1/(x + 2).

Rules (4)–(6) are those used to add fractions. Note that (5) follows from (1) and (4):

a

b
+ c

d
= a · d

b · d
+ c · b

d · b
= a · d + b · c

b · d

and we see easily that, for example,

a

b
− c

d
+ e

f
= adf

bdf
− cbf

bdf
+ ebd

bdf
= adf − cbf + ebd

bdf
(∗)

If the numbers b, d , and f have common factors, the computation carried out in (∗) involves
unnecessarily large numbers. We can simplify the process by first finding the least common
denominator (LCD) of the fractions. To do so, factor each denominator completely; the
LCD is the product of all the distinct factors that appear in any denominator, each raised
to the highest power to which it gets raised in any denominator. The use of the LCD is
demonstrated in the following example.

E X A M P L E 2 Simplify the following:

(a)
1

2
− 1

3
+ 1

6
(b)

2 + a

a2b
+ 1 − b

ab2
− 2b

a2b2
(c)

x − y

x + y
− x

x − y
+ 3xy

x2 − y2

Solution:

(a) The LCD is 6 and so
1

2
− 1

3
+ 1

6
= 1 · 3

2 · 3
− 1 · 2

2 · 3
+ 1

2 · 3
= 3 − 2 + 1

6
= 2

6
= 1

3
(b) The LCD is a2b2 and so

2 + a

a2b
+ 1 − b

ab2
− 2b

a2b2
= (2 + a)b

a2b2
+ (1 − b)a

a2b2
− 2b

a2b2

= 2b + ab + a − ba − 2b

a2b2
= a

a2b2
= 1

ab2
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(c) The LCD is (x + y)(x − y) and so

x − y

x + y
− x

x − y
+ 3xy

x2 − y2
= (x − y)(x − y)

(x − y)(x + y)
− (x + y)x

(x + y)(x − y)
+ 3xy

(x − y)(x + y)

= x2 − 2xy + y2 − x2 − xy + 3xy

(x − y)(x + y)
= y2

x2 − y2

An Important Note
What do we mean by 1 − 5−3

2 ? It means that from the number 1, we subtract the number
5−3

2 = 2
2 = 1. Therefore, 1 − 5−3

2 = 0. Alternatively,

1 − 5 − 3

2
= 2

2
− (5 − 3)

2
= 2 − (5 − 3)

2
= 2 − 5 + 3

2
= 0

2
= 0

In the same way,
2 + b

ab2
− a − 2

a2b

means that we subtract (a − 2)/a2b from (2 + b)/ab2:

2 + b

ab2
− a − 2

a2b
= (2 + b)a

a2b2
− (a − 2)b

a2b2
= (2 + b)a − (a − 2)b

a2b2
= 2(a + b)

a2b2

It is a good idea first to enclose in parentheses the numerators of the fractions, as in the next
example.

E X A M P L E 3 Simplify the expression
x − 1

x + 1
− 1 − x

x − 1
− −1 + 4x

2(x + 1)
.

Solution:

x − 1

x + 1
− 1 − x

x − 1
− −1 + 4x

2(x + 1)
= (x − 1)

x + 1
− (1 − x)

x − 1
− (−1 + 4x)

2(x + 1)

= 2(x − 1)2 − 2(1 − x)(x + 1) − (−1 + 4x)(x − 1)

2(x + 1)(x − 1)

= 2(x2 − 2x + 1) − 2(1 − x2) − (4x2 − 5x + 1)

2(x + 1)(x − 1)

= x − 1

2(x + 1)(x − 1)
= 1

2(x + 1)

We prove (9) by writing (a/b) ÷ (c/d) as a ratio of fractions:5

a

b
÷ c

d
=

a
b

c
d

= b · d · a
b

b · d · c
d

=
b\ · d · a

b\
b · d\ · c

d\
= d · a

b · c
= a · d

b · c
= a

b
· d

c

5 Illustration (one easily becomes thirsty reading this stuff): You buy half a litre of a soft drink. Each
sip is one fiftieth of a litre. How many sips? Answer: (1/2) ÷ (1/50) = 25.
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When we deal with fractions of fractions, we should be sure to emphasize which is the
fraction line of the dominant fraction. For example,

a

b

c

means a ÷ b

c
= ac

b
whereas

a

b

c
means

a

b
÷ c = a

bc
(∗)

Of course, it is safer to write
a

b/c
or a/(b/c) in the first case, and

a/b

c
or (a/b)/c in the

second case. As a numerical example of (∗),

1
3
5

= 5

3
whereas

1
3

5
= 1

15

P R O B L E M S F O R S E C T I O N 1 . 4

In Problems 1 and 2, simplify the various expressions.

1. (a)
3

7
+ 4

7
− 5

7
(b)

3

4
+ 4

3
− 1 (c)

3

12
− 1

24
(d)

1

5
− 2

25
− 3

75

(e) 3
3

5
− 1

4

5
(f)

3

5
· 5

6
(g)

(
3

5
÷ 2

15

)
· 1

9
(h)

2
3 + 1

4
3
4 + 3

2

2. (a)
x

10
− 3x

10
+ 17x

10
(b)

9a

10
− a

2
+ a

5
(c)

b + 2

10
− 3b

15
+ b

10

(d)
x + 2

3
+ 1 − 3x

4
(e)

3

2b
− 5

3b
(f)

3a − 2

3a
− 2b − 1

2b
+ 4b + 3a

6ab

3. Cancel common factors:

(a)
325

625
(b)

8a2b3c

64abc3
(c)

2a2 − 2b2

3a + 3b
(d)

P 3 − PQ2

(P + Q)2

4. If x = 3/7 and y = 1/14, find the simplest forms of these fractions:

(a) x + y (b)
x

y
(c)

x − y

x + y
(d)

13(2x − 3y)

2x + 1

⊂SM⊃5. Simplify:

(a)
1

x − 2
− 1

x + 2
(b)

6x + 25

4x + 2
− 6x2 + x − 2

4x2 − 1
(c)

18b2

a2 − 9b2
− a

a + 3b
+ 2

(d)
1

8ab
− 1

8b(a + 2)
(e)

2t − t2

t + 2
·
(

5t

t − 2
− 2t

t − 2

)
(f) 2 − a

(
1 − 1

2a

)
0.25
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⊂SM⊃6. Simplify the following:

(a)
2

x
+ 1

x + 1
− 3 (b)

t

2t + 1
− t

2t − 1
(c)

3x

x + 2
− 4x

2 − x
− 2x − 1

x2 − 4

(d)

1

x
+ 1

y

1

xy

(e)

1

x2
− 1

y2

1

x2
+ 1

y2

(f)

a

x
− a

y
a

x
+ a

y

7. Verify that x2 + 2xy − 3y2 = (x + 3y)(x − y), and then simplify the expression

x − y

x2 + 2xy − 3y2
− 2

x − y
− 7

x + 3y

⊂SM⊃8. Simplify:

(a)

(
1

4
− 1

5

)−2

(b) n − n

1 − 1

n

(c)
1

1 + xp−q
+ 1

1 + xq−p

(d)

1

x − 1
+ 1

x2 − 1

x − 2

x + 1

(e)

1

(x + h)2
− 1

x2

h
(f)

10x2

x2 − 1
5x

x + 1

1.5 Fractional Powers
In textbooks and research articles on economics we constantly see powers with fractional
exponents such as K1/4L3/4 and Ar2.08p−1.5. How do we define ax when x is a rational
number? Of course, we would like the usual rules for powers still to apply.

You probably know the meaning of ax if x = 1/2. In fact, if a ≥ 0 and x = 1/2, then
we define ax = a1/2 as equal to

√
a, the square root of a. Thus, a1/2 = √

a is defined as
the nonnegative number that when multiplied by itself gives a. This definition makes sense
because a1/2 · a1/2 = a1/2+1/2 = a1 = a. Note that a real number multiplied by itself must
always be ≥ 0, whether that number is positive, negative, or zero. Hence,

a1/2 = √
a (valid if a ≥ 0)

For example,
√

16 = 161/2 = 4 because 42 = 16 and
√

1
25 = 1

5 because 1
5 · 1

5 = 1
25 .

If a and b are nonnegative numbers (with b �= 0 in (ii)), then

(i)
√

ab =
√

a
√

b (ii)

√
a

b
=

√
a√
b

which can also be written (ab)1/2 = a1/2b1/2 and (a/b)1/2 = a1/2/b1/2. For example,√
16 · 25 = √

16 · √
25 = 4 · 5 = 20, and

√
9/4 = √

9/
√

4 = 3/2.
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Note that formulas (i) and (ii) are not valid if a or b or both are negative. For example,√
(−1)(−1) = √

1 = 1, whereas
√−1 · √−1 is not defined (unless one uses complex

numbers).

NOTE 1 Recall that, in general, (a +b)r �= ar +br . For r = 1/2, this implies that we have

√
a + b �= √

a + √
b (in general)

The following observation illustrates just how frequently this fact is overlooked. During an
examination in a basic course in mathematics for economists, 22% of 190 students simplified√

1/16 + 1/25 incorrectly and claimed that it was equal to 1/4+1/5 = 9/20. (The correct
answer is

√
41/400 = √

41/20.) In a test for another group of 138 students, 40% made the
same mistake.

NOTE 2 (−2)2 = 4 and 22 = 4. Thus both x = −2 and x = 2 are solutions of the equation
x2 = 4. Therefore we have x2 = 4 if and only if x = ±√

4 = ±2. Note, however, that the
symbol

√
4 means only 2, not −2.

By using a calculator, we find that
√

2 ÷ √
3 ≈ 0.816. Without a calculator, the division√

2÷√
3 ≈ 1.414÷1.732 would be tedious. But if we expand the fraction by rationalizing

the denominator—that is, if we multiply both numerator and denominator by the same term
in order to remove expressions with roots in the denominator, it becomes easier:

√
2√
3

=
√

2 · √
3√

3 · √
3

=
√

2 · 3

3
=

√
6

3
≈ 2.448

3
= 0.816

Sometimes the difference-of-squares formula of Section 1.3 can be used to eliminate square
roots from the denominator of a fraction:

1√
5 + √

3
=

√
5 − √

3(√
5 + √

3
)(√

5 − √
3
) =

√
5 − √

3

5 − 3
= 1

2

(√
5 − √

3
)

Nth Roots

What do we mean by a1/n, where n is a natural number, and a is positive? For example,
what does 51/3 mean? If the rule (ar)s = ars is still to apply in this case, we must have
(51/3)3 = 51 = 5. This implies that 51/3 must be a solution of the equation x3 = 5. This
equation can be shown to have a unique positive solution, denoted by 3

√
5, the cube root

of 5. Therefore, we must define 51/3 as 3
√

5.
In general, (a1/n)n = a1 = a. Thus, a1/n is a solution of the equation xn = a. This

equation can be shown to have a unique positive solution denoted by n
√

a, the nth root of a:

a1/n = n
√

a

In words: if a is positive and n is a natural number, then a1/n is the unique positive number
that, raised to the nth power, gives a—that is, (a1/n)n = a.
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E X A M P L E 1 Compute (a) 3
√

27 (b) (1/32)1/5 (c) (0.0001)0.25 = (0.0001)1/4.

Solution:

(a) 3
√

27 = 3, because 33 = 27. (b) (1/32)1/5 = 1/2 because (1/2)5 = 1/32.

(c) (0.0001)1/4 = 0.1 because (0.1)4 = 0.0001.

E X A M P L E 2 An amount $5000 in an account has increased to $10 000 in 15 years. What (constant)
yearly interest rate p has been used?

Solution: After 15 years the amount of $5000 has grown to 5000 (1 + p/100)15, so we
have the equation

5000
(

1 + p

100

)15 = 10 000 or
(

1 + p

100

)15 = 2

In general, (at )1/t = a1 = a for t �= 0. Raising each side to the power of 1/15 yields

1 + p

100
= 21/15 or p = 100(21/15 − 1)

With a calculator we find p ≈ 4.73.

We proceed to define ap/q whenever p is an integer, q is a natural number, and a > 0.
Consider first 52/3. We have already defined 51/3. For rule (ar)s = ars to apply, we must
have 52/3 = (51/3)2. So we must define 52/3 as

( 3
√

5
)2

. In general, for a > 0, we define

ap/q = (
a1/q

)p = (
q
√

a
)p

(p an integer, q a natural number)

From the properties of exponents,

ap/q = (
a1/q

)p = (
ap

)1/q = q
√

ap

Thus, to compute ap/q , we could either first take the qth root of a and raise the result to p,
or first raise a to the power p and then take the qth root of the result. We obtain the same
answer either way. For example,

47/2 = (47)1/2 = 163841/2 = 128 = 27 = (41/2)7

E X A M P L E 3 Compute: (a) 163/2 (b) 16−1.25 (c) (1/27)−2/3

Solution:

(a) 163/2 = (161/2)3 = 43 = 64

(b) 16−1.25 = 16−5/4 = 1

165/4
= 1(

4
√

16
)5

= 1

25
= 1

32

(c) (1/27)−2/3 = 272/3 = ( 3
√

27
)2 = 32 = 9
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E X A M P L E 4 Simplify the following expressions so that the answers contain only positive exponents:

(a)
a3/8

a1/8
(b) (x1/2x3/2x−2/3)3/4 (c)

(
10p−1q2/3

80p2q−7/3

)−2/3

Solution:

(a)
a3/8

a1/8
= a3/8−1/8 = a2/8 = a1/4 = 4

√
a

(b) (x1/2x3/2x−2/3)3/4 = (x1/2+3/2−2/3)3/4 = (x4/3)3/4 = x

(c)

(
10p−1q2/3

80p2q−7/3

)−2/3

= (8−1p−1−2q2/3−(−7/3))−2/3 = 82/3p2q−2 = 4
p2

q2

NOTE 3 Tests reveal that many students, while they are able to handle quadratic identities,
nevertheless make mistakes when dealing with more complicated powers. Here are examples
taken from recent tests:

(i) (1 + r)20 is not equal to 120 + r20.

(ii) If u = 9 + x1/2, it does not follow that u2 = 81 + x; instead u2 = 81 + 18x1/2 + x.

(iii) (ex − e−x)p is not equal to exp − e−xp (unless p = 1).

NOTE 4 If q is an odd number and p is an integer, ap/q can be defined even when a < 0.
For example, (−8)1/3 = 3

√−8 = −2, because (−2)3 = −8. However, in defining ap/q

when a < 0, q must be odd. If not, we could get contradictions such as “−2 = (−8)1/3 =
(−8)2/6 = 6

√
(−8)2 = 6

√
64 = 2”.

When computing ap/q it is often easier to first find q
√

a and then raise the result to the
pth power. For example, (−64)5/3 = ( 3

√−64 )5 = (−4)5 = −1024.

P R O B L E M S F O R S E C T I O N 1 . 5

1. Compute:

(a)
√

9 (b)
√

1600 (c) (100)1/2 (d)
√

9 + 16

(e) (36)−1/2 (f) (0.49)1/2 (g)
√

0.01 (h)

√
1

25

2. Decide whether each “?” should be replaced by = or �=. Justify your answer. (Assume that a

and b are positive.)

(a)
√

25 · 16 ?
√

25 · √
16 (b)

√
25 + 16 ?

√
25 + √

16

(c) (a + b)1/2 ? a1/2 + b1/2 (d) (a + b)−1/2 ? (
√

a + b )−1

3. Solve for x:

(a)
√

x = 9 (b)
√

x · √
4 = 4 (c)

√
x + 2 = 25

(d)
√

3 · √
5 = √

x (e) 22−x = 8 (f) 2x − 2x−1 = 4



Essential Math. for Econ. Analysis, 4th edn EME4_C01.TEX, 16 May 2012, 14:24 Page 23

S E C T I O N 1 . 5 / F R A C T I O N A L P O W E R S 23

4. Rationalize the denominator and simplify:

(a)
6√
7

(b)

√
32√
2

(c)

√
3

4
√

2
(d)

√
54 − √

24√
6

(e)
2√
3
√

8
(f)

4√
2y

(g)
x√
2x

(h)
x
(√

x + 1
)

√
x

⊂SM⊃5. Simplify the following expressions by making the denominators rational:

(a)
1√

7 + √
5

(b)

√
5 − √

3√
5 + √

3
(c)

x√
3 − 2

(d)
x
√

y − y
√

x

x
√

y + y
√

x
(e)

h√
x + h − √

x
(f)

1 − √
x + 1

1 + √
x + 1

6. Compute without using a calculator:

(a)
3√

125 (b) (243)1/5 (c) (−8)1/3 (d) 3
√

0.008

7. Using a calculator, find approximations to:

(a)
3√

55 (b) (160)1/4 (c) (2.71828)1/5 (d) (1 + 0.0001)10000

8. The population of a nation increased from 40 million to 60 million in 12 years. What is the
yearly percentage rate of growth p?

9. Compute the following without using a calculator:

(a) 811/2 (b) 64−1/3 (c) 16−2.25 (d)

(
1

3−2

)−2

10. Simplify: (a)
(
27x3py6qz12r

)1/3
(b)

(x + 15)4/3

(x + 15)5/6
(c)

8 3
√

x2 4
√

y
√

1/z

−2 3
√

x
√

y5
√

z

11. Simplify the following expressions so that each contains only a single exponent.

(a) (((a1/2)2/3)3/4)4/5 (b) a1/2a2/3a3/4a4/5

(c)
(
((3a)−1)−2(2a−2)−1

)
/a−3 (d)

3
√

a a1/12 4
√

a3

a5/12
√

a

⊂SM⊃12. Which of the following equations are valid for all x and y?

(a) (2x)2 = 2x2
(b) 3x−3y = 3x

33y

(c) 3−1/x = 1

31/x
(x �= 0) (d) 51/x = 1

5x
(x �= 0)

(e) ax+y = ax + ay (f) 2
√

x · 2
√

y = 2
√

xy (x and y positive)

13. If a firm uses x units of input in process A, it produces 32x3/2 units of output. In the alternative
process B, the same input produces 4x3 units of output. For what levels of input does process
A produce more than process B?
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1.6 Inequalities
The real numbers consist of the positive numbers, 0, and the negative numbers. If a is a
positive number, we write a > 0 (or 0 < a), and we say that a is greater than zero. A
fundamental property of the positive numbers is:

a > 0 and b > 0 imply a + b > 0 and a · b > 0 (1)

If the number c is negative, we write c < 0 (or 0 > c).
In general, we say that the number a is greater than the number b, and we write a > b

(or b < a), if a − b is positive:

a > b means that a − b > 0

Thus, 4.11 > 3.12 because 4.11 − 3.12 = 0.99 > 0, and −3 > −5 because −3 − (−5) =
2 > 0. On the number line (see Fig. 1) a > b means that a lies to the right of b.

When a > b, we often say that a is strictly greater than b in order to emphasize that
a = b is ruled out. If a > b or a = b, then we write a ≥ b (or b ≤ a) and say that a is
greater than or equal to b.

a ≥ b means that a − b ≥ 0

For example, 4 ≥ 4 and 4 ≥ 2. Note in particular that it is correct to write 4 ≥ 2, because
4 − 2 is positive or 0.

We call > and < strict inequalities, whereas ≥ and ≤ are weak inequalities. The differ-
ence is often very important in economic analysis.

One can prove a number of important properties of > and ≥. For example,

If a > b, then a + c > b + c for all c (2)

The argument is simple: For all numbers a, b, and c, (a+c)−(b+c) = a+c−b−c = a−b.
Hence, if a − b > 0, then a + c − (b + c) > 0, and the conclusion follows. On the number
line, this implication is self-evident (here c is chosen to be negative):

b � c b a � c a

Figure 1

At the risk of being trivial, here is an interpretation of this rule. If one day the temperature
in NewYork is higher than that in London, and the temperature at both places then increases
(or decreases) by the same number of degrees, then the ensuing New York temperature is
still higher than that in London.

To deal with more complicated inequalities involves using the following properties:

If a > b and b > c, then a > c (3)

If a > b and c > 0, then ac > bc (4)

If a > b and c < 0, then ac < bc (5)

If a > b and c > d, then a + c > b + d (6)
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All four properties remain valid when each > is replaced by ≥, and each < by ≤. The
properties all follow easily from (1). For example, (5) is proved as follows. Suppose a > b

and c < 0. Then a − b > 0 and −c > 0, so according to (1), (a − b)(−c) > 0. Hence
−ac + bc > 0, implying that ac < bc.

According to (4) and (5):

(a) If the two sides of an inequality are multiplied by a positive number, the direction of
the inequality is preserved.

(b) If the two sides of an inequality are multiplied by a negative number, the direction of
the inequality is reversed.

It is important that you understand these rules, and realize that they correspond to everyday
experience. For instance, (4) can be interpreted this way: given two rectangles with the
same base, the one with the larger height has the larger area.

E X A M P L E 1 Find what values of x satisfy 3x − 5 > x − 3.

Solution: Adding 5 to both sides of the inequality yields 3x − 5 + 5 > x − 3 + 5, or
3x > x + 2. Adding (−x) to both sides yields 3x − x > x − x + 2, so 2x > 2, and after
dividing by the positive number 2, we get x > 1. The argument can obviously be reversed,
so the solution is x > 1.

Sign Diagrams

E X A M P L E 2 Check whether the inequality (x − 1)(3 − x) > 0 is satisfied for x = −3, x = 2, and
x = 5. Then find all the values x that satisfy the same inequality.

Solution: For x = −3, we have (x −1)(3−x) = (−4) ·6 = −24 < 0; for x = 2, we have
(x−1)(3−x) = 1·1 = 1 > 0; and for x = 5, we have (x−1)(3−x) = 4·(−2) = −8 < 0.
Hence, the inequality is satisfied for x = 2, but not for x = −3 or x = 5.

To find the entire solution set, we use a sign diagram. The sign variation for each factor
in the product is determined. For example, the factor x − 1 is negative when x < 1, is 0
when x = 1, and is positive when x > 1. This sign variation is represented in the diagram.

−1 0 1 2 3 4

x − 1 ◦
3 − x ◦

(x − 1)(3 − x) ◦ ◦

The upper dashed line to the left of the vertical line x = 1 indicates that x − 1 < 0 if x < 1;
the small circle indicates that x − 1 = 0 when x = 1; and the solid line to the right of x = 1
indicates that x −1 > 0 if x > 1. In a similar way, we represent the sign variation for 3−x.
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The sign variation of the product is obtained as follows. If x < 1, then x − 1 is negative
and 3 − x is positive, so the product is negative. If 1 < x < 3, both factors are positive, so
the product is positive. If x > 3, then x − 1 is positive and 3 − x is negative, so the product
is negative. Conclusion: The solution set consists of those x that are greater than 1, but less
than 3. So

(x − 1)(3 − x) > 0 if and only if 1 < x < 3

E X A M P L E 3 Find all values of p that satisfy
2p − 3

p − 1
> 3 − p.

Solution: It is tempting to begin by multiplying each side of the inequality by p − 1.
However, then we must distinguish between the two cases, p − 1 > 0 and p − 1 < 0,
because if we multiply through by p − 1 when p − 1 < 0, we have to reverse the inequality
sign. There is an alternative method, which makes it unnecessary to distinguish between
two different cases. We begin by adding p − 3 to both sides. This yields

2p − 3

p − 1
+ p − 3 > 0

Making p − 1 the common denominator gives

2p − 3 + (p − 3)(p − 1)

p − 1
> 0 or

p(p − 2)

p − 1
> 0

because 2p − 3 + (p − 3)(p − 1) = 2p − 3 + p2 − 4p + 3 = p2 − 2p = p(p − 2). To
find the solution set of this inequality, we again use a sign diagram. On the basis of the sign
variations for p, p−2, and p−1, the sign variation for p(p−2)/(p−1) is determined. For
example, if 0 < p < 1, then p is positive and (p − 2) is negative, so p(p − 2) is negative.
But p−1 is also negative on this interval, so p(p−2)/(p−1) is positive. Arguing this way
for all the relevant intervals leads to the following sign diagram. (The original inequality
has no meaning when p = 1. This is symbolized by a diagonal cross in the sign diagram.)

−1 0 1 2 3

p ◦
p − 2 ◦
p − 1 ◦

p(p − 2)

p − 1
◦ ∗ ◦

So the original inequality is satisfied if and only if 0 < p < 1 or p > 2.

WARNING 1 The most common error committed in solving inequalities is precisely that
indicated in Example 3: If we multiply by p − 1, the inequality is preserved only if p − 1
is positive—that is, if p > 1.
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WARNING 2 It is vital that you really understand the method of sign diagrams. A common
error is illustrated by the following example. Find the solution set for

(x − 2) + 3(x + 1)

x + 3
≤ 0

“Solution”: We construct the sign diagram:

−3 −2 −1 0 1 2

x − 2 ◦
3(x + 1) ◦

x + 3 ◦
(x − 2) + 3(x + 1)

x + 3
∗ ◦ ◦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Wrong!

According to this diagram, the inequality should be satisfied for x < −3 and for −1 ≤ x ≤ 2.
However, for x = −4 (< −3), the fraction reduces to 15, which is positive. What went
wrong? Suppose x < −3. Then x − 2 < 0 and 3(x + 1) < 0 and, therefore, the numerator
(x − 2)+ 3(x + 1) is negative. Because the denominator x + 3 is also negative for x < −3,
the fraction is positive. The sign variation for the fraction in the diagram is, therefore,
completely wrong. The product of two negative numbers is positive, but their sum is negative,
and not positive as the wrong sign diagram suggests. We obtain a correct solution to the
given problem by first collecting terms in the numerator so that the inequality becomes
(4x + 1)/(x + 3) ≤ 0. A sign diagram for this inequality reveals the correct answer, which
is −3 < x ≤ −1/4.

Double Inequalities

Two inequalities that are valid simultaneously are often written as a double inequality. If,
for example, a ≤ z and moreover z < b, it is natural to write a ≤ z < b. (On the other
hand, if a ≤ z and z > b, but we do not know which is the larger of a and b, then we cannot
write a ≤ b < z or b ≤ a ≤ z, and we do not write a ≤ z > b.)

E X A M P L E 4 One day, the lowest temperature in Buenos Aires was 50◦F, and the highest was 77◦F.
What is the corresponding temperature variation in degrees Celsius? (If F denotes degrees
Fahrenheit and C denotes degrees Celsius, then F = 9

5C + 32.)

Solution: We have 50 ≤ 9
5C + 32 ≤ 77. Subtracting 32 from each term yields 50 − 32 ≤

9
5C ≤ 77 − 32, or 18 ≤ 9

5C ≤ 45. Dividing these inequalities by 9/5 (or multiplying by
5/9) yields 10 ≤ C ≤ 25. The temperature thus varied between 10◦C and 25◦C.
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P R O B L E M S F O R S E C T I O N 1 . 6

1. Decide which of the following inequalities are true:

(a) −6.15 > −7.16 (b) 6 ≥ 6 (c) (−5)2 ≤ 0 (d) − 1
2 π < − 1

3 π

(e)
4

5
>

6

7
(f) 23 < 32 (g) 2−3 < 3−2 (h)

1

2
− 2

3
<

1

4
− 1

3

2. Find what values of x satisfy:

(a) −x − 3 ≤ 5 (b) 3x + 5 < x − 13 (c) 3x − (x − 1) ≥ x − (1 − x)

(d)
2x − 4

3
≤ 7 (e) 1

3 (1 − x) ≥ 2(x − 3) (f)
t

24
− (t + 1) + 3t

8
<

5

12
(t + 1)

In Problems 3–6, solve the inequalities.

3. (a)
x + 2

x − 1
< 0 (b)

2x + 1

x − 3
> 1 (c) 5a2 ≤ 125

⊂SM⊃4. (a) 2 <
3x + 1

2x + 4
(b)

120

n
+ 1.1 ≤ 1.85 (c) g2 − 2g ≤ 0

(d)
1

p − 2
+ 3

p2 − 4p + 4
≥ 0 (e)

−n − 2

n + 4
> 2 (f) x4 < x2

⊂SM⊃5. (a) (x − 1)(x + 4) > 0 (b) (x − 1)2(x + 4) > 0 (c) (x − 1)3(x − 2) ≤ 0

(d) (5x − 1)10(x − 1) < 0 (e) (5x − 1)11(x − 1) < 0 (f)
3x − 1

x
> x + 3

(g)
x − 3

x + 3
< 2x − 1 (h) x2 − 4x + 4 > 0 (i) x3 + 2x2 + x ≤ 0

6. (a) 1 ≤ 1
3 (2x − 1) + 8

3 (1 − x) < 16 (b) −5 <
1

x
< 0 (c)

(1/x) − 1

(1/x) + 1
≥ 1

7. Decide whether the following inequalities are valid for all x and y:

(a) x + 1 > x (b) x2 > x (c) x + x > x (d) x2 + y2 ≥ 2xy

8. (a) The temperature for storing potatoes should be between 4◦C and 6◦C. What are the corres-
ponding temperatures in degrees Fahrenheit? (See Example 4.)

(b) The freshness of a bottle of milk is guaranteed for 7 days if it is kept at a temperature
between 36◦F and 40◦F. Find the corresponding temperature variation in degrees Celsius.

HARDER PROBLEM

9. If a and b are two positive numbers, the numbers mA, mG, and mH defined by

mA = 1

2
(a + b), mG = √

ab, and
1

mH

= 1

2

(
1

a
+ 1

b

)
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are called the arithmetic, geometric, and harmonic means of a and b. Prove that

mA ≥ mG ≥ mH

with strict inequalities unless a = b. (Hint: You should first test these inequalities by choosing
some specific numbers, using a calculator if you wish. To show that mA ≥ mG, start with the
obvious inequality (

√
a−√

b)2 ≥ 0, and then expand. To show that mG ≥ mH , start by showing
that

√
xy ≤ 1

2 (x + y). Then let x = 1/a, y = 1/b.)

1.7 Intervals and Absolute Values
Let a and b be any two numbers on the real line. Then we call the set of all numbers that
lie between a and b an interval. In many situations, it is important to distinguish between
the intervals that include their endpoints and the intervals that do not. When a < b, there
are four different intervals that all have a and b as endpoints, as shown in Table 1.

Table 1

Notation Name
The interval consists
of all x satisfying:

(a, b) The open interval from a to b. a < x < b

[a, b] The closed interval from a to b. a ≤ x ≤ b

(a, b] A half-open interval from a to b. a < x ≤ b

[a, b) A half-open interval from a to b. a ≤ x < b

Note that an open interval includes neither of its endpoints, but a closed interval includes
both of its endpoints. A half-open interval contains one of its endpoints, but not both. All
four intervals, however, have the same length, b − a.

We usually illustrate intervals on the number line as in Fig. 1, with included endpoints
represented by dots, and excluded endpoints at the tips of arrows.

�2�3�4�5 �1 0 1 2 3 4 5 6 7

A B C

Figure 1 A = [−4, −2], B = [0, 1), and C = (2, 5)

The intervals mentioned so far are all bounded intervals. We also use the word “interval” to
signify certain unbounded sets of numbers. For example, we have

[a, ∞) = all numbers x with x ≥ a

(−∞, b) = all numbers x with x < b



Essential Math. for Econ. Analysis, 4th edn EME4_C01.TEX, 16 May 2012, 14:24 Page 30

30 C H A P T E R 1 / I N T R O D U C T O R Y T O P I C S I : A L G E B R A

with “∞” as the common symbol for infinity. The symbol ∞ is not a number at all, and
therefore the usual rules of arithmetic do not apply to it. In the notation [a,∞), the symbol
∞ is only intended to indicate that we are considering the collection of all numbers larger
than or equal to a, without any upper bound on the size of the number. Similarly, (−∞, b)

has no lower bound. From the preceding, it should be apparent what we mean by (a, ∞)

and (−∞, b ]. The collection of all real numbers is also denoted by the symbol (−∞, ∞).

Absolute Value

Let a be a real number and imagine its position on the real line. The distance between a

and 0 is called the absolute value of a. If a is positive or 0, then the absolute value is the
number a itself; if a is negative, then because distance must be positive, the absolute value
is equal to the positive number −a.

The absolute value of a is denoted by |a|, and

|a| =
{

a if a ≥ 0
−a if a < 0

(1)

For example, |13| = 13, |−5| = −(−5) = 5, |−1/2| = 1/2, and |0| = 0. Note in particular
that |−a| = |a|.

NOTE 1 It is a common fallacy to assume that a must denote a positive number, even if
this is not explicitly stated. Similarly, on seeing −a, many students are led to believe that
this expression is always negative. Observe, however, that the number −a is positive when
a itself is negative. For example, if a = −5, then −a = −(−5) = 5. Nevertheless, it is
often a useful convention in economics to define variables so that, as far as possible, their
values are positive rather than negative.

E X A M P L E 1

(a) Compute |x − 2| for x = −3, x = 0, and x = 4.

(b) Rewrite |x − 2| using the definition of absolute value.

Solution:

(a) For x = −3, |x−2| = |−3−2| = |−5| = 5. For x = 0, |x−2| = |0−2| = |−2| = 2.
For x = 4, |x − 2| = |4 − 2| = |2| = 2.

(b) According to the definition (1), |x − 2| = x − 2 if x − 2 ≥ 0, that is, x ≥ 2. However,
|x − 2| = −(x − 2) = 2 − x if x − 2 < 0, that is, x < 2. Hence,

|x − 2| =
{

x − 2, if x ≥ 2

2 − x, if x < 2

Let x1 and x2 be two arbitrary numbers. The distance between x1 and x2 on the number
line is x1 − x2 if x1 ≥ x2, and −(x1 − x2) if x1 < x2. Therefore, we have

|x1 − x2| = |x2 − x1| = distance between x1 and x2 on the number line (2)
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In Fig. 2 we have indicated geometrically that the distance between 7 and 2 is 5, whereas
the distance between −3 and −5 is equal to 2, because |−3 − (−5)| = |−3 + 5| = |2| = 2.

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

|−3 − (−5)| = 2 |7 − 2| = 5

Figure 2 The distances between 7 and 2 and between −3 and −5.

Suppose |x| = 5. What values can x have? There are only two possibilities: either x = 5
or x = −5, because no other numbers have absolute values equal to 5. Generally, if a is
greater than or equal to 0, then |x| = a means that x = a or x = −a. Because |x| ≥ 0 for
all x, the equation |x| = a has no solution when a < 0.

If a is a positive number and |x| < a, then the distance from x to 0 is less than a.
Furthermore, when a is nonnegative, and |x| ≤ a, the distance from x to 0 is less than or
equal to a. In symbols:

|x| < a means that −a < x < a (3)

|x| ≤ a means that −a ≤ x ≤ a (4)

E X A M P L E 2 Find all the x such that
|3x − 2| ≤ 5

Check first to see if this inequality holds for x = −3, x = 0, x = 7/3, and x = 10.

Solution: For x = −3, |3x − 2| = |−9 − 2| = 11; for x = 0, |3x − 2| = |−2| = 2; for
x = 7/3, |3x − 2| = |7 − 2| = 5; and for x = 10, |3x − 2| = |30 − 2| = 28. Hence, the
given inequality is satisfied for x = 0 and x = 7/3, but not for x = −3 and x = 10.

From (4) the inequality |3x − 2| ≤ 5 means that −5 ≤ 3x − 2 ≤ 5. Adding 2 to all three
expressions gives

−5 + 2 ≤ 3x − 2 + 2 ≤ 5 + 2

or −3 ≤ 3x ≤ 7. Dividing by 3 gives −1 ≤ x ≤ 7/3.

P R O B L E M S F O R S E C T I O N 1 . 7

1. Calculate |2x − 3| for x = 0, 1/2, and 7/2.

2. (a) Calculate |5 − 3x| for x = −1, 2, and 4.

(b) Solve the equation |5 − 3x| = 0.

(c) Rewrite |5 − 3x| by using the definition of absolute value.

3. Determine x such that

(a) |3 − 2x| = 5 (b) |x| ≤ 2 (c) |x − 2| ≤ 1

(d) |3 − 8x| ≤ 5 (e) |x| >
√

2 (f) |x2 − 2| ≤ 1



Essential Math. for Econ. Analysis, 4th edn EME4_C01.TEX, 16 May 2012, 14:24 Page 32

32 C H A P T E R 1 / I N T R O D U C T O R Y T O P I C S I : A L G E B R A

4. A 5-metre iron bar is to be produced. The bar may not deviate by more than 1 mm from its stated
length. Write a specification for the bar’s length x in metres: (a) by using a double inequality;
(b) with the aid of an absolute-value sign.

R E V I E W P R O B L E M S F O R C H A P T E R 1

1. (a) What is three times the difference between 50 and x?

(b) What is the quotient between x and the sum of y and 100?

(c) If the price of an item is a including 20% VAT (value added tax), what is the price before
VAT?

(d) A person buys x1, x2, and x3 units of three goods whose prices per unit are respectively p1,
p2, and p3. What is the total expenditure?

(e) A rental car costs F dollars per day in fixed charges and b dollars per kilometre. How much
must a customer pay to drive x kilometres in 1 day?

(f) A company has fixed costs of F dollars per year and variable costs of c dollars per unit
produced. Find an expression for the total cost per unit (total average cost) incurred by the
company if it produces x units in one year.

(g) A person has an annual salary of $L and then receives a raise of p% followed by a further
increase of q%. What is the person’s new yearly salary?

2. Express as single real numbers in decimal notation:

(a) 53 (b) 10−3 (c)
1

3−3
(d)

−1

10−3

(e) 3−233 (f) (3−2)−3 (g) −
(

5

3

)0

(h)

(
−1

2

)−3

3. Which of the following expressions are defined, and what are their values?

(a) (0 + 2)0 (b) 0−2 (c)
(10)0

(0 + 1)0
(d)

(0 + 1)0

(0 + 2)0

4. Simplify:

(a) (232−5)3 (b)

(
2

3

)−1

−
(

4

3

)−1

(c) (3−2 − 5−1)−1 (d) (1.12)−3(1.12)3

⊂SM⊃5. Simplify:

(a) (2x)4 (b) (2−1 − 4−1)−1 (c)
24x3y2z3

4x2yz2

(d)
[−(−ab3)−3(a6b6)2]3

(e)
a5 · a3 · a−2

a−3 · a6
(f)

[(
x

2

)3

· 8

x−2

]−3

6. Compute: (a) 12% of 300 (b) 5% of 2000 (c) 6.5% of 1500
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7. Give economic interpretations to each of the following expressions and then use a calculator to
find the approximate values:

(a) 100 · (1.01)8 (b) 50 000 · (1.15)10 (c) 6000 · (1.03)−8

8. (a) $100 000 is deposited into an account earning 8% interest per year. What is the amount
after 10 years?

(b) If the interest rate is 8% each year, how much money should you have deposited in a bank
6 years ago to have $25 000 today?

⊂SM⊃9. Expand and simplify:

(a) a(a−1) (b) (x − 3)(x + 7) (c) −√
3

(√
3 − √

6
)

(d)
(
1−√

2
)2

(e) (x − 1)3 (f) (1 − b2)(1 + b2) (g) (1 + x + x2 + x3)(1 − x) (h) (1 + x)4

10. Complete the following:

(a) x−1y−1 = 3 implies x3y3 = · · · (b) x7 = 2 implies (x−3)6(x2)2 = · · ·

(c)

(
xy

z

)−2

= 3 implies

(
z

xy

)6

= · · · (d) a−1b−1c−1 = 1/4 implies (abc)4 = · · ·

11. Factor the expressions

(a) 25x − 5 (b) 3x2 − x3y (c) 50 − x2 (d) a3 − 4a2b + 4ab2

⊂SM⊃12. Factor the expressions

(a) 5(x + 2y) + a(x + 2y) (b) (a + b)c − d(a + b) (c) ax + ay + 2x + 2y

(d) 2x2 − 5yz + 10xz − xy (e) p2 − q2 + p − q (f) u3 + v3 − u2v − v2u

13. Compute the following without using a calculator:

(a) 161/4 (b) 243−1/5 (c) 51/7 · 56/7 (d) (48)−3/16

(e) 641/3 + 3√
125 (f) (−8/27)2/3 (g) (−1/8)−2/3 + (1/27)−2/3 (h)

1000−2/3

3
√

5−3

14. Solve the following equations for x:

(a) 22x = 8 (b) 33x+1 = 1/81 (c) 10x2−2x+2 = 100

15. Find the unknown x in each of the following equations:

(a) 255 · 25x = 253 (b) 3x − 3x−2 = 24 (c) 3x · 3x−1 = 81

(d) 35 + 35 + 35 = 3x (e) 4−6 + 4−6 + 4−6 + 4−6 = 4x (f)
226 − 223

226 + 223
= x

9

⊂SM⊃16. Simplify: (a)
s

2s − 1
− s

2s + 1
(b)

x

3 − x
− 1 − x

x + 3
− 24

x2 − 9
(c)

1

x2y
− 1

xy2

1

x2
− 1

y2
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⊂SM⊃17. Reduce the following fractions:

(a)
25a3b2

125ab
(b)

x2 − y2

x + y
(c)

4a2 − 12ab + 9b2

4a2 − 9b2
(d)

4x − x3

4 − 4x + x2

18. Solve the following inequalities:

(a) 2(x − 4) < 5 (b)
1

3
(y − 3) + 4 ≥ 2 (c) 8 − 0.2x ≤ 4 − 0.1x

0.5

(d)
x − 1

−3
>

−3x + 8

−5
(e) |5 − 3x| ≤ 8 (f) |x2 − 4| ≤ 2

19. Using a mobile phone costs $30 per month, and an additional $0.16 per minute of use.

(a) What is the cost for one month if the phone is used for a total of x minutes?

(b) What are the smallest and largest numbers of hours you can use the phone in a month if the
monthly telephone bill is to be between $102 and $126?

20. If a rope could be wrapped around the Earth’s surface at the equator, it would be approximately
circular and about 40 million metres long. Suppose we wanted to extend the rope to make it 1
metre above the equator at every point. How many more metres of rope would be needed? (The
circumference of a circle with radius r is 2πr .)

21. (a) Prove that a + a · p

100
−

(
a + a · p

100

)
· p

100
= a

[
1 −

( p

100

)2
]

.

(b) An item initially costs $2000 and then its price is increased by 5%. Afterwards the price is
lowered by 5%. What is the final price?

(c) An item initially costs a dollars and then its price is increased by p%. Afterwards the (new)
price is lowered by p%. What is the final price of the item? (After considering this problem,
look at the expression in part (a).)

(d) What is the result if one first lowers a price by p% and then increases it by p%?

22. (a) If a > b, is it necessarily true that a2 > b2?

(b) Show that if a + b > 0, then a > b implies a2 > b2.

23. (a) If a > b, use numerical examples to check whether 1/a > 1/b, or 1/a < 1/b.

(b) Prove that if a > b and ab > 0, then 1/b > 1/a.

24. Prove that (i) |ab| = |a| · |b| and (ii) |a + b| ≤ |a| + |b|, for all real numbers a and b. (The
inequality in (ii) is called the triangle inequality.)

⊂SM⊃25. Consider an equilateral triangle, and let P be an arbitrary point within the triangle. Let h1, h2,
and h3 be the shortest distances from P to each of the three sides. Show that the sum h1 +h2 +h3

is independent of where point P is placed in the triangle. (Hint: Compute the area of the triangle
as the sum of three triangles.)
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. . . and mathematics is nourished by dreamers

—as it nourishes them.

—D’Arcy W. Thompson (1940)

Science uses mathematical models, which often include one or more equations whose solu-

tion determines the magnitudes of some variables we would like to understand better.

Economics is no exception. Accordingly, this chapter considers some types of equation that

appear frequently in economic models.

Many students are used to dealing with algebraic expressions and equations involving only

one variable (usually x). Often, however, they have difficulties at first in dealing with expressions

involving several variables with a wide variety of names, and denoted by different letters. For

economists, however, it is very important to be able to handle such algebraic expressions and

equations with ease.

2.1 How to Solve Simple Equations
Consider the following simple examples,

(a) 3x + 10 = x + 4 (b)
z

z − 5
+ 1

3
= −5

5 − z
(c) Y = C + I

Equation (a) contains the variable x, whereas (b) has the variable z, and equation (c) has
the three variables Y , C, and I .

To solve an equation means to find all values of the variables for which the equation is
satisfied. For equation (a) this is easy. In order to isolate the unknown x on one side of the
equation, we add −x to both sides. This gives 2x + 10 = 4. Adding −10 to both sides of
this equation yields 2x = 4 − 10 = −6. Dividing by 2 we get the solution x = −3.

If any value of a variable makes an expression in an equation undefined, that value is
not allowed. Thus, the choice z = 5 is not allowed in (b) because it makes the expressions
z/(z − 5) and −5/(5 − z) undefined, because they are 5/0 and −5/0, respectively. As we
shall show in Example 3 below, equation (b) has no solutions.

Equation (c) has many solutions, one of which is Y = 1000, C = 700, and I = 300.
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For problem (a) the solution procedure was probably well known. The method we used
is summed up in the following frame, noting that two equations which have exactly the same
solutions are called equivalent.

To get equivalent equations, do the following on both sides of the equality sign:

(A) add (or subtract) the same number,

(B) multiply (or divide) by the same number �= 0.

When faced with more complicated equations involving parentheses and fractions, we usu-
ally begin by multiplying out the parentheses, and then we multiply both sides of the equation
by the lowest common denominator for all the fractions. Here is an example.

E X A M P L E 1 Solve the equation 6p − 1
2 (2p − 3) = 3(1 − p) − 7

6 (p + 2).

Solution: First multiply out all the parentheses: 6p −p + 3
2 = 3 − 3p − 7

6p − 7
3 . Second,

multiply both sides by 6 to clear all the fractions: 36p − 6p + 9 = 18 − 18p − 7p − 14.
Third, gather terms: 55p = −5. Thus p = −5/55 = −1/11.

The next two examples show that sometimes a surprising degree of care is needed to find
the right solutions.

E X A M P L E 2 Solve the equation
x + 2

x − 2
− 8

x2 − 2x
= 2

x
.

Solution: Since x2 − 2x = x(x − 2), the common denominator is x(x − 2). We see
that x = 2 and x = 0 both make the equation absurd, because then at least one of the
denominators becomes 0. Provided x �= 0 and x �= 2, we can multiply both sides of the
equation by the common denominator x(x − 2) to obtain

x + 2

x − 2
· x(x − 2) − 8

x(x − 2)
· x(x − 2) = 2

x
· x(x − 2)

Cancelling common factors reduces this to (x +2)x −8 = 2(x −2) or x2 +2x −8 = 2x −4
and so x2 = 4. Equations of the form x2 = a, where a > 0, have two solutions x = √

a

and x = −√
a. In our case, x2 = 4 has solutions x = 2 and x = −2. But x = 2 makes the

original equation absurd, so only x = −2 is a solution.

E X A M P L E 3 Solve the equation
z

z − 5
+ 1

3
= −5

5 − z
.

Solution: We see that z cannot be 5. Remembering this restriction, multiply both sides by
3(z − 5). This gives

3z + z − 5 = 15

which has the unique solution z = 5. Because we had to assume z �= 5, we must conclude
that no solution exists for the original equation.
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Often, solving a problem in economic analysis requires formulating an appropriate
algebraic equation.

E X A M P L E 4 A firm manufactures a commodity that costs $20 per unit to produce. In addition, the
firm has fixed costs of $2000. Each unit is sold for $75. How many units must be sold if the
firm is to meet a profit target of $14 500?

Solution: If the number of units produced and sold is denoted by Q, then the revenue of the
firm is 75Q and the total cost of production is 20Q+ 2000. Because profit is the difference
between total revenue and total cost, it can be written as 75Q − (20Q + 2000). Because
the profit target is 14 500, the equation

75Q − (20Q + 2000) = 14 500

must be satisfied. It is easy to find the solution Q = 16 500/55 = 300 units.

P R O B L E M S F O R S E C T I O N 2 . 1

In Problems 1–3, solve each of the equations.

1. (a) 5x − 10 = 15 (b) 2x − (5 + x) = 16 − (3x + 9)

(c) −5(3x − 2) = 16(1 − x) (d) 4x + 2(x − 4) − 3 = 2(3x − 5) − 1

(e) 2
3 x = −8 (f) (8x − 7)5 − 3(6x − 4) + 5x2 = x(5x − 1)

(g) x2 + 10x + 25 = 0 (h) (3x − 1)2 + (4x + 1)2 = (5x − 1)(5x + 1) + 1

2. (a) 3x + 2 = 11 (b) −3x = 21 (c) 3x = 1
4 x − 7

(d)
x − 3

4
+ 2 = 3x (e)

1

2x + 1
= 1

x + 2
(f)

√
2x + 14 = 16

⊂SM⊃3. (a)
x − 3

x + 3
= x − 4

x + 4
(b)

3

x − 3
− 2

x + 3
= 9

x2 − 9
(c)

6x

5
− 5

x
= 2x − 3

3
+ 8x

15

4. Solve the following problems by first formulating an equation in each case:

(a) The sum of twice a number and 5 is equal to the difference between the number and 3. Find
the number.

(b) The sum of three successive natural numbers is 10 more than twice the smallest of them.
Find the numbers.

(c) Jane receives double pay for every hour she works over and above 38 hours per week. Last
week, she worked 48 hours and earned a total of $812. What is Jane’s regular hourly wage?

(d) James has invested $15 000 at an annual interest rate of 10%. How much additional money
should he invest at the interest rate of 12% if he wants the total interest earned by the end
of the year to equal $2100?

(e) When Mr. Barnes passed away, 2/3 of his estate was left to his wife, 1/4 was shared by his
children, and the remainder, $100 000, was donated to a charity. How big was Mr. Barnes’s
estate?
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⊂SM⊃5. Solve the following equations:

(a)
3y − 1

4
− 1 − y

3
+ 2 = 3y (b)

4

x
+ 3

x + 2
= 2x + 2

x2 + 2x
+ 7

2x + 4

(c)
2 − z

1 − z

1 + z
= 6

2z + 1
(d)

1

2

(
p

2
− 3

4

)
− 1

4

(
1 − p

3

)
− 1

3
(1 − p) = −1

3

6. A person has y euros to spend on three kinds of fruit, namely apples, bananas, and cherries.
She decides to spend 1

3 y euros on each kind. The prices in euros per kilo are 3 for apples, 2 for
bananas, and 6 for cherries. What is the total weight of fruit she buys, and how much does she
pay per kilo of fruit? (This is an example of “dollar cost” averaging. See Problem 11.5.3.)

2.2 Equations with Parameters
Economists often use mathematical models to describe the relationship between different
economic phenomena. These models enable them to explain the interdependence of different
economic variables. In macroeconomic models, which are designed to explain the broad
outlines of a country’s economy, examples of such variables include the gross domestic
product (GDP), total consumption, and total investment.

Simple relationships between two variables can often be described by a linear equation.
Examples of such linear equations in two variables x and y are

(a) y = 10x (b) y = 3x + 4 (c) y = −8

3
x − 7

2

These equations have a common structure which makes it possible to write down a general
equation covering all the special cases:

y = ax + b (1)

where a and b are real numbers. For example, letting a = 3 and b = 4 yields equation (b).
The general equation (1) describes a whole class of linear equations where x and y are

the variables. The letters a and b are called parameters, and they take on different values.
Linear equations are studied in more detail in Section 4.4.

We often need to solve equations with “strange” letters denoting the variables. In addition,
there might be several parameters involved. Here are two typical examples:

E X A M P L E 1 Consider the basic macroeconomic model

(i) Y = C + Ī (ii) C = a + bY (∗)

where Y is the gross domestic product (GDP), C is consumption, and Ī is total investment,
which is treated as fixed.1 Here a and b are positive parameters of the model, with b < 1.

1 In economics, we often use a bar over a symbol to indicate that it is fixed. An alternative notation
is to use the superscript 0, e.g. Y = C + I 0, or the subscript 0, e.g. Y = C + I0.
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Equation (i) says that GDP, by definition, is the sum of consumption and total investment.
Equation (ii) says that consumption is a linear function of GDP.

Special cases of the model are obtained by choosing particular numerical values for the
parameters, such as Ī = 100, a = 500, b = 0.8, or Ī = 150, a = 600, b = 0.9. Thus

(iii)
Y = C + 100

C = 500 + 0.8Y
(iv)

Y = C + 150

C = 600 + 0.9Y

Solve model (∗) for Y in terms of Ī and the parameters.

Solution: Substituting C = a + bY into (i) gives

Y = a + bY + Ī

Now rearrange this equation so that all the terms containing Y are on the left-hand side. This
can be done by adding −bY to both sides, thus cancelling the bY term on the right-hand
side to give

Y − bY = a + Ī

Notice that the left-hand side is equal to (1 − b)Y , so (1 − b)Y = a + Ī . Dividing both
sides by 1 − b, so that the coefficient of Y becomes 1, then gives the answer, which is

Y = a

1 − b
+ 1

1 − b
Ī (∗∗)

This solution is a formula expressing the endogenous variable Y in terms of the exogenous
variable Ī and the parameters a and b. The formula can be applied to particular values of the
constants, such as Ī = 100, a = 500, b = 0.8, to give the right answer in every case. Note
the power of this approach: The model is solved only once, and then numerical answers are
found simply by substituting appropriate numerical values for the parameters of the model.

Economists usually call the two equations in (∗) the structural form of the model,
whereas (∗∗) is one part of the reduced form that expresses endogenous variables as
functions of exogenous variables. (The other part of the reduced form is the equation
C = (a + bĪ )/(1 − b) that determines the second endogenous variable C.)

E X A M P L E 2 Suppose the total demand for money in the economy is given by the formula

M = αY + β(r − γ )−δ

where M is the quantity of money in circulation, Y is national income, r is the interest rate,
while α, β, γ , and δ are positive parameters.

(a) Solve the equation for r .

(b) For the USA during the period 1929–1952, the parameters have been estimated as
α = 0.14, β = 76.03, γ = 2, and δ = 0.84. Show that r is then given by

r = 2 +
(

76.03

M − 0.14Y

)25/21
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Solution:

(a) It follows easily from the given equation that (r − γ )−δ = (M − αY)/β. Then raising
each side to the power −1/δ yields

r − γ =
(

M − αY

β

)−1/δ

, or r = γ +
(

β

M − αY

)1/δ

(∗)

where we used the fact that (a/b)−p = (b/a)p.

(b) In this case 1/δ = 1/0.84 = 100/84 = 25/21, and the required formula follows
immediately from (∗).

P R O B L E M S F O R S E C T I O N 2 . 2

1. Find the value of Y in the models (iii) and (iv) in Example 1. Verify that formula (∗∗) gives the
same result.

⊂SM⊃2. Solve the following equations for x:

(a)
1

ax
+ 1

bx
= 2 (b)

ax + b

cx + d
= A (c)

1

2
px−1/2 − w = 0

(d)
√

1 + x + ax√
1 + x

= 0 (e) a2x2 − b2 = 0 (f) (3 + a2)x = 1

3. Solve each equation for the variable suggested:

(a) q = 0.15p + 0.14 for p (supply of rice in India)

(b) S = α + βP for P (supply function)

(c) A = 1
2 gh for g (the area of a triangle)

(d) V = 4
3 πr3 for r (the volume of a ball)

(e) AKαLβ = Y0 for L (production function)

⊂SM⊃4. Solve the following equations for the indicated variables:

(a) αx − a = βx − b for x (b)
√

pq − 3q = 5 for p

(c) Y = 94 + 0.2(Y − (20 + 0.5Y )) for Y (d) K1/2

(
1

2

r

w
K

)1/4

= Q for K

(e)
1
2 K−1/2L1/4

1
4 L−3/4K1/2

= r

w
for L (f)

1

2
pK−1/4

(
1

2

r

w

)1/4

= r for K

⊂SM⊃5. Solve for the indicated variable:

(a)
1

s
+ 1

T
= 1

t
for s (b)

√
KLM − αL = B for M

(c)
x − 2y + xz

x − z
= 4y for z (d) V = C

(
1 − T

N

)
for T
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2.3 Quadratic Equations
This section reviews the method for solving quadratic (also called second-degree) equations.
The general quadratic equation has the form

ax2 + bx + c = 0 (a �= 0) (1)

where a, b, and c are given constants, and x is the unknown. If we divide each term by
a, we get the equivalent equation x2 + (b/a)x + c/a = 0. If p = b/a and q = c/a, the
equation is

x2 + px + q = 0 (2)

Two special cases are easy to handle. If q = 0 (there is no constant term), the equation
reduces to x2 + px = 0. This is equivalent to x(x + p) = 0. Since the product of two
numbers can be 0 only if at least one of the numbers is 0, we conclude that x = 0 or x = −p.
Using the symbol ⇐⇒ to denote “if and only if”, we have

x2 + px = 0 ⇐⇒ x = 0 or x = −p

This means that the equation x2 + px = 0 has the solutions x = 0 and x = −p, but no
others. (See Section 3.4.)

If p = 0 (there is no term involving x), the equation (2) reduces to x2 + q = 0. Then
x2 = −q, and there are two possibilities. If q > 0, then the equation has no solutions. In
the alternative case when q ≤ 0, one has

x2 + q = 0 ⇐⇒ x = ±√−q (q ≤ 0)

E X A M P L E 1 Solve the equations:

(a) 5x2 − 8x = 0 (b) x2 − 4 = 0 (c) x2 + 3 = 0

Solution:

(a) Dividing each term by 5 yields x2 − (8/5)x = x(x − 8/5) = 0, so x = 0 or x = 8/5.

(b) The equation yields x2 = 4, and hence, x = ±√
4 = ±2, which means that x is either

2 or −2. (Alternatively: x2 − 4 = (x + 2)(x − 2) = 0, so x = 2 or x = −2.)

(c) Because x2 is ≥ 0, the left-hand side of the equation x2 + 3 = 0 is always strictly
positive and the equation has no solution.

Harder Cases

If equation (2) has both coefficients different from 0, solving it becomes harder. Consider,
for example, x2 − (4/3)x − 1/4 = 0. We could, of course, try to find the values of x that
satisfy the equation by trial and error. However, it is not easy that way to find the only two
solutions, which are x = 3/2 and x = −1/6.
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NOTE 1 Here are two attempts to solve the equation that fail:

(a) A first attempt rearranges x2 − (4/3)x − 1/4 = 0 to give x2 − (4/3)x = 1/4, and
x(x − 4/3) = 1/4. Thus, the product of x and x − 4/3 must be 1/4. But there are
infinitely many pairs of numbers whose product is 1/4, so this is of very little help in
finding x.

(b) A second attempt is to divide each term by x to get x − 4/3 = 1/4x. Because the
equation involves terms in both x and 1/x, as well as a constant term, we have made
no progress whatsoever.

Evidently, we need a completely new idea in order to find the solution of equation (2). If you
are only interested in formulas that always give you the solutions to (1) or (2) (provided they
have solutions), proceed directly to the boxed formulas shown later. If you are interested in
understanding why those formulas work, read on.

E X A M P L E 2 Solve the equation x2 + 8x − 9 = 0.

Solution: It is natural to begin by moving 9 to the right-hand side:

x2 + 8x = 9 (∗)

However, because x occurs in two terms, it is not obvious how to proceed. A method called
completing the square, one of the oldest tricks in mathematics, turns out to work. In the
present case this method involves adding 16 to each side of the equation to get

x2 + 8x + 16 = 9 + 16 (∗∗)

The point of adding 16 is that the left-hand side is then a complete square: x2 + 8x + 16 =
(x + 4)2. Thus, equation (∗∗) takes the form

(x + 4)2 = 25 (∗∗∗)

The equation z2 = 25 has two solutions, z = ±√
25 = ±5. Thus, (∗∗∗) implies that either

x + 4 = 5 or x + 4 = −5. The required solutions are, therefore, x = 1 and x = −9.
Alternatively, equation (∗∗∗) can be written as (x + 4)2 − 52 = 0. Using the difference-

of-squares formula yields (x +4−5)(x +4+5) = 0, which reduces to (x −1)(x +9) = 0,
so we have the following factorization

x2 + 8x − 9 = (x − 1)(x + 9)

Note that (x − 1)(x + 9) is 0 precisely when x = 1 or x = −9.

The General Case
We now apply the method of completing the squares to the quadratic equation (2). This
equation obviously has the same solutions as

x2 + px = −q

One half of the coefficient of x is p/2. Adding the square of this number to each side of the
equation yields



Essential Math. for Econ. Analysis, 4th edn EME4_C02.TEX, 16 May 2012, 14:24 Page 43

S E C T I O N 2 . 3 / Q U A D R A T I C E Q U A T I O N S 43

x2 + px + (p/2)2 = (p/2)2 − q

The left-hand side has now been made a complete square (of x + p/2), so

(x + p/2)2 = p2/4 − q (∗)

Note that if p2/4 − q < 0, then the right-hand side is negative. Because (x + p/2)2 is
nonnegative for all choices of x, we conclude that if p2/4 − q < 0, then neither of the
equations (∗) and (2) has any solution. On the other hand, if p2/4 − q > 0, then (∗) yields
two possibilities:

x + p/2 =
√

p2/4 − q and x + p/2 = −
√

p2/4 − q

Then the values of x are easily found. These formulas are correct even if p2/4 − q = 0,
though then they give just the one solution x = −p/2 twice over. In conclusion:

x2 + px + q = 0 if and only if x = −p

2
±

√
p2

4
− q

(
p2

4
≥ q

)
(3)

Faced with an equation of the type (1), we can always find its solutions by first dividing the
equation by a and then using (3). Sometimes it is convenient to have the formula for the
solution of (1) in terms of the coefficients a, b, and c. Dividing equation (1) by a, we get
x2 + px + q = 0 with p = b/a and q = c/a. Substituting these values in (3) gives the
solutions x = −b/2a ± √

b2/4a2 − c/a. To summarize:

Q U A D R A T I C F O R M U L A

If b2 − 4ac ≥ 0 and a �= 0, then

ax2 + bx + c = 0 if and only if x = −b ± √
b2 − 4ac

2a

(4)

It is probably a good idea to spend a few minutes of your life memorizing this formula
(or formula (3)) thoroughly. Once you have done so, you can immediately write down the
solutions of any quadratic equation. Only if b2 − 4ac ≥ 0 are the solutions real numbers.
If we use the formula when b2 − 4ac < 0, the square root of a negative number appears
and no real solution exists. The solutions are often called the roots of the equation.

E X A M P L E 3 Use the quadratic formula to find the solutions (or roots) of 2x2 − 2x − 40 = 0.

Solution: Write the equation as 2x2 + (−2)x + (−40) = 0. Because a = 2, b = −2, and
c = −40, the quadratic formula (4) yields
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x = −(−2) ±
√

(−2)2 − 4 · 2 · (−40)

2 · 2
= 2 ± √

4 + 320

4
= 2 ± 18

4
= 1

2
± 9

2

The solutions are, therefore, x = 1
2 + 9

2 = 5 and x = 1
2 − 9

2 = −4.
If we use formula (3) instead, we divide each term by 2 and get x2 − x − 20 = 0, so

x = 1/2 ± √
1/4 + 20 = 1/2 ± √

81/4 = 1/2 ± 9/2

which gives the same solutions as before.

Suppose p2/4 − q ≥ 0 and let x1 and x2 be the solutions of (2). By using the same
difference-of-squares formula as we did to obtain the factorization in Example 2, one can
rewrite equation (2) as (x − x1)(x − x2) = 0. Furthermore, it follows that

If x1 and x2 are the solutions of ax2 + bx + c = 0 given by (4), then

ax2 + bx + c = a(x − x1)(x − x2)
(5)

This is a very important result, because it shows how to factor a general quadratic function.
If b2 − 4ac < 0, there is no factorization of ax2 + bx + c. If b2 − 4ac = 0, then x1 = x2

and ax2 + bx + c = a(x − x1)
2 = a(x − x2)

2.

E X A M P L E 4 Factor (if possible) the following quadratic polynomials:

(a) 1
3x2 + 2

3x − 14
3 (b) − 2x2 + 40x − 600

Solution:
(a) 1

3x2 + 2
3x − 14

3 = 0 has the same solutions as x2 + 2x − 14 = 0. By formula (3), its
solutions are x = −1±√

1 + 14 = −1±√
15, and these are the solutions of the given

equation also. Then from (5),

1
3x2+ 2

3x− 14
3 = 1

3

(
x−(−1+√

15 )
)(

x−(−1−√
15 )

) = 1
3 (x+1−√

15 )(x+1+√
15 )

(b) For −2x2 + 40x − 600 = 0, a = −2, b = 40, and c = −600, so b2 − 4ac =
1600 − 4800 = −3200. Therefore, no factoring exists in this case.

NOTE 2 The quadratic formula is very useful, since it gives the solutions to any quadratic
equation. But you should not be a “quadratic formula fanatic” and use it always. If b = 0
or c = 0, we explained at the beginning of this section how the equation can be solved very
easily. During a recent exam, one extreme “quadratic formula fanatic”, when faced with
solving the equation (x − 4)2 = 0, expanded the parentheses to obtain x2 − 8x + 16 = 0,
and then used the quadratic formula eventually to get the (correct) answer, x = 4. What
would you have done?



Essential Math. for Econ. Analysis, 4th edn EME4_C02.TEX, 16 May 2012, 14:24 Page 45

S E C T I O N 2 . 3 / Q U A D R A T I C E Q U A T I O N S 45

Consider again equation (2) with solutions x1 and x2 given by (3). Expanding the right-
hand side of the identity x2 + px + q = (x − x1)(x − x2) corresponding to (5) yields
x2 +px + q = x2 − (x1 + x2)x + x1x2. Equating like powers of x gives x1 + x2 = −p and
x1x2 = q. (The same formulas are obtained by adding and multiplying the two solutions
found in (3).) Thus:

If x1 and x2 are the roots of x2 + px + q = 0, then

x1 + x2 = −p and x1x2 = q

In words, the sum of the roots is minus the coefficient of the first-order term and
the product is the constant term.

(6)

P R O B L E M S F O R S E C T I O N 2 . 3

1. Solve the following quadratic equations (if they have solutions):

(a) 15x − x2 = 0 (b) p2 − 16 = 0 (c) (q − 3)(q + 4) = 0

(d) 2x2 + 9 = 0 (e) x(x + 1) = 2x(x − 1) (f) x2 − 4x + 4 = 0

2. Solve the following quadratic equations by using the method of completing the square, and
factor (if possible) the left-hand side:

(a) x2 − 5x + 6 = 0 (b) y2 − y − 12 = 0 (c) 2x2 + 60x + 800 = 0

(d) − 1
4 x2 + 1

2 x + 1
2 = 0 (e) m(m − 5) − 3 = 0 (f) 0.1p2 + p − 2.4 = 0

Solve the equations in 3–4 by using the quadratic formula:

3. (a) r2 + 11r − 26 = 0 (b) 3p2 + 45p = 48 (c) 20 000 = 300K − K2

(d) r2 + (√
3−√

2
)
r = √

6 (e) 0.3x2− 0.09x = 0.12 (f)
1

24
= p2 − 1

12
p

4. (a) x2 − 3x + 2 = 0 (b) 5t2 − t = 3 (c) 6x = 4x2 − 1

(d) 9x2 + 42x + 44 = 0 (e) 30 000 = x(x + 200) (f) 3x2 = 5x − 1

⊂SM⊃5. (a) Find the lengths of the sides of a rectangle whose perimeter is 40 cm and whose area is
75 cm2.

(b) Find two successive natural numbers whose sum of squares is 13.

(c) In a right-angled triangle, the hypotenuse is 34 cm. One of the short sides is 14 cm longer
than the other. Find the lengths of the two short sides.

(d) A motorist drove 80 km. In order to save 16 minutes, he had to drive 10 km/h faster than
usual. What was his usual driving speed?

6. Solve the following equations:

(a) x3 − 4x = 0 (b) x4 − 5x2 + 4 = 0 (c) z−2 − 2z−1 − 15 = 0
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2.4 Linear Equations in Two Unknowns
This section reviews some methods for solving two linear equations with two unknowns.

E X A M P L E 1 Find the values of x and y that satisfy both of the equations

2x + 3y = 18

3x − 4y = −7
(∗)

We need to find the values of x and y that satisfy both equations.

METHOD 1 First, solve one of the equations for one of the variables in terms of the
other; then substitute the result into the other equation. This leaves only one equation in one
unknown, which is easily solved.

To apply this method to system (∗), we can solve the first equation for y in terms of x.
In fact, 2x + 3y = 18 implies that 3y = 18 − 2x and, hence, y = 6 − 2

3x. Substituting this
expression for y into the second equation in (∗) gives

3x − 4
(
6 − 2

3x
) = −7

3x − 24 + 8
3x = −7

9x − 72 + 8x = −21

17x = 51

Hence, x = 3. Then we find y by using y = 6 − 2
3x once again to obtain y = 6 − 2

3 · 3 = 4.
The solution of (∗) is therefore x = 3 and y = 4.

Such a solution should always be checked by direct substitution. Indeed, substituting
x = 3 and y = 4 in (∗) gives 2 · 3 + 3 · 4 = 18 and 3 · 3 − 4 · 4 = −7.

METHOD 2 This method is based on eliminating one of the variables by adding or sub-
tracting a multiple of one equation from the other. For system (∗), suppose we want to
eliminate y. Suppose we multiply the first equation in (∗) by 4 and the second by 3. Then
the coefficients of y in both equations will be the same except for the sign. If we then add
the transformed equations, the term in y disappears and we obtain

8x + 12y = 72

9x − 12y = −21

17x = 51

Hence, x = 3. To find the value for y, substitute 3 for x in either of the original equations
and solve for y. This gives y = 4, which agrees with the earlier result.

We end this section by using Method 2 to solve a general linear system with two equations
and two unknowns:

ax + by = c

dx + ey = f
(1)
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Here a, b, c, d, e, and f are arbitrary given numbers, whereas x and y are the unknowns.
If we let a = 2, b = 3, c = 18, d = 3, e = −4, and f = −7, then this reduces to
system (∗). Using Method 2, we multiply the first equation by e and the second by −b to
obtain

aex + bey = ce

−bdx − bey = −bf

(ae − bd)x = ce − bf

which gives the value for x. We can substitute back in (1) to find y, and the result is

x = ce − bf

ae − bd
, y = af − cd

ae − bd
(2)

We have found expressions for both x and y.
These formulas break down if the denominator ae − bd in both fractions is equal to 0.

This case requires special attention.

P R O B L E M S F O R S E C T I O N 2 . 4

Solve the systems of equations in 1–3:

1. (a)
x − y = 5

x + y = 11
(b)

4x − 3y = 1

2x + 9y = 4
(c)

3x + 4y = 2.1

5x − 6y = 7.3

2. (a)
5x + 2y = 3

2x + 3y = −1
(b)

x − 3y = −25

4x + 5y = 19
(c)

2x + 3y = 3

6x + 6y = −1

3. (a)
2K + L = 11.35

K + 4L = 25.8
(b)

23p + 45q = 181

10p + 15q = 65
(c)

0.01r + 0.21s = 0.042

−0.25r + 0.55s = −0.47

⊂SM⊃4. (a) Find two numbers whose sum is 52 and whose difference is 26.

(b) Five tables and 20 chairs cost $1800, whereas 2 tables and 3 chairs cost $420. What is the
price of each table and each chair?

(c) A firm produces a good in two qualities, A and B. For the coming year, the estimated output
of A is 50% higher than that of B. The profit per unit sold is $300 for A and $200 for B. If
the profit target is $13 000 over the next year, how much of each of the two qualities must
be produced?

(d) At the beginning of the year a person had a total of $10 000 in two accounts. The interest
rates were 5% and 7.2% per year, respectively. If the person has made no transfers during
the year, and has earned a total of $676 interest, what was the initial balance in each of the
two accounts?
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2.5 Nonlinear Equations
This chapter has already considered some types of equation frequently occurring in economic
models. In this section we consider some additional types that are often encountered later
in the book, particularly in connection with optimization problems.

Recall that a product of two or more factors is 0 if and only if at least one of the factors
is 0. This fact is used again and again. Consider the following examples.

E X A M P L E 1 Solve each of the following three separate equations:

(a) x3
√

x + 2 = 0 (b) x(y + 3)(z2 + 1)
√

w − 3 = 0 (c) x2 − 3x3 = 0

Solution:

(a) If x3
√

x + 2 = 0, then either x3 = 0 or
√

x + 2 = 0. The equation x3 = 0 has only
the solution x = 0, while

√
x + 2 = 0 gives x = −2. The solutions of the equation

are therefore x = 0 and x = −2.

(b) There are four factors in the product. One of the factors, z2 + 1, is never 0. Hence, the
solutions are: x = 0 or y = −3 or w = 3.

(c) Start by factoring: x2 − 3x3 = x2(1 − 3x). The product x2(1 − 3x) is 0 if and only if
x2 = 0 or 1 − 3x = 0. Hence, the solutions are x = 0 and x = 1/3.

NOTE 1 When trying to solve an equation, an easy way to make a serious mistake is to
cancel a factor which might be zero. It is important to check that the factor being cancelled
really is not zero. For instance, suppose one cancels the common factor x2 in the equation
x2 = 3x3. The result is 1 = 3x, implying that x = 1/3. The solution x = 0 has been lost.

In general,
ab = ac is equivalent to a = 0 or b = c (1)

because the equation ab = ac is equivalent to ab − ac = 0, or a(b − c) = 0. This product
is 0 when a = 0 or b = c.

If ab = ac and a �= 0, we conclude from (1) that b = c.

E X A M P L E 2 What conclusions about the variables can we draw if

(a) x(x + a) = x(2x + b) (b) λy = λz2 (c) xy2(1 − y) − 2λ(y − 1) = 0

Solution:

(a) x = 0 or x+a = 2x+b. The last equation gives x = a−b. The solutions are therefore
x = 0 and x = a − b.

(b) λ = 0 or y = z2. (It is easy to “forget” the possibility that λ = 0.)

(c) The equation is equivalent to

xy2(1 − y) + 2λ(1 − y) = 0, that is (1 − y)(xy2 + 2λ) = 0

We conclude from the last equation that 1 − y = 0 or xy2 + 2λ = 0, that is y = 1 or
λ = − 1

2xy2.
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Consider finally some equations involving fractions. Recall that the fraction a/b is not
defined if b = 0. If b �= 0, however, then a/b = 0 is equivalent to a = 0.

E X A M P L E 3 Solve the following equations:

(a)
1 − K2

√
1 + K2

= 0 (b)
45 + 6r − 3r2

(r4 + 2)3/2
= 0 (c)

x2 − 5x√
x2 − 25

= 0

Solution:

(a) The denominator is never 0, so the fraction is 0 when 1−K2 = 0, that is when K = ±1.

(b) Again the denominator is never 0. The fraction is 0 when 45 + 6r − 3r2 = 0, that is
3r2 − 6r − 45 = 0. Solving this quadratic equation, we find that r = −3 or r = 5.

(c) The numerator is equal to x(x − 5), which is 0 if x = 0 or x = 5. At x = 0 the
denominator is

√−25, which is not defined, and at x = 5 the denominator is 0. We
conclude that the equation has no solutions.

P R O B L E M S F O R S E C T I O N 2 . 5

Solve the equations in Problems 1–2:

1. (a) x(x + 3) = 0 (b) x3(1 + x2)(1 − 2x) = 0 (c) x(x − 3) = x − 3

(d)
√

2x + 5 = 0 (e)
x2 + 1

x(x + 1)
= 0 (f)

x(x + 1)

x2 + 1
= 0

⊂SM⊃2. (a)
5 + x2

(x − 1)(x + 2)
= 0 (b) 1 + 2x

x2 + 1
= 0

(c)
(x + 1)1/3 − 1

3 x(x + 1)−2/3

(x + 1)2/3
= 0 (d)

x

x − 1
+ 2x = 0

⊂SM⊃3. Examine what conclusions can be drawn about the variables if:

(a) z2(z − a) = z3(a + b), a �= 0 (b) (1 + λ)μx = (1 + λ)yμ

(c)
λ

1 + μ
= −λ

1 − μ2
(d) ab − 2b − λb(2 − a) = 0

R E V I E W P R O B L E M S F O R C H A P T E R 2

In Problems 1–2, solve each of the equations.

1. (a) 3x − 20 = 16 (b) −5x + 8 + 2x = −(4−x) (c) −6(x − 5) = 6(2 − 3x)

(d)
4 − 2x

3
= −5−x (e)

5

2x − 1
= 1

2 − x
(f)

√
x − 3 = 6
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⊂SM⊃2. (a)
x − 3

x − 4
= x + 3

x + 4
(b)

3(x + 3)

x − 3
− 2 = 9

x

x2 − 9
+ 27

(x + 3)(x − 3)

(c)
2x

3
= 2x − 3

3
+ 5

x
(d)

x − 5

x + 5
− 1 = 1

x
− 11x + 20

x2 − 5x

3. Solve the following equations for the variables specified:

(a) x = 2
3 (y − 3) + y for y (b) ax − b = cx + d for x

(c) AK
√

L = Y0 for L (d) px + qy = m for y

(e)

1

1 + r
− a

1

1 + r
+ b

= c for r (f) Px(Px + Q)−1/3 + (Px + Q)2/3 = 0 for x

4. Consider the macro model

(i) Y = C + Ī + G, (ii) C = b(Y − T ), (iii) T = tY

where the parameters b and t lie in the interval (0, 1), Y is the gross domestic product (GDP),
C is consumption, Ī is total investment, T denotes taxes, and G is government expenditure.

(a) Express Y and C in terms of Ī , G, and the parameters.

(b) What happens to Y and C as t increases?

⊂SM⊃5. Solve the following equations for the variables indicated:

(a) 3K−1/2L1/3 = 1/5 for K (b) (1 + r/100)t = 2 for r

(c) p − abxb−1
0 = 0 for x0 (d)

[
(1 − λ)a−ρ + λb−ρ

]−1/ρ = c for b

6. Solve the following quadratic equations:

(a) z2 = 8z (b) x2 + 2x − 35 = 0 (c) p2 + 5p − 14 = 0

(d) 12p2 − 7p + 1 = 0 (e) y2 − 15 = 8y (f) 42 = x2 + x

7. Solve the following equations:

(a) (x2 − 4)
√

5 − x = 0 (b) (x4 + 1)(4 + x) = 0 (c) (1 − λ)x = (1 − λ)y

8. Johnson invested $1500, part of it at 15% interest and the remainder at 20%. His total yearly
income from the two investments was $275. How much did he invest at each rate?

9. If 53x = 25y+2 and x − 2y = 8, then what is x − y?

HARDER PROBLEM

10. Solve the following systems of equations:

(a)

2

x
+ 3

y
= 4

3

x
− 2

y
= 19

(b)
3
√

x + 2
√

y = 2

2
√

x − 3
√

y = 1

4

(c)
x2 + y2 = 13

4x2 − 3y2 = 24
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Everything should be made as simple as possible, but not simpler.

—Albert Einstein

This chapter starts with sums and summation notation. Most economic students will need

these for their statistics and econometrics courses in particular.

Arguments in mathematics require tight logical reasoning; arguments in economic analysis

are no exception to this rule. We therefore present some basic concepts from logic. A brief

section on mathematical proofs might be useful for more ambitious students.

A short introduction to set theory comes next. The chapter winds up with a discussion of

mathematical induction. Very occasionally, this is used directly in economic arguments. More

often, it is needed to understand mathematical results which economists often use.

3.1 Summation Notation
Economists often make use of census data. Suppose a country is divided into six regions.
Let Ni denote the population in region i. Then the total population is given by

N1 + N2 + N3 + N4 + N5 + N6

It is convenient to have an abbreviated notation for such lengthy sums. The capital Greek
letter sigma � is conventionally used as a summation symbol, and the sum is written as

6∑
i=1

Ni

This reads “the sum from i = 1 to i = 6 of Ni”. If there are n regions, then

N1 + N2 + · · · + Nn (∗)

is one possible notation for the total population. Here the dots · · · indicate that the obvious
previous pattern continues, but comes to an end just before the last term Nn.
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In summation or sigma notation, we use the summation symbol � and write

n∑
i=1

Ni

This tells us to form the sum of all the terms that result when we substitute successive
integers for i, starting with i = 1 and ending with i = n. The symbol i is called the index
of summation. It is a “dummy variable” that can be replaced by any other letter (which has
not already been used for something else). Thus, both

∑n
j=1 Nj and

∑n
k=1 Nk represent the

same sum as (∗).
The upper and lower limits of summation can both vary. For example,

35∑
i=30

Ni = N30 + N31 + N32 + N33 + N34 + N35

is the total population in the six regions numbered from 30 to 35.
More generally, suppose p and q are integers with q ≥ p. Then

q∑
i=p

ai = ap + ap+1 + · · · + aq

denotes the sum that results when we substitute successive integers for i, starting with i = p

and ending with i = q. If the upper and lower limits of summation are the same, then the
“sum” reduces to one term. And if the upper limit is less than the lower limit, then there are
no terms at all, so the usual convention is that the “sum” reduces to zero.

E X A M P L E 1 Compute: (a)
5∑

i=1

i2 (b)
6∑

k=3

(5k − 3) (c)
2∑

j=0

(−1)j

(j + 1)(j + 3)
.

Solution:

(a)
5∑

i=1

i2 = 12 + 22 + 32 + 42 + 52 = 1 + 4 + 9 + 16 + 25 = 55

(b)
6∑

k=3

(5k − 3) = (5 · 3 − 3) + (5 · 4 − 3) + (5 · 5 − 3) + (5 · 6 − 3) = 78

(c)
2∑

j=0

(−1)j

(j + 1)(j + 3)
= 1

1 · 3
+ −1

2 · 4
+ 1

3 · 5
= 40 − 15 + 8

120
= 33

120
= 11

40

Sums and the summation notation occur frequently in economics. Often, there are several
variables or parameters in addition to the summation index. It is important to be able to
interpret such sums. In each case, the summation symbol tells you that there is a sum
of terms. The sum results from substituting successive integers for the summation index,
starting with the lower limit and ending with the upper limit.
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E X A M P L E 2 Expand (a)
n∑

i=1

p
(i)
t q

(i) (b)
1∑

j=−3

x5−j yj (c)
N∑

i=1

(xij − x̄j )
2

Solution:

(a)
n∑

i=1

p
(i)
t q

(i) = p
(1)
t q

(1) + p
(2)
t q

(2) + · · · + p
(n)
t q

(n)

(b)
1∑

j=−3

x5−j yj = x5−(−3)y−3 + x5−(−2)y−2 + x5−(−1)y−1 + x5−0y0 + x5−1y1

= x8y−3 + x7y−2 + x6y−1 + x5 + x4y

(c)
N∑

i=1

(xij − x̄j )
2 = (x1j − x̄j )

2 + (x2j − x̄j )
2 + · · · + (xNj − x̄j )

2

Note that t is not an index of summation in (a), and j is not an index of summation in (c).

E X A M P L E 3 Write the following sums using summation notation:

(a) 1 + 3 + 32 + 33 + · · · + 381 (b) a6
i + a5

i bj + a4
i b

2
j + a3

i b
3
j + a2

i b
4
j + aib

5
j + b6

j

Solution:

(a) This is easy if we note that 1 = 30 and 3 = 31, so that the sum can be written as
30 + 31 + 32 + 33 + · · · + 381. The general term is 3i , and we have

1 + 3 + 32 + 33 + · · · + 381 =
81∑
i=0

3i

(b) This is more difficult. Note, however, that the indices i and j never change. Also, the
exponent for ai decreases step by step from 6 to 0, whereas that for bj increases from
0 to 6. The general term has the form a6−k

i bk
j , where k varies from 0 to 6. Thus,

a6
i + a5

i bj + a4
i b

2
j + a3

i b
3
j + a2

i b
4
j + aib

5
j + b6

j =
6∑

k=0

a6−k
i bk

j

E X A M P L E 4 (Price Indices) In order to summarize the overall effect of price changes for several
different goods within a country, a number of alternative price indices have been suggested.

Consider a “basket” of n commodities. For i = 1, . . . , n, define

q(i) = number of units of good i in the basket

p
(i)
0 = price per unit of good i in year 0

p
(i)
t = price per unit of good i in year t

Then
n∑

i=1

p
(i)
0 q

(i) = p
(1)
0 q

(1) + p
(2)
0 q

(2) + · · · + p
(n)
0 q

(n)
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is the cost of the basket in year 0, whereas

n∑
i=1

p
(i)
t q

(i) = p
(1)
t q

(1) + p
(2)
t q

(2) + · · · + p
(n)
t q

(n)

is the cost of the basket in year t . A price index for year t , with year 0 as the base year, is
defined as

n∑
i=1

p
(i)
t q

(i)

n∑
i=1

p
(i)
0 q

(i)

· 100 (price index) (1)

If the cost of the basket is 1032 in year 0 and the cost of the same basket in year t is 1548,
then the price index is (1548/1032) · 100 = 150.

In the case where the quantities q(i) are levels of consumption in the base year 0, this is
called the Laspeyres price index. But if the quantities q(i) are levels of consumption in the
year t , this is called the Paasche price index.

P R O B L E M S F O R S E C T I O N 3 . 1

1. Evaluate the following sums:

(a)
10∑
i=1

i (b)
6∑

k=2

(5 · 3k−2 − k) (c)
5∑

m=0

(2m + 1)

(d)
2∑

l=0

22l
(e)

10∑
i=1

2 (f)
4∑

j=1

j + 1

j

2. Expand the following sums:

(a)
2∑

k=−2

2
√

k + 2 (b)
3∑

i=0

(x + 2i)2 (c)
n∑

k=1

akib
k+1 (d)

m∑
j=0

f (xj ) �xj

⊂SM⊃3. Express these sums in summation notation:

(a) 4 + 8 + 12 + 16 + · · · + 4n (b) 13 + 23 + 33 + 43 + · · · + n3

(c) 1 − 1

3
+ 1

5
− 1

7
+ · · · + (−1)n

1

2n + 1
(d) ai1b1j + ai2b2j + · · · + ainbnj

(e) 3x + 9x2 + 27x3 + 81x4 + 243x5 (f) a3
i bi+3 + a4

i bi+4 + · · · + a
p

i bi+p

(g) a3
i bi+3 + a4

i+1bi+4 + · · · + a
p+3
i+p bi+p+3 (h) 81 297 + 81 495 + 81 693 + 81 891

4. Compute the price index (1) if n = 3, p
(1)
0 = 1, p

(2)
0 = 2, p

(3)
0 = 3, p

(1)
t = 2, p

(2)
t = 3,

p
(3)
t = 4, q(1) = 3, q(2) = 5, and q(3) = 7 .

5. Insert the appropriate limits of summation in the sums on the right-hand side.

(a)
10∑

k=1

(k − 2)tk =
∑

m=
mtm+2 (b)

N∑
n=0

2n+5 =
∑

j=
32 · 2j−1



Essential Math. for Econ. Analysis, 4th edn EME4_C03.TEX, 16 May 2012, 14:24 Page 55

S E C T I O N 3 . 2 / R U L E S F O R S U M S . N E W T O N ’ S B I N O M I A L F O R M U L A 55

6. Officially there is a long-run goal of free labour mobility throughout the European Economic
Area, to which 30 nations currently belong. For the year 2011, let cij denote the number of
workers who moved their main place of work from nation i to nation j , i �= j . If, say, i = 25
and j = 10, then we write c25,10 for cij . If i = j we let cij = 0. Explain the meaning of the
sums: (a)

∑30
j=1 cij , (b)

∑30
i=1 cij .

⊂SM⊃7. Decide which of the following equalities are generally valid. (Note in particular the correct
answer to (b).)

(a)
n∑

k=1

ck2 = c

n∑
k=1

k2 (b)

( n∑
i=1

ai

)2

=
n∑

i=1

a2
i (c)

n∑
j=1

bj +
N∑

j=n+1

bj =
N∑

j=1

bj

(d)
7∑

k=3

5k−2 =
4∑

k=0

5k+1 (e)
n−1∑
i=0

a2
i,j =

n∑
k=1

a2
k−1,j (f)

n∑
k=1

ak

k
= 1

k

n∑
k=1

ak

3.2 Rules for Sums. Newton’s Binomial Formula
The following properties of the sigma notation are helpful when manipulating sums:

n∑
i=1

(ai + bi) =
n∑

i=1

ai +
n∑

i=1

bi (additivity property) (1)

n∑
i=1

cai = c

n∑
i=1

ai (homogeneity property) (2)

The proofs are straightforward. For example, (2) is proved by noting that

n∑
i=1

cai = ca1 + ca2 + · · · + can = c(a1 + a2 + · · · + an) = c

n∑
i=1

ai

The homogeneity property (2) states that a constant factor can be moved outside the sum-
mation sign. In particular, if ai = 1 for all i, then

n∑
i=1

c = nc (3)

which just states that a constant c summed n times is equal to n times c.
The summation rules can be applied in combination to give formulas like

n∑
i=1

(ai + bi − 2ci + d) =
n∑

i=1

ai +
n∑

i=1

bi − 2
n∑

i=1

ci + nd

E X A M P L E 1 Evaluate the sum
n∑

m=2

1

(m − 1)m
= 1

1 · 2
+ 1

2 · 3
+ · · · + 1

(n − 1)n

by using the identity
1

(m − 1)m
= 1

m − 1
− 1

m
.
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Solution:

n∑
m=2

1

m(m − 1)
=

n∑
m=2

(
1

m − 1
− 1

m

)
=

n∑
m=2

1

m − 1
−

n∑
m=2

1

m

=
(

1

1
+ 1

2
+ 1

3
+ · · · + 1

n − 1

)
−

(
1

2
+ 1

3
+ · · · + 1

n − 1
+ 1

n

)
= 1 − 1

n

To derive the last equality, note that most of the terms cancel pairwise. The only exceptions
are the first term within the first parentheses and the last term within the last parentheses.
This powerful trick is commonly used to calculate some special sums of this kind. See
Problem 3.

E X A M P L E 2 The arithmetic mean (or mean) μx of T numbers x1, x2, . . . , xT is their average, defined
as the sum of all the numbers divided by T , the number of terms. That is, μx = 1

T

∑T
i=1 xi .

Prove that
∑T

i=1(xi − μx) = 0 and
∑T

i=1(xi − μx)
2 = ∑T

i=1 x2
i − T μ2

x .

Solution: The difference xi − μx is the deviation between xi and the mean. We prove first
that the sum of these deviations is 0, using the foregoing definition of μx :

T∑
i=1

(xi − μx) =
T∑

i=1

xi −
T∑

i=1

μx =
T∑

i=1

xi − T μx = T μx − T μx = 0

Furthermore, the sum of the squares of the deviations is

T∑
i=1

(xi − μx)
2 =

T∑
i=1

(x2
i − 2μxxi + μ2

x) =
T∑

i=1

x2
i − 2μx

T∑
i=1

xi +
T∑

i=1

μ2
x

=
T∑

i=1

x2
i − 2μxT μx + T μ2

x =
T∑

i=1

x2
i − T μ2

x

Dividing by T , we see that the mean square deviation or variance (1/T )
∑T

i=1(xi − μx)
2

must equal the mean square, (1/T )
∑T

i=1 x2
i , minus the square of the mean, μ2

x .

Useful Formulas

A (very) demanding teacher once asked his students to sum 81 297 + 81 495 + 81 693 +
· · ·+ 100 899. There are 100 terms and the difference between successive terms is constant
and equal to 198. Gauss, later one of the world’s leading mathematicians, was in the class,
and (at age 9) is reputed to have given the right answer in only a few minutes. Problem 5
asks you to match Gauss, but we will provide some help first.

Applied to the easier problem of finding the sum x = 1 + 2 + · · ·+n, Gauss’s argument
was probably as follows: First, write the sum x in two ways

x = 1 + 2 + · · · + (n − 1) + n

x = n + (n − 1) + · · · + 2 + 1
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Summing vertically term by term gives

2x = (1 + n) + [
2 + (n − 1)

] + · · · + [
(n − 1) + 2

] + (n + 1)

= (1 + n) + (1 + n) + · · · + (1 + n) + (1 + n) = n(1 + n)

Thus, solving for x gives the result:

n∑
i=1

i = 1 + 2 + · · · + n = 1
2n(n + 1) (4)

The following two summation formulas are occasionally useful in economics. Check to
see if they are true for n = 1, 2, and 3. For proofs, see Problem 3.7.2.

n∑
i=1

i2 = 12 + 22 + 32 + · · · + n2 = 1
6n(n + 1)(2n + 1) (5)

n∑
i=1

i3 = 13 + 23 + 33 + · · · + n3 = ( 1
2n(n + 1)

)2 =
( n∑

i=1

i

)2

(6)

Newton’s Binomial Formula

We all know that (a + b)1 = a + b and (a + b)2 = a2 + 2ab + b2. Using the latter equality
and writing (a + b)3 = (a + b)(a + b)2 and (a + b)4 = (a + b)(a + b)3, we find that

(a + b)1 = a + b

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

The corresponding formula for (a + b)m, where m is any natural number, can be expressed
as follows:

N E W T O N ’ S B I N O M I A L F O R M U L A

(a + b)m = am +
(

m

1

)
am−1b + · · · +

(
m

m − 1

)
abm−1 +

(
m

m

)
bm (7)

This formula involves the binomial coefficients
(
m
k

)
which are defined, for m = 1, 2, . . .

and for k = 0, 1, 2, . . . , m, by(
m

k

)
= m(m − 1) · · · (m − k + 1)

k!
,

(
m

0

)
= 1
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where k!, read as “k factorial”, is standard notation for the product 1 · 2 · 3 · · · (k − 1) · k of
the first k numbers, with the convention that 0! = 1.

In general,

(
m

1

)
= m and

(
m

m

)
= 1. When m = 5, for example, we have

(
5

2

)
= 5 · 4

1 · 2
= 10,

(
5

3

)
= 5 · 4 · 3

1 · 2 · 3
= 10,

(
5

4

)
= 5 · 4 · 3 · 2

1 · 2 · 3 · 4
= 5

Then (7) gives (a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5.

The coefficients occurring in the expansions for successive powers of (a + b) form the
following pattern, called Pascal’s triangle (though it was actually known in China by about
the year 1100, long before Blaise Pascal was born):

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

This table can be continued indefinitely. The numbers in this triangle are indeed the binomial
coefficients. For instance, the numbers in row 6 (when the first row is numbered 0) are(

6

0

) (
6

1

) (
6

2

) (
6

3

) (
6

4

) (
6

5

) (
6

6

)
Note first that the numbers are symmetric about the middle line. This symmetry can be
expressed as (

m

k

)
=

(
m

m − k

)
(8)

For example,
(6

2

) = 15 = (6
4

)
. Second, apart from the 1 at both ends of each row, each

number is the sum of the two adjacent numbers in the row above. For instance, 56 in the
eighth row is equal to the sum of 21 and 35 in the seventh row. In symbols,

(
m + 1

k + 1

)
=

(
m

k

)
+

(
m

k + 1

)
(9)

In Problem 4 you are asked to prove these two properties.
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P R O B L E M S F O R S E C T I O N 3 . 2

1. Use the results in (4) and (5) to find
∑n

k=1(k
2 + 3k + 2).

2. Use Newton’s binomial formula to find (a + b)6.

3. (a) Prove that
∑8

k=1(ak+1 − ak) = a9 − a1, and, generally, that
∑n

k=1(ak+1 − ak) = an+1 − a1.

(b) Use the result in (a) to compute the following:

(i)
50∑

k=1

(
1

k
− 1

k + 1

)
(ii)

12∑
k=1

(
3k+1 − 3k

)
(iii)

n∑
k=1

(
ark+1 − ark

)

4. (a) Prove that

(
5

3

)
= 5!

2! 3!
, and in general that

(
m

k

)
= m!

(m − k)! k!
(10)

(b) Verify by direct computation that

(
8

3

)
=

(
8

8 − 3

)
and

(
8 + 1

3 + 1

)
=

(
8

3

)
+

(
8

3 + 1

)
.

(c) Use (10) to verify (8) and (9).

5. Prove the summation formula for an arithmetic series,

n−1∑
i=0

(a + id) = na + n(n − 1)d

2

Apply the result to find the sum Gauss is supposed to have calculated at age 9.

3.3 Double Sums
Often one has to combine several summation signs. Consider, for example, the following
rectangular array of numbers:

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 . . . amn

(1)

The array can be regarded as a spreadsheet. A typical number in the array is of the form
aij , where 1 ≤ i ≤ m and 1 ≤ j ≤ n. (For example, aij may indicate the total revenue
of a firm from its sales in region i in month j .) There are n · m numbers in all. Let us find
the sum of all the numbers in the array by first summing all the numbers in each of the
m rows, then adding all these row sums. The m different row sums can be written in the
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form
∑n

j=1 a1j ,
∑n

j=1 a2j , . . . ,
∑n

j=1 amj . (In our example, these row sums are the total
revenues in each region summed over all the n months.) The sum of these m sums is equal

to
∑n

j=1 a1j + ∑n
j=1 a2j + · · · + ∑n

j=1 amj , which can be written as
∑m

i=1

(∑n
j=1 aij

)
. If

instead we add the numbers in each of the n columns first and then add these sums, we get

m∑
i=1

ai1 +
m∑

i=1

ai2 + · · · +
m∑

i=1

ain =
n∑

j=1

( m∑
i=1

aij

)

(How do you interpret this sum in our economic example?) In both these cases, we have
calculated the sum of all the numbers in the array. For this reason, we must have

m∑
i=1

n∑
j=1

aij =
n∑

j=1

m∑
i=1

aij

where, following usual practice, we have deleted the parentheses. This formula says that in
a (finite) double sum, the order of summation is immaterial. It is important to note that the
summation limits for i and j are independent of each other.

E X A M P L E 1 Compute
3∑

i=1

4∑
j=1

(i + 2j).

Solution:
3∑

i=1

4∑
j=1

(i + 2j) =
3∑

i=1

[
(i + 2) + (i + 4) + (i + 6) + (i + 8)

]

=
3∑

i=1

(4i + 20) = 24 + 28 + 32 = 84

You should check that the result is the same by summing over i first instead.

P R O B L E M S F O R S E C T I O N 3 . 3

⊂SM⊃1. Expand and compute the following double sums:

(a)
3∑

i=1

4∑
j=1

i · 3j (b)
2∑

s=0

4∑
r=2

(
rs

r + s

)2

(c)
m∑

i=1

n∑
j=1

(i + j 2) (d)
m∑

i=1

2∑
j=1

ij

2. Consider a group of individuals each having a certain number of units of m different goods. Let
aij denote the number of units of good i owned by person j (i = 1, . . . , m; j = 1, . . . , n).
Explain in words the meaning of the following sums:

(a)
n∑

j=1

aij (b)
m∑

i=1

aij (c)
n∑

j=1

m∑
i=1

aij
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3. Prove that the sum of all the numbers in the triangular table

a11

a21 a22

a31 a32 a33
...

...
...

. . .

am1 am2 am3 · · · amm

can be written as
m∑

i=1

( i∑
j=1

aij

)
and also as

m∑
j=1

( m∑
i=j

aij

)
.

HARDER PROBLEM

⊂SM⊃4. Consider the m ·n numbers aij in the rectangular array (1). Denote the arithmetic mean of them
all by ā, and the mean of all the numbers in the j th column by āj , so that

ā = 1

mn

m∑
r=1

n∑
s=1

ars, āj = 1

m

m∑
r=1

arj

Prove that ā is the mean of the column sums āj (j = 1, . . . , n) and that

m∑
r=1

m∑
s=1

(arj − ā)(asj − ā) = m2(āj − ā)2 (∗)

3.4 A Few Aspects of Logic
We have emphasized the role of mathematical models in the empirical sciences, especially in
economics. The more complicated the phenomena to be described, the more important it is to
be exact. Errors in models applied to practical situations can have catastrophic consequences.
For example, in the early stages of the US space programme, a rocket costing millions of
dollars to develop had to be destroyed only seconds after launch because a semicolon was
missing in the computer program controlling its guidance system. A more recent example
is the Mars lander which burned up early in the year 2000 because of a confusion between
metric and US units of measurement.

Although the consequences may be less dramatic, errors in mathematical reasoning also
occur easily. Here is a typical example of how a student (or even a professor) might use
faulty logic and thus end up with an incorrect answer to a problem.

E X A M P L E 1 Find a possible solution for the equation

x + 2 = √
4 − x

“Solution”: Squaring each side of the equation gives (x + 2)2 = (
√

4 − x )2, and thus
x2 +4x +4 = 4−x. Rearranging this last equation gives x2 +5x = 0. Cancelling x results
in x + 5 = 0, and therefore x = −5.
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According to this reasoning, the answer should be x = −5. Let us check this. For
x = −5, we have x + 2 = −3. Yet

√
4 − x = √

9 = 3, so this answer is incorrect. In
Example 4 we explain how the error arose. (Note the wisdom of checking your answer
whenever you think you have solved an equation.)

This example highlights the dangers of routine calculation without adequate thought. It may
be easier to avoid similar mistakes after studying the structure of logical reasoning.

Propositions
Assertions that are either true or false are called statements, or propositions. Most of the
propositions in this book are mathematical ones, but other kinds may arise in daily life. “All
individuals who breathe are alive” is an example of a true proposition, whereas the assertion
“all individuals who breathe are healthy” is a false proposition. Note that if the words used
to express such an assertion lack precise meaning, it will often be difficult to tell whether it
is true or false. For example, the assertion “67 is a large number” is neither true nor false
without a precise definition of “large number”.

Implications
In order to keep track of each step in a chain of logical reasoning, it often helps to use
implication arrows.

Suppose P and Q are two propositions such that whenever P is true, then Q is necessarily
true. In this case, we usually write

P 	⇒ Q (∗)

This is read as “P implies Q”, or “if P , then Q”, or “Q is a consequence of P ”. Other
ways of expressing the same implication include “Q if P ”, “P only if Q”, and “Q is an
implication of P ”. The symbol 	⇒ is an implication arrow, and it points in the direction
of the logical implication. Here are some examples of correct implications.

E X A M P L E 2 (a) x > 2 	⇒ x2 > 4

(b) xy = 0 	⇒ x = 0 or y = 0

(c) x is a square 	⇒ x is a rectangle

(d) x is a healthy person 	⇒ x breathes without difficulty

Notice that the word “or” in mathematics means the “inclusive or”, signifying that “P or
Q” includes the case when P and Q are both true.

In certain cases where the implication (∗) is valid, it may also be possible to draw a
logical conclusion in the other direction:

Q 	⇒ P

In such cases, we can write both implications together in a single logical equivalence:

P ⇐⇒ Q
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We then say that “P is equivalent to Q”. Because we have both “P if Q” and “P only if
Q”, we also say that “P if and only if Q”, which is often written “P iff Q” for short. The
symbol ⇐⇒ is an equivalence arrow.

In Example 2, we see that the implication arrow in (b) could be replaced with the
equivalence arrow, because it is also true that x = 0 or y = 0 implies xy = 0. Note,
however, that no other implication in Example 2 can be replaced by the equivalence arrow.
For even if x2 is larger than 4, it is not necessarily true that x is larger than 2 (for instance, x
might be −3); also, a rectangle is not necessarily a square; and, finally, just because person
x breathes without difficulty does not mean that x is healthy.

Necessary and Sufficient Conditions

There are other commonly used ways of expressing that proposition P implies proposition
Q, or that P is equivalent to Q. Thus, if proposition P implies proposition Q, we state that
P is a “sufficient condition” for Q. After all, for Q to be true, it is sufficient that P is true.
Accordingly, we know that if P is satisfied, then it is certain that Q is also satisfied. In this
case, we say that Q is a “necessary condition” for P , for Q must necessarily be true if P is
true. Hence,

P is a sufficient condition for Q means: P 	⇒ Q

Q is a necessary condition for P means: P 	⇒ Q

If we formulate the implication in Example 2 (c) in this way, it would read:

A sufficient condition for x to be a rectangle is that x be a square.
or

A necessary condition for x to be a square is that x be a rectangle.

The corresponding way to express P ⇐⇒ Q verbally is simply: P is a necessary and
sufficient condition for Q.

It is evident from this that it is very important to distinguish between the propositions
“P is a necessary condition for Q” (meaning Q 	⇒ P ) and “P is a sufficient condition for
Q” (meaning P 	⇒ Q). To emphasize the point, consider two propositions:

Breathing is a necessary condition for a person to be healthy.

Breathing is a sufficient condition for a person to be healthy.

The first proposition is clearly true. But the second is false, because sick people are still
breathing.

In the following pages, we shall repeatedly refer to necessary and sufficient conditions.
Understanding them and the difference between them is a necessary condition for under-
standing much of economic analysis. It is not a sufficient condition, alas!
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Solving Equations

Implication and equivalence arrows are very useful in helping to avoid mistakes in solving
equations. Consider first the following example.

E X A M P L E 3 Find all x such that (2x − 1)2 − 3x2 = 2
( 1

2 − 4x
)
.

Solution: By expanding (2x − 1)2 and also multiplying out the right-hand side, we obtain
a new equation that obviously has the same solutions as the original one:

(2x − 1)2 − 3x2 = 2
( 1

2 − 4x
) ⇐⇒ 4x2 − 4x + 1 − 3x2 = 1 − 8x

Adding 8x − 1 to each side of the second equation and then gathering terms gives an
equivalent equation:

4x2 − 4x + 1 − 3x2 = 1 − 8x ⇐⇒ x2 + 4x = 0

Now x2 + 4x = x(x + 4), and the latter expression is 0 if and only if x = 0 or x = −4.
That is,

x2 + 4x = 0 ⇐⇒ x(x + 4) = 0 ⇐⇒ x = 0 or x = −4

Putting everything together, we have derived a chain of equivalence arrows showing that
the given equation is fulfilled for the two values x = 0 and x = −4, and for no other values
of x.

E X A M P L E 4 Find all x such that x + 2 = √
4 − x. (Recall Example 1.)

Solution: Squaring both sides of the given equation yields

(
x + 2

)2 = (√
4 − x

)2

Consequently, x2 +4x +4 = 4−x, that is, x2 +5x = 0. From the latter equation it follows
that

x(x + 5) = 0 which yields x = 0 or x = −5

Thus, a necessary condition for x to solve x + 2 = √
4 − x is that x = 0 or x = −5.

Inserting these two possible values of x into the original equation shows that only x = 0
satisfies the equation. The unique solution to the equation is, therefore, x = 0.

In finding the solution to Example 1, why was it necessary to test whether the values we
found were actually solutions, whereas this step was unnecessary in Example 3? To answer
this, we must analyse the logical structure of our solution to Example 1. Using implication
arrows marked by letters, we can express the solution as follows:

x + 2 = √
4 − x

(a)	⇒ (x + 2)2 = 4 − x
(b)	⇒ x2 + 4x + 4 = 4 − x

(c)	⇒ x2 + 5x = 0
(d)	⇒ x(x + 5) = 0

(e)	⇒ x = 0 or x = −5
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Implication (a) is true (because a = b 	⇒ a2 = b2 and
(√

a
)2 = a). It is important to note,

however, that the implication cannot be replaced by an equivalence. If a2 = b2, then either
a = b or a = −b; it need not be true that a = b. Implications (b), (c), (d), and (e) are also
all true; moreover, all could have been written as equivalences, though this is not necessary
in order to find the solution. Therefore, a chain of implications has been obtained that leads
from the equation x + 2 = √

4 − x to the proposition “x = 0 or x = −5”. Because the
implication (a) cannot be reversed, there is no corresponding chain of implications going in
the opposite direction. We have verified that if the number x satisfies x +2 = √

4 − x, then
x must be either 0 or −5; no other value can satisfy the given equation. However, we have
not yet shown that either 0 or −5 really satisfies the equation. Only after we try inserting 0
and −5 into the equation do we see that x = 0 is the only solution. Note that in this case,
the test we have suggested not only serves to check our calculations, but is also a logical
necessity.

Looking back at the wrong “solution” to Example 1, we now realize that the false
argument involved two errors. Firstly, the implication x2 + 5x = 0 ⇒ x + 5 = 0 is wrong,
because x = 0 is also a solution of x2 +5x = 0. Secondly, it is logically necessary to check
if 0 or −5 really satisfies the equation.

The method used in solving Example 4 is the most common. It involves setting up a chain
of implications that starts from the given equation and ends with all the possible solutions.
By testing each of these trial solutions in turn, we find which of them really do satisfy the
equation. Even if the chain of implications is also a chain of equivalences, such a test is
always a useful check of both logic and calculations.

P R O B L E M S F O R S E C T I O N 3 . 4

1. There are many other ways to express implications and equivalences, apart from those already
mentioned. Use appropriate implication or equivalence arrows to represent the following prop-
ositions:

(a) The equation 2x − 4 = 2 is fulfilled only when x = 3.

(b) If x = 3, then 2x − 4 = 2.

(c) The equation x2 − 2x + 1 = 0 is satisfied if x = 1.

(d) If x2 > 4, then |x| > 2, and conversely.

2. Solve the equation
(x + 1)2

x(x − 1)
+ (x − 1)2

x(x + 1)
− 2

3x + 1

x2 − 1
= 0.

3. Consider the following six implications and decide in each case: (i) if the implication is true;
and (ii) if the converse implication is true. (x, y, and z are real numbers.)

(a) x = 2 and y = 5 	⇒ x + y = 7 (b) (x − 1)(x − 2)(x − 3) = 0 	⇒ x = 1

(c) x2 + y2 = 0 	⇒ x = 0 or y = 0 (d) x = 0 and y = 0 	⇒ x2 + y2 = 0

(e) xy = xz 	⇒ y = z (f) x > y2 	⇒ x > 0
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4. Consider the proposition 2x + 5 ≥ 13.

(a) Is the condition x ≥ 0 necessary, or sufficient, or both necessary and sufficient for the
inequality to be satisfied?

(b) Answer the same question when x ≥ 0 is replaced by x ≥ 50.

(c) Answer the same question when x ≥ 0 is replaced by x ≥ 4.

5. Solve the following equations:

(a) x + 2 = √
4x + 13 (b) |x + 2| = √

4 − x (c) x2 − 2|x| − 3 = 0

⊂SM⊃6. Solve the following equations:

(a)
√

x − 4 = √
x + 5 − 9 (b)

√
x − 4 = 9 − √

x + 5

⊂SM⊃7. Fill in the blank rectangles with “iff” (if and only if) when this results in a true statement, or
alternatively with “if” or “only if”.

(a) x = √
4 x = 2 (b) x(x + 3) < 0 x > −3

(c) x2 < 9 x < 3 (d) x(x2 + 1) = 0 x = 0

(e) x2 > 0 x > 0 (f) x4 + y4 = 0 x = 0 or y = 0

8. Consider the following attempt to solve the equation x + √
x + 4 = 2:

“From the given equation, it follows that
√

x + 4 = 2−x. Squaring both sides gives
x+4 = 4−4x+x2. After rearranging the terms, it is seen that this equation implies
x2 − 5x = 0. Cancelling x, we obtain x − 5 = 0 and this equation is satisfied when
x = 5.”

(a) Mark with arrows the implications or equivalences expressed in the text. Which ones are
correct?

(b) Solve the equation correctly.

HARDER PROBLEM

⊂SM⊃9. If P is a statement, the negation of P is denoted by ¬P . If P is true, then ¬P is false, and vice
versa. For example, the negation of the statement 2x + 3y ≤ 8 is 2x + 3y > 8. For each of the
following 6 propositions, state the negation as simply as possible.

(a) x ≥ 0 and y ≥ 0. (b) All x satisfy x ≥ a.

(c) Neither x nor y is less than 5. (d)
For each ε > 0, there exists a δ > 0
such that B is satisfied.

(e) No one can help liking cats. (f) Everyone loves somebody some of the time.
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3.5 Mathematical Proofs
In every branch of mathematics, the most important results are called theorems. Construct-
ing logically valid proofs for these results often can be very complicated. For example,
the “four-colour theorem” states that any map in the plane needs at most four colours in
order that all adjacent regions can be given different colours. Proving this involved checking
hundreds of thousands of different cases, a task that was impossible without a sophisticated
computer program.

In this book, we often omit formal proofs of theorems. Instead, the emphasis is on
providing a good intuitive grasp of what the theorems tell us. However, although proofs
do not form a major part of this book, it is still useful to understand something about the
different types of proof that are used in mathematics.

Every mathematical theorem can be formulated as an implication

P 	⇒ Q (∗)

where P represents a proposition or a series of propositions called premises (“what we
know”), and Q represents a proposition or a series of propositions that are called the con-
clusions (“what we want to know”).

Usually, it is most natural to prove a result of the type (∗) by starting with the premises
P and successively working forward to the conclusions Q; we call this a direct proof.
Sometimes, however, it is more convenient to prove the implication P 	⇒ Q by an indirect
proof. In this case, we begin by supposing that Q is not true, and on that basis demonstrate
that P cannot be true either. This is completely legitimate, because we have the following
equivalence:

P 	⇒ Q is equivalent to not Q 	⇒ not P

It is helpful to consider how this rule of logic applies to a concrete example:

If it is raining, the grass is getting wet.

asserts precisely the same thing as

If the grass is not getting wet, then it is not raining.

E X A M P L E 1 Use the two methods of proof to prove that −x2 + 5x − 4 > 0 	⇒ x > 0.

Solution:

(a) Direct proof: Suppose −x2 +5x −4 > 0. Adding x2 +4 to each side of the inequality
gives 5x > x2 + 4. Because x2 + 4 ≥ 4, for all x, we have 5x > 4, and so x > 4/5.
In particular, x > 0.

(b) Indirect proof: Suppose x ≤ 0. Then 5x ≤ 0 and so −x2 + 5x − 4, as a sum of three
nonpositive terms, is ≤ 0.
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Deductive vs. Inductive Reasoning

The two methods of proof just outlined are both examples of deductive reasoning — that
is, reasoning based on consistent rules of logic. In contrast, many branches of science use
inductive reasoning. This process draws general conclusions based only on a few (or even
many) observations. For example, the statement that “the price level has increased every
year for the last n years; therefore, it will surely increase next year too”, demonstrates
inductive reasoning. This inductive approach is nevertheless of fundamental importance
in the experimental and empirical sciences, despite the fact that conclusions based upon it
never can be absolutely certain. Indeed, in economics, such examples of inductive reasoning
(or the implied predictions) often turn out to be false, with hindsight.

In mathematics, inductive reasoning is not recognized as a form of proof. Suppose, for
instance, that students in a geometry course are asked to show that the sum of the angles of a
triangle is always 180 degrees. If they painstakingly measure as accurately as possible 1000
different triangles, demonstrating that in each case the sum of the angles is 180, it would
still not serve as a proof for the assertion. It would represent a very good indication that
the proposition is true, but it is not a mathematical proof. Similarly, in business economics,
the fact that a particular company’s profits have risen for each of the past 20 years is no
guarantee that they will rise once again this year.

P R O B L E M S F O R S E C T I O N 3 . 5

1. Which of the following statements are equivalent to the (dubious) statement: “If inflation in-
creases, then unemployment decreases”?

(a) For unemployment to decrease, inflation must increase.

(b) A sufficient condition for unemployment to decrease is that inflation increases.

(c) Unemployment can only decrease if inflation increases.

(d) If unemployment does not decrease, then inflation does not increase.

(e) A necessary condition for inflation to increase is that unemployment decreases.

2. Analyse the following epitaph: (a) using logic; (b) from a poetic viewpoint.

Those who knew him, loved him.
Those who loved him not, knew him not.

3. Show by an indirect proof: If x and y are integers and xy is an odd number, then x and y are
both odd.
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3.6 Essentials of Set Theory
In daily life, we constantly group together objects of the same kind. For instance, we refer
to the faculty of a university to signify all the members of the academic staff. A garden
refers to all the plants that are growing in it. We talk about all Scottish firms with more than
300 employees, all taxpayers in Germany who earned between 50 000 and 100 000 euros in
2004. In all these cases, we have a collection of objects viewed as a whole. In mathematics,
such a collection is called a set, and its objects are called its elements, or its members.

How is a set specified? The simplest method is to list its members, in any order, between
the two braces { and }. An example is the set S = {a, b, c} whose members are the first three
letters in the English alphabet. Or it might be a set consisting of three members represented
by the letters a, b, and c. For example, if a = 0, b = 1, and c = 2, then S = {0, 1, 2}. Also,
S denotes the set of roots of the cubic equation (x − a)(x − b)(x − c) = 0 in the unknown
x, where a, b, and c are any three real numbers.

Two sets A and B are considered equal if each element of A is an element of B and each
element of B is an element of A. In this case, we write A = B. This means that the two sets
consist of exactly the same elements. Consequently, {1, 2, 3} = {3, 2, 1}, because the order
in which the elements are listed has no significance; and {1, 1, 2, 3} = {1, 2, 3}, because a
set is not changed if some elements are listed more than once.

Alternatively, suppose that you are to eat a meal at a restaurant that offers a choice of
several main dishes. Four choices might be feasible—fish, pasta, omelette, and chicken.
Then the feasible set F has these four members, and is fully specified as

F = {fish, pasta, omelette, chicken}

Notice that the order in which the dishes are listed does not matter. The feasible set remains
the same even if the order of the items on the menu is changed.

Specifying a Property

Not every set can be defined by listing all its members, however. For one thing, some sets
are infinite—that is, they contain infinitely many members.

Actually, such infinite sets are rather common in economics. Take, for instance, the
budget set that arises in consumer theory. Suppose there are two goods with quantities (for
example, weights of two kinds of fruit) denoted by real numbers x and y. Suppose one unit
of these goods can be bought at prices p and q, respectively. A consumption bundle (x, y)

is a pair of quantities of the two goods. Its value at prices p and q is px + qy. Suppose
that a consumer has an amount m to spend on the two goods. Then the budget constraint is
px + qy ≤ m (assuming that the consumer is free to underspend). If one also accepts that
the quantity consumed of each good must be nonnegative, then the budget set, which will be
denoted by B, consists of those consumption bundles (x, y) satisfying the three inequalities
px + qy ≤ m, x ≥ 0, and y ≥ 0. (The set B is shown in Fig. 4.4.12.) Standard notation
for such a set is

B = {(x, y) : px + qy ≤ m, x ≥ 0, y ≥ 0} (1)
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The braces { } are still used to denote “the set consisting of”. However, instead of listing all
the members, which is impossible for the infinite set of points in the triangular budget set
B, the specification of the set B is given in two parts. To the left of the colon, (x, y) is used
to denote the typical member of B, here a consumption bundle that is specified by listing
the respective quantities of the two goods. To the right of the colon, the three properties that
these typical members must satisfy are all listed, and the set thereby specified. This is an
example of the general specification:

S = {typical member : defining properties}

Note that it is not just infinite sets that can be specified by properties—finite sets can also
be specified in this way. Indeed, even some finite sets almost have to be specified in this
way, such as the set of all the more than 7 billion human beings currently alive.

Set Membership

As we stated earlier, sets contain members or elements. There is some convenient standard
notation that denotes the relation between a set and its members. First,

x ∈ S

indicates that x is an element of S. Note the special symbol ∈ (which is a variant of the
Greek letter ε, or “epsilon”).

To express the fact that x is not a member of S, we write x /∈ S. For example, d /∈ {a, b, c}
says that d is not an element of the set {a, b, c}.

For additional illustrations of set membership notation, let us return to the main dish
example. Confronted with the choice from the set F = {fish, pasta, omelette, chicken}, let
s denote your actual selection. Then, of course, s ∈ F . This is what we mean by “feasible
set”—it is possible only to choose some member of that set but nothing outside it.

Let A and B be any two sets. Then A is a subset of B if it is true that every member of
A is also a member of B. Then we write A ⊆ B. In particular, A ⊆ A. From the definitions
we see that A = B if and only if A ⊆ B and B ⊆ A.

Set Operations

Sets can be combined in many different ways. Especially important are three operations:
union, intersection, and the difference of sets, as shown in Table 1.

Table 1

Notation Name The set consists of:

A ∪ B A union B
The elements that belong to at least
one of the sets A and B

A ∩ B A intersection B The elements that belong to both A and B

A \ B A minus B The elements that belong to A, but not to B
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Thus,
A ∪ B = {x : x ∈ A or x ∈ B}
A ∩ B = {x : x ∈ A and x ∈ B}
A \ B = {x : x ∈ A and x /∈ B}

E X A M P L E 1 Let A = {1, 2, 3, 4, 5} and B = {3, 6}. Find A ∪ B, A ∩ B, A \ B, and B \ A.

Solution: A ∪ B = {1, 2, 3, 4, 5, 6}, A ∩ B = {3}, A \ B = {1, 2, 4, 5}, B \ A = {6}.

An economic example can be obtained by considering workers in Europe in 2001. Let A be
the set of all those workers who had an income of at least 15 000 and let B be the set of all
who had a net worth of at least 150 000. Then A ∪ B would be those workers who earned
at least 15 000 or who had a net worth of at least 150 000, whereas A ∩ B are those workers
who earned at least 15 000 and who also had a net worth of at least 150 000. Finally, A \ B

would be those who earned at least 15 000 but who had less than 150 000 in net worth.

If two sets A and B have no elements in common, they are said to be disjoint. The symbol
“∅” denotes the set that has no elements. It is called the empty set. Thus, the sets A and B

are disjoint if and only if A ∩ B = ∅.
A collection of sets is often referred to as a family of sets. When considering a certain

family of sets, it is often natural to think of each set in the family as a subset of one
particular fixed set �, hereafter called the universal set. In the previous example, the set of
all European workers in 2001 would be an obvious choice for a universal set.

If A is a subset of the universal set �, then according to the definition of difference,
� \ A is the set of elements of � that are not in A. This set is called the complement of
A in � and is sometimes denoted by �A, so that �A = � \ A. Other ways of denoting the
complement of A include Ac and Ã.

When using the notation �A or some equivalent, it is important to be clear about which
universal set � is used to construct the complement.

E X A M P L E 2 Let the universal set � be the set of all students at a particular university. Moreover,
let F denote the set of female students, M the set of all mathematics students, C the set
of students in the university choir, B the set of all biology students, and T the set of all
students who play tennis. Describe the members of the following sets: � \ M , M ∪ C,
F ∩ T , M \ (B ∩ T ), and (M \ B) ∪ (M \ T ).

Solution: � \ M consists of those students who are not studying mathematics, M ∪ C of
those students who study mathematics and/or are in the choir. The set F ∩ T consists of
those female students who play tennis. The set M \ (B ∩T ) has those mathematics students
who do not both study biology and play tennis. Lastly, the set (M \ B) ∪ (M \ T ) has those
students who either are mathematics students not studying biology or mathematics students
who do not play tennis. Do you see that the last two sets are equal? (For arbitrary sets M ,
B, and T , it is true that (M \ B) ∪ (M \ T ) = M \ (B ∩ T ). It will be easier to verify this
equality after you have read the following discussion of Venn diagrams.)
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Venn Diagrams

When considering the relationships between several sets, it is instructive and extremely
helpful to represent each set by a region in a plane. The region is drawn so that all the
elements belonging to a certain set are contained within some closed region of the plane.
Diagrams constructed in this manner are called Venn diagrams. The definitions discussed
in the previous section can be illustrated as in Fig. 1, with shading where appropriate.

C � A A � B A � B A \ B

A

B

C

A A

B

A

B

Figure 1 Venn diagrams

By using the definitions directly, or by illustrating sets with Venn diagrams, one can de-
rive formulas that are universally valid regardless of which sets are being considered. For
example, the formula A ∩ B = B ∩ A follows immediately from the definition of the inter-
section between two sets. It is somewhat more difficult to verify directly from the definitions
that the following relationship is valid for all sets A, B, and C:

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (∗)

With the use of a Venn diagram, however, we easily see that the sets on the right- and left-
hand sides of the equality sign both represent the shaded set in Fig. 2. The equality in (∗)

is therefore valid.

A B

C

A B

C

(1)

(2)
(3)

(4)

(5)

(6)(8)

(7)

Figure 2 Figure 3

It is important for this kind of argument that the three sets A, B, and C in a Venn diagram
be drawn to allow for all possible relations between an element and each of the three sets.
In other words, as in Fig. 3, the following eight different sets all should be nonempty:

(1) (A ∩ B) \ C

(5) B \ (C ∪ A)

(2) (B ∩ C) \ A

(6) C \ (A ∪ B)

(3) (C ∩ A) \ B

(7) A ∩ B ∩ C

(4) A \ (B ∪ C)

(8) �(A ∪ B ∪ C)
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Notice, however, that this way of representing sets in the plane becomes unmanageable if
four or more sets are involved, because then there would have to be at least 16 (= 24) regions
in any such Venn diagram.

From the definition of intersection and union (or by the use of Venn diagrams), it easily
follows that A∪(B ∪C) = (A∪B)∪C and that A∩(B ∩C) = (A∩B)∩C. Consequently,
it does not matter where the parentheses are placed. In such cases, the parentheses can be
dropped and the expressions written as A ∪ B ∪ C and A ∩ B ∩ C. Note, however, that the
parentheses cannot generally be moved in the expression A∩(B ∪C), because this set is not
always equal to (A ∩ B) ∪ C. Prove this fact by considering the case where A = {1, 2, 3},
B = {2, 3}, and C = {4, 5}, or by using a Venn diagram.

Cantor
Georg Cantor, the founder of set theory, is regarded as one of history’s great mathematicians. This is
not because of his contributions to the development of the useful, but relatively trivial, aspects of set
theory outlined above. Rather, Cantor is remembered for his profound study of infinite sets. Below
we try to give just a hint of his theory’s implications.

A collection of individuals are gathering in a room that has a certain number of chairs. How
can we find out if there are exactly as many individuals as chairs? One method would be to count
the chairs and count the individuals, and then see if they total the same number. Alternatively, we
could ask all the individuals to sit down. If they all have a seat to themselves and there are no chairs
unoccupied, then there are exactly as many individuals as chairs. In that case each chair corresponds
to an individual and each individual corresponds to a chair.

Generally we say that two sets of elements have the same cardinality, if there is a one-to-one
correspondence between the sets. This definition is also valid for sets with an infinite number of
elements. Cantor demonstrated a surprising consequence of this definition—that the set of natural
numbers, �, and the set of rational numbers, �, have the same cardinality (even though � is a proper
subset of �!). On the other hand, the set of real numbers, �, and the set � do not have the same
cardinality. Also, � has the same cardinality as the set of all irrational numbers. Cantor struggled for
three years to prove an even more surprising result—that there are as many points in a square as there
are points on one of the edges of the square, in the sense that the two sets have the same cardinality.
In a letter to Dedekind dated 1877, Cantor wrote of this result: “Je le vois, mais je ne le crois pas.”
(“I see it, but I do not believe it.”)

P R O B L E M S F O R S E C T I O N 3 . 6

1. Let A = {2, 3, 4}, B = {2, 5, 6}, C = {5, 6, 2}, and D = {6}.
(a) Determine which of the following statements are true: 4 ∈ C; 5 ∈ C; A ⊆ B; D ⊆ C;

B = C; and A = B.

(b) Find A ∩ B; A ∪ B; A \ B; B \ A; (A ∪ B) \ (A ∩ B); A ∪ B ∪ C ∪ D; A ∩ B ∩ C; and
A ∩ B ∩ C ∩ D.

2. Let F , M , C, B, and T be the sets in Example 2. Describe the following sets: F ∩ B ∩ C,
M ∩ F , and ((M ∩ B) \ C) \ T .

3. A survey revealed that 50 people liked coffee and 40 liked tea. Both these figures include 35
who liked both coffee and tea. Finally, 10 did not like either coffee or tea. How many people in
all responded to the survey?
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4. With reference to Example 2, write the following statements in set terminology:

(a) All biology students are mathematics students.

(b) There are female biology students in the university choir.

(c) No tennis player studies biology.

(d) Those female students who neither play tennis nor belong to the university choir all study
biology.

5. Make a complete list of all the different subsets of the set {a, b, c}. How many are there if the
empty set and the set itself are included? Do the same for the set {a, b, c, d}.

6. Determine which of the following formulas are true. If any formula is false, find a counter-
example to demonstrate this, using a Venn diagram if you find it helpful.

(a) A \ B = B \ A (b) A ⊆ B ⇐⇒ A ∪ B = B

(c) A ⊆ B ⇐⇒ A ∩ B = A (d) A ∩ B = A ∩ C 	⇒ B = C

(e) A ∪ B = A ∪ C 	⇒ B = C (f) A \ (B \ C) = (A \ B) \ C

7. If A is a set with a finite number of elements, let n(A) denote the number of elements in A. If
A and B are arbitrary finite sets, prove the following:

(a) n(A ∪ B) = n(A) + n(B) − n(A ∩ B)

(b) n(A \ B) = n(A) − n(A ∩ B)

8. (a) One thousand people took part in a survey to reveal which newspaper, A, B, or C, they had
read on a certain day. The responses showed that 420 had read A, 316 had read B, and 160
had read C. These figures include 116 who had read both A and B, 100 who had read A

and C, and 30 who had read B and C. Finally, all these figures include 16 who had read all
three papers.

(i) How many had read A, but not B?

(ii) How many had read C, but neither A nor B?

(iii) How many had read neither A, B, nor C?

(b) Denote the complete set of all 1000 persons in the survey by � (the universal set). Applying
the notation in Problem 7, we have n(A) = 420 and n(A ∩ B ∩ C) = 16, for example.
Describe the numbers given in (i), (ii), and (iii) of part (a) using the same notation. Why is
n(� \ (A ∪ B ∪ C)) = n(�) − n(A ∪ B ∪ C)?
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3.7 Mathematical Induction
Proof by induction is an important technique for verifying formulas involving natural num-
bers. For instance, consider the sum of the first n odd numbers. We observe that

1 = 1 = 12

1 + 3 = 4 = 22

1 + 3 + 5 = 9 = 32

1 + 3 + 5 + 7 = 16 = 42

1 + 3 + 5 + 7 + 9 = 25 = 52

This suggests a general pattern, with the sum of the first n odd numbers equal to n2:

1 + 3 + 5 + · · · + (2n − 1) = n2 (∗)

To prove that this is generally valid, we can proceed as follows. Suppose that the formula
in (∗) is correct for a certain natural number n = k, so that

1 + 3 + 5 + · · · + (2k − 1) = k2

By adding the next odd number 2k + 1 to each side, we get

1 + 3 + 5 + · · · + (2k − 1) + (2k + 1) = k2 + (2k + 1)

But the right-hand side is the square of k + 1, so we have formula (∗) with n = k + 1.
Hence, we have proved that if the sum of the first k odd numbers is k2, then the sum of the
first k + 1 odd numbers equals (k + 1)2. This implication, together with the fact that (∗)

really is valid for n = 1, implies that (∗) is generally valid. For we have just shown that if
(∗) is true for n = 1, then it is true for n = 2; that if it is true for n = 2, then it is true for
n = 3; . . . ; that if it is true for n = k, then it is true for n = k + 1; and so on.

A proof of this type is called a proof by (mathematical) induction. It requires showing
first that the formula is indeed valid for n = 1, and second that, if the formula is valid for
n = k, then it is also valid for n = k + 1. It follows by induction that the formula is valid
for all natural numbers n.

E X A M P L E 1 Prove by induction that, for all positive integers n,

3 + 32 + 33 + 34 + · · · + 3n = 1
2 (3n+1 − 3) (∗∗)

Solution: For n = 1, both sides are 3. Suppose (∗∗) is true for n = k. Then

3 + 32 + 33 + 34 + · · · + 3k + 3k+1 = 1
2 (3k+1 − 3) + 3k+1 = 1

2 (3k+2 − 3)

which is (∗∗) for n = k + 1. Thus, by induction, (∗∗) is true for all n.
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On the basis of these examples, the general structure of an induction proof can be explained
as follows: We want to prove that a mathematical formula A(n) which depends on n is valid
for all natural numbers n. In the two previous examples, the respective statements A(n) were

A(n) : 1 + 3 + 5 + · · · + (2n − 1) = n2

A(n) : 3 + 32 + 33 + 34 + · · · + 3n = 1
2 (3n+1 − 3)

The steps required in each proof are as follows: First, verify that A(1) is valid, which means
that the formula is correct for n = 1. Then prove that for each natural number k, if A(k)

is true, it follows that A(k + 1) must be true. Here A(k) is called the induction hypothesis,
and the step from A(k) to A(k + 1) is called the induction step in the proof. When A(1)

holds and the induction step is proved for an arbitrary natural number k, then, by induction,
statement A(n) is true for all n. The general principle can now be formulated:

T H E P R I N C I P L E O F M A T H E M A T I C A L I N D U C T I O N

Suppose that A(n) is a statement for all natural numbers n and that

(a) A(1) is true

(b) for each natural number k, if the induction hypothesis A(k) is true, then
A(k + 1) is true

Then A(n) is true for all natural numbers n.

(1)

The principle of induction seems intuitively evident. If the truth of A(k) for each k

implies the truth of A(k + 1), then because A(1) is true, A(2) must be true, which, in turn,
means that A(3) is true, and so on. (An analogy: Consider a ladder with an infinite number
of steps. Suppose you can climb the first step and suppose, moreover, that after each step,
you can always climb the next. Then you are able to climb up to any step.)

The principle of mathematical induction can easily be generalized to the case in which
we have a statement A(n) for each integer greater than or equal to an arbitrary integer n0.
Suppose we can prove that A(n0) is valid and moreover that, for each k ≥ n0, if A(k) is
true, then A(k + 1) is true. If follows that A(n) is true for all n ≥ n0.

P R O B L E M S F O R S E C T I O N 3 . 7

1. Prove statement (3.2.4) by induction:

1 + 2 + 3 + · · · + n = 1
2 n(n + 1) (∗)

2. Prove formulas (3.2.5) and (3.2.6) by induction.

⊂SM⊃3. Prove the following by induction:

1

1 · 2
+ 1

2 · 3
+ 1

3 · 4
+ · · · + 1

n(n + 1)
= n

n + 1
(∗)
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⊂SM⊃4. 13 + 23 + 33 = 36 is divisible by 9. Prove by induction that the sum n3 + (n + 1)3 + (n + 2)3

of three consecutive cubes is always divisible by 9.

5. Let A(n) be the statement: “Any collection of n professors in one room all have the same
income”. Consider the following “induction argument”: A(1) is obviously true. Suppose A(k)

is true for some natural number k. We will then prove that A(k+1) is true. So take any collection
of k + 1 professors in one room and send one of them outside. The remaining k professors all
have the same income by the induction hypothesis. Bring the professor back inside and send
another outside instead. Again the remaining professors will have the same income. But then all
the k + 1 professors will have the same income. By induction, this proves that all n professors
have the same income. What is wrong with this argument?

R E V I E W P R O B L E M S F O R C H A P T E R 3

1. Evaluate the following sums:

(a)
4∑

i=1

1

i(i + 2)
(b)

9∑
j=5

(2j − 8)2 (c)
5∑

k=1

k − 1

k + 1

2. Evaluate the following sums:

(a)
5∑

n=2

(n − 1)2(n + 2) (b)
5∑

k=1

(
1

k
− 1

k + 1

)
(c)

3∑
i=−2

(i + 3)i (d)
4∑

i=0

(
4

i

)

3. Express these sums in summation notation:

(a) 3 + 5 + 7 + · · · + 199 + 201 (b)
2

1
+ 3

2
+ 4

3
+ · · · + 97

96

4. Express these sums in summation notation:

(a) 4 · 6 + 5 · 7 + 6 · 8 + · · · + 38 · 40 (b)
1

x
+ 1

x2
+ · · · + 1

xn

(c) 1 + x2

3
+ x4

5
+ x6

7
+ · · · + x32

33
(d) 1 − 1

2
+ 1

3
− 1

4
+ · · · − 1

80
+ 1

81

5. Which of these equalities are always right and which of them are sometimes wrong?

(a)
n∑

i=1

ai =
n+2∑
j=3

aj−2 (b)
n∑

i=1

(ai + bi)
2 =

n∑
i=1

a2
i +

n∑
i=1

b2
i

(c)
n∑

k=0

5ak+1,j = 5
n+1∑
k=1

ak,j (d)
3∑

i=1

(
ai

bi

)
=

3∑
i=1

ai

3∑
i=1

bi

⊂SM⊃6. Consider the following implications and decide in each case: (i) if the implication is true;
(ii) if the converse implication is true. (x and y are real numbers.)

(a) x = 5 and y = −3 	⇒ x + y = 2 (b) x2 = 16 	⇒ x = 4

(c) (x − 3)2(y + 2) > 0 	⇒ y > −2 (d) x3 = 8 	⇒ x = 2
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7. Let A = {1, 3, 4}, B = {1, 4, 6}, C = {2, 4, 3}, and D = {1, 5}. Find A ∩ B; A ∪ B; A \ B;
B \ A; (A ∪ B) \ (A ∩ B); A ∪ B ∪ C ∪ D; A ∩ B ∩ C; and A ∩ B ∩ C ∩ D.

8. Let the universal set be � = {1, 2, 3, 4, . . . , 11} and define A = {1, 4, 6} and B = {2, 11}. Find
A ∩ B; A ∪ B; � \ B; �A = � \ A.

⊂SM⊃9. A liberal arts college has 1000 students. The numbers studying various languages are: English
(E) 780; French (F) 220; and Spanish (S) 52. These figures include 110 who study English and
French, 32 who study English and Spanish, 15 who study French and Spanish. Finally, all these
figures include 10 students taking all three languages.

(a) How many study English and French, but not Spanish?

(b) How many study English, but not French?

(c) How many study no languages?

⊂SM⊃10. Find the sums:

(a) R = 3 + 5 + 7 + · · · + 197 + 199 + 201

(b) S = 1001 + 2002 + 3003 + · · · + 8008 + 9009 + 10010

HARDER PROBLEM

⊂SM⊃11. (a) Prove that (1 + x)2 ≥ 1 + 2x for all x.

(b) Prove that (1 + x)3 ≥ 1 + 3x for all x ≥ −3.

(c) Prove by induction that for all natural numbers n and all x ≥ −1,

(1 + x)n ≥ 1 + nx (Bernoulli’s inequality)
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—mathematics is not so much a subject

as a way of studying any subject,

not so much a science as a way of life.

—G. Temple (1981)

Functions are important in practically every area of pure and applied mathematics, including

mathematics applied to economics. The language of economic analysis is full of terms like

demand and supply functions, cost functions, production functions, consumption functions,

etc. In this chapter we present a discussion of functions of one real variable, illustrated by some

very important economic examples.

4.1 Introduction
One variable is a function of another if the first variable depends upon the second. For
instance, the area of a circle is a function of its radius. If the radius r is given, then the area
A is determined. In fact A = πr2, where π is the numerical constant 3.14159 . . . .

One does not need a mathematical formula to convey the idea that one variable is a
function of another: A table can also show the relationship. For instance, Table 1 shows the
development of annual total personal consumption expenditure, measured in current euros,
without allowing for inflation, in the European Union for the period 2003–2009.

Table 1 Personal consumption expenditure in the EU, 2003–2009 (in billions of euros)

Year 2003 2004 2005 2006 2007 2008 2009

Personal
consumption

5 912.0 6 181.8 6 461.7 6 773.1 7 099.8 7 184.3 6 886.0

This table defines consumption expenditure as a function of the calendar year.
In ordinary conversation we sometimes use the word “function” in a similar way. For

example, we might say that the infant mortality rate of a country is a function of the quality
of its health care, or that a country’s national product is a function of the level of investment.
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The dependence between two real variables can also be illustrated by means of a graph.
In Fig. 1 we have drawn a curve that allegedly played an important role some years ago
in the discussion of “supply side economics”. It shows the presumed relationship between
a country’s income tax rate and its total income tax revenue. Obviously, if the tax rate is
0%, then tax revenue is 0. However, if the tax rate is 100%, then tax revenue will also be
(about) 0, since nobody is willing to work if their entire income is going to be confiscated.
This curve, which has generated considerable controversy, is supposed to have been drawn
on the back of a restaurant napkin by an American economist, Arthur Laffer, who then later
popularized its message with the public. (Actually, many economists previously had the
same idea.)

a 100

Tax Revenue

Tax Rate

Figure 1 The “Laffer curve”, which
relates tax revenue to tax rates

In some instances a graph is preferable to a formula. A case in point is an electrocardiogram
(ECG) showing the heartbeat pattern of a patient. Here the doctor studies the pattern of
repetitions directly from the graphs; the patient might die before the doctor could understand
a formula approximating the ECG picture.

All of the relationships discussed above have one characteristic in common: A definite
rule relates each value of one variable to a definite value of another variable. In the ECG
example the function is the rule showing electrical activity as a function of time.

In all of our examples it is implicitly assumed that the variables are subject to certain
constraints. For instance, in Table 1 only the years between 1998 and 2004 are relevant.

4.2 Basic Definitions
The examples in the preceding section lead to the following general definition, with D a set
of real numbers:

A (real-valued) function of a real variable x with domain D is a rule that assigns
a unique real number to each real number x in D. As x varies over the whole
domain, the set of all possible resulting values f (x) is called the range of f .

The word “rule” is used in a very broad sense. Every rule with the properties described is
called a function, whether that rule is given by a formula, described in words, defined by a
table, illustrated by a curve, or expressed by any other means.
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Functions are given letter names, such as f , g, F , or ϕ. If f is a function and x is a
number in its domain D, then f (x) denotes the number that the function f assigns to x.
The symbol f (x) is pronounced “f of x”, or often just “f x”. It is important to note the
difference between f , which is a symbol for the function (the rule), and f (x), which denotes
the value of f at x.

If f is a function, we sometimes let y denote the value of f at x, so

y = f (x)

Then we call x the independent variable, or the argument of f , whereas y is called the
dependent variable, because the value y (in general) depends on the value of x. The domain
of the function f is then the set of all possible values of the independent variable, whereas
the range is the set of corresponding values of the dependent variable. In economics, x is
often called the exogenous variable, which is supposed to be fixed outside the economic
model, whereas for each given x the equation y = f (x) serves to determine the endogenous
variable y inside the economic model.

A function is often defined by a formula such as y = 8x2 + 3x + 2. The function is then
the rule x �→ 8x2 + 3x + 2 that assigns the number 8x2 + 3x + 2 to each value of x.

Functional Notation

To become familiar with the relevant notation, it helps to look at some examples of functions
that are defined by formulas.

E X A M P L E 1 A function is defined for all numbers by the following rule:

Assign to any number its third power

This function will assign 03 = 0 to 0, 33 = 27 to 3, (−2)3 = (−2)(−2)(−2) = −8 to
−2, and (1/4)3 = 1/64 to 1/4. In general, it assigns the number x3 to the number x. If we
denote this third power function by f , then

f (x) = x3

So f (0) = 03 = 0, f (3) = 33 = 27, f (−2) = (−2)3 = −8, f (1/4) = (1/4)3 = 1/64.
Substituting a for x in the formula for f gives f (a) = a3, whereas

f (a + 1) = (a + 1)3 = (a + 1)(a + 1)(a + 1) = a3 + 3a2 + 3a + 1

NOTE 1 A common error is to presume that f (a) = a3 implies f (a + 1) = a3 + 1. The
error can be illustrated by considering a simple interpretation of f . If a is the edge of a cube
measured in metres, then f (a) = a3 is the volume of the cube measured in cubic metres (or
m3). Suppose that each edge of the cube expands by 1 m. Then the volume of the new cube
is f (a + 1) = (a + 1)3 m3. The number a3 + 1 can be interpreted as the number obtained
when the volume of a cube with edge a is increased by 1 m3. In fact, f (a + 1) = (a + 1)3

is quite a bit more than a3 + 1, as illustrated in Figs. 1 and 2.
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1

1
1

a

a

a a

a

a

1

1

1

Figure 1 Volume f (a+1) = (a+1)3 Figure 2 Volume a3 + 1

E X A M P L E 2 The total dollar cost of producing x units of a product is given by

C(x) = 100x
√

x + 500

for each nonnegative integer x. Find the cost of producing 16 units. Suppose the firm
produces a units; find the increase in the cost from producing one additional unit.

Solution: The cost of producing 16 units is found by substituting 16 for x in the formula
for C(x):

C(16) = 100 · 16
√

16 + 500 = 100 · 16 · 4 + 500 = 6900

The cost of producing a units is C(a) = 100a
√

a + 500, and the cost of producing a + 1
units is C(a + 1). Thus the increase in cost is

C(a + 1) − C(a) = 100(a + 1)
√

a + 1 + 500 − 100a
√

a − 500

= 100
[
(a + 1)

√
a + 1 − a

√
a

]
In economic theory, we often study functions that depend on a number of parameters, as
well as the independent variable. An obvious generalization of Example 2 follows.

E X A M P L E 3 Suppose that the cost of producing x units of a commodity is

C(x) = Ax
√

x + B (A and B are constants)

Find the cost of producing 0, 10, and x + h units.

Solution: The cost of producing 0 units is C(0) = A · 0 · √
0 + B = 0 + B = B.

(Parameter B simply represents fixed costs. These are the costs that must be paid whether
or not anything is actually produced, such as a taxi driver’s annual licence fee.) Similarly,
C(10) = A10

√
10 + B. Finally, substituting x + h for x in the given formula gives

C(x + h) = A(x + h)
√

x + h + B

So far we have used x to denote the independent variable, but we could just as well have
used almost any other symbol. For example, all of the following formulas define exactly
the same function (and hence we can set f = g = ϕ):

1 �→ 14 = 1, k �→ k4, and 1/y �→ (1/y)4
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or alternatively
f (x) = x4, g(t) = t4, ϕ(ξ) = ξ 4

For that matter, we could also express this function as x �→ x4, or alternatively asf (·) = (·)4.
Here it is understood that the dot between the parentheses can be replaced by an arbitrary
number, or an arbitrary letter, or even another function (like 1/y). Thus,

1 �→ 14 = 1, k �→ k4, and 1/y �→ (1/y)4

or alternatively

f (1) = 14 = 1, f (k) = k4, and f (1/y) = (1/y)4

Domain and Range

The definition of a function is not really complete unless its domain is either obvious or
specified explicitly. The natural domain of the function f defined by f (x) = x3 is the set of
all real numbers. In Example 2, where C(x) = 100x

√
x+500 denotes the cost of producing

x units of a product, the domain was specified as the set of nonnegative integers. Actually, a
more natural domain is the set of numbers 0, 1, 2, . . . , x0, where x0 is the maximum number
of items the firm can produce. For a producer like an iron mine, however, where output x is
a continuous variable, the natural domain is the closed interval [0, x0].

We shall adopt the convention that if a function is defined using an algebraic formula,
the domain consists of all values of the independent variable for which the formula gives a
unique value (unless another domain is explicitly mentioned).

E X A M P L E 4 Find the domains of (a) f (x) = 1

x + 3
and (b) g(x) = √

2x + 4.

Solution:
(a) For x = −3, the formula reduces to the meaningless expression “1/0”. For all other

values of x, the formula makes f (x) a well-defined number. Thus, the domain consists
of all numbers x �= −3.

(b) The expression
√

2x + 4 is uniquely defined for all x such that 2x + 4 is nonnegative.
Solving the inequality 2x + 4 ≥ 0 for x gives x ≥ −2. The domain of g is therefore
the interval [−2, ∞).

Let f be a function with domain D. The set of all values f (x) that the function assumes
is called the range of f . Often, we denote the domain of f by Df , and the range by Rf .
These concepts are illustrated in Fig. 3, using the idea of the graph of a function. (Graphs
are discussed in the next section.)

Alternatively, we can think of any function f as an engine operating so that if x in the
domain is an input, the output is f (x). (See Fig. 4.) The range of f is then all the numbers
we get as output using all numbers in the domain as inputs. If we try to use as an input a
number not in the domain, the engine does not work, and there is no output.
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y

x

f

Df

Rf

x f (x)

Figure 3 The domain and range of f Figure 4 Function engine

E X A M P L E 5 Show that the number 4 belongs to the range of the function defined by g(x) = √
2x + 4.

Find the entire range of g. (The result of Example 4 shows that g has domain [−2, ∞).)

Solution: To show that 4 is in the range of g, we must find a number x such that g(x) = 4.
That is, we must solve the equation

√
2x + 4 = 4 for x. By squaring both sides of the

equation, we get 2x + 4 = 42 = 16, that is, x = 6. Because g(6) = 4, the number 4 does
belong to the range Rg .

In order to determine the whole range of g, we must answer the question: As x runs
through the whole of the interval [−2, ∞), what are all the possible values of

√
2x + 4 ? For

x = −2, one has
√

2x + 4 = 0, and
√

2x + 4 can never be negative. We claim that whatever
number y0 ≥ 0 is chosen, there exists a number x0 such that

√
2x0 + 4 = y0. Indeed,

squaring each side of this last equation gives 2x0 + 4 = y2
0 . Hence, 2x0 = y2

0 − 4, which
implies that x0 = 1

2 (y2
0 − 4). Because y2

0 ≥ 0, we have x0 = 1
2

(
y2

0 − 4
) ≥ 1

2 (−4) = −2.
Hence, for every number y0 ≥ 0, we have found a number x0 ≥ −2 such that g(x0) = y0.
The range of g is, therefore, [0, ∞).

Even if a function is completely specified by a formula, including a specific domain, it is
not always easy to find the range of the function. For example, without using the methods
of differential calculus, it is hard to find Rf exactly when f (x) = 3x3 − 2x2 − 12x − 3 and
Df = [−2, 3].

A function f is called increasing if x1 < x2 implies f (x1) ≤ f (x2), and strictly increasing
if x1 < x2 implies f (x1) < f (x2). Decreasing and strictly decreasing functions are defined
in the obvious way. (See Section 6.3.) The function g in Example 5 is strictly increasing
in [−2, ∞).

Calculators (including calculator programs on personal computers or smart phones)
often have many special functions built into them. For example, most of them have

the
√

key, which when given a number x, returns the square root of the number,√
x. If we enter a nonnegative number such as 25, and press the square root key, then the

number 5 appears. If we enter −3, then “Error”, or “Not a number” is shown, which is the
way the calculator tells us that

√−3 is not defined (within the real number system).
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P R O B L E M S F O R S E C T I O N 4 . 2

⊂SM⊃1. (a) Let f (x) = x2 + 1. Compute f (0), f (−1), f (1/2), and f (
√

2).

(b) For what values of x is it true that

(i) f (x) = f (−x)? (ii) f (x + 1) = f (x) + f (1)? (iii) f (2x) = 2f (x)?

2. Suppose F(x) = 10, for all x. Find F(0), F(−3), and F(a + h) − F(a).

3. Let f (t) = a2 − (t − a)2, where a is a constant.

(a) Compute f (0), f (a), f (−a), and f (2a). (b) Compute 3f (a) + f (−2a).

4. (a) For f (x) = x

1 + x2
, compute f (−1/10), f (0), f (1/

√
2 ), f (

√
π ), and f (2).

(b) Show that f (−x) = −f (x) for all x, and that f (1/x) = f (x) for x �= 0.

5. Let F(t) =
√

t2 − 2t + 4. Compute F(0), F(−3), and F(t + 1).

6. The cost of producing x units of a commodity is given by C(x) = 1000 + 300x + x2.

(a) Compute C(0), C(100), and C(101) − C(100).

(b) Compute C(x + 1) − C(x), and explain in words the meaning of the difference.

7. (a) H. Schultz has estimated the demand for cotton in the US for the period 1915–1919 to
be D(P ) = 6.4 − 0.3P (with appropriate units for the price P and the quantity D(P )).
Find the demand in each case if the price is 8, 10, and 10.22.

(b) If the demand is 3.13, what is the price?

8. (a) If f (x) = 100x2, show that for all t , f (tx) = t2f (x).

(b) If P(x) = x1/2, show that for all t ≥ 0, P(tx) = t1/2P(x).

9. (a) The cost of removing p% of the impurities in a lake is given by b(p) = 10p

105 − p
.

Find b(0), b(50), and b(100).

(b) What does b(50 + h) − b(50) mean (where h ≥ 0)?

10. Only for very special “additive” functions is it true that f (a +b) = f (a)+f (b) for all a and b.
Determine whether f (2 + 1) = f (2) + f (1) for the following:

(a) f (x) = 2x2 (b) f (x) = −3x (c) f (x) = √
x

11. (a) If f (x) = Ax, show that f (a + b) = f (a) + f (b) for all a and b.

(b) If f (x) = 10x , show that f (a + b) = f (a) · f (b) for all natural numbers a and b.
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12. A student claims that (x + 1)2 = x2 + 1. Can you use a geometric argument to show that this
is wrong?

⊂SM⊃13. Find the domains of the functions defined by the following formulas:

(a) y = √
5 − x (b) y = 2x − 1

x2 − x
(c) y =

√
x − 1

(x − 2)(x + 3)

14. (a) Find the domain of the function f defined by the formula f (x) = 3x + 6

x − 2
.

(b) Show that the number 5 is in the range of f by finding a number x such that
(3x + 6)/(x − 2) = 5.

(c) Show that the number 3 is not in the range of f .

15. Find the domain and the range of g(x) = 1 − √
x + 2 .

4.3 Graphs of Functions
Recall that a rectangular (or a Cartesian) coordinate system is obtained by first drawing
two perpendicular lines, called coordinate axes. The two axes are respectively the x-axis (or
the horizontal axis) and the y-axis (or the vertical axis). The intersection point O is called
the origin. We measure the real numbers along each of these lines, as shown in Fig. 1. The
unit distance on the x-axis is not necessarily the same as on the y-axis, although this is the
case in Fig. 1.

y

x1

1

Quadrant 1Quadrant 2

Quadrant 4Quadrant 3

P � (3,4)

Q � (�5,�2)

y

x1

1

Figure 1 A coordinate system Figure 2 Points (3, 4) and (−5, −2)

The rectangular coordinate system in Fig. 1 is also called the xy-plane. The coordinate axes
separate the plane into four quadrants, which traditionally are numbered as in Fig. 1. Any
point P in the plane can be represented by a unique pair (a, b) of real numbers. These can
be found by drawing dashed lines, like those in Figure 2, which are perpendicular to the
two axes. The point represented by (a, b) lies at the intersection of the vertical straight line
x = a with the horizontal straight line y = b.
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Conversely, any pair of real numbers represents a unique point in the plane. For example,
in Fig. 2, if the ordered pair (3, 4) is given, the corresponding point P lies at the intersection
of x = 3 with y = 4. Thus, P lies 3 units to the right of the y-axis and 4 units above the
x-axis. We call (3, 4) the coordinates of P . Similarly, Q lies 5 units to the left of the y-axis
and 2 units below the x-axis, so the coordinates of Q are (−5, −2).

Note that we call (a, b) an ordered pair, because the order of the two numbers in the
pair is important. For instance, (3, 4) and (4, 3) represent two different points.

As you surely know, each function of one variable can be represented by a graph in such
a rectangular coordinate system. Such a representation helps us visualize the function. This
is because the shape of the graph reflects the properties of the function.

The graph of a function f is simply the set of all points (x, f (x)), where x belongs to
the domain of f .

E X A M P L E 1 Consider the function f (x) = x2 −4x +3. The values of f (x) for some special choices
of x are given in the following table.

Table 1 Values of f (x) = x2 − 4x + 3

x 0 1 2 3 4

f (x) = x2 − 4x + 3 3 0 −1 0 3

Plot the points (0, 3), (1, 0), (2, −1), (3, 0), and (4, 3) obtained from the table in an
xy-plane, and draw a smooth curve through these points.

Solution: This is done in Fig. 3. The graph is called a parabola. (See Section 4.6.)

4

3

2

1

�1

�2

�3

�2�3 �1 1 2 3 4

y

x

4

3

2

1

�1

�2

�3

�2�3 �1 1 2 3 4

y

x

Figure 3 The graph of
f (x) = x2 − 4x + 3

Figure 4 The graph of
g(x) = 2x − 1

E X A M P L E 2 Find some of the points on the graph of g(x) = 2x − 1, and sketch it.

Solution: One has g(−1) = 2 · (−1) − 1 = −3, g(0) = 2 · 0 − 1 = −1, and g(1) =
2 · 1 − 1 = 1. Moreover, g(2) = 3. There are infinitely many points on the graph, so we
cannot write them all down. In Fig. 4 the four points (−1, −3), (0, −1), (1, 1), and (2, 3)

are marked off, and they seem to lie on a straight line. That line is the graph.
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Some Important Graphs
Some special functions occur so often in applications that you should learn to recognize
their graphs. You should in each case make a table of function values to confirm the form
of these graphs.

y � x

3

2

1

�1

�2

�3

�2�3 �1 1 2 3

y

x

3

2

1

�1

�2

�3

�2�3 �1 1 2 3

y

x

y � x2
3

2

1

�1

�2

�3

�2�3 �1 1 2 3

y � x3

y

x

Figure 5 y = x Figure 6 y = x2 Figure 7 y = x3

3

2

1

�1

�2

�3

�2�3 �1 1 2 3

y � �x

y

x

3

2

1

�1

�2

�3

�2�3 �1 1 2 3

y � 1�x
y

x

3

2

1

�1

�2

�3

�2�3 �1 1 2 3

y � �x�
y

x

Figure 8 y = √
x Figure 9 y = 1/x Figure 10 y = |x|

NOTE 1 When we try to plot the graph of a function, we must try to include a sufficient
number of points, otherwise we might miss some of its important features. Actually, by
merely plotting a finite set of points, we can never be entirely sure that there are no wiggles
or bumps we have missed. For more complicated functions we have to use differential
calculus to decide how many bumps and wiggles there are.

P R O B L E M S F O R S E C T I O N 4 . 3

1. Plot the points (2, 3), (−3, 2), (−3/2, −2), (4, 0), and (0, 4) in a coordinate system.

2. The graph of the function f is given in Fig. 11.

(a) Find f (−5), f (−3), f (−2), f (0), f (3), and f (4) by examining the graph.

(b) Determine the domain and the range of f .

4

2

�2

�2�4 2 4

y

x

Figure 11
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In problems 3–6 fill in the tables and draw the graphs of the functions.

3.
x 0 1 2 3 4

g(x) = −2x + 5

4.
x −2 −1 0 1 2 3 4

h(x) = x2 − 2x − 3

5.
x −2 −1 0 1 2

F(x) = 3x

6.
x −2 −1 0 1 2 3

G(x) = 1 − 2−x

4.4 Linear Functions
Linear functions occur very often in economics. They are defined as follows.

y = ax + b (a and b are constants)

The graph of the equation is a straight line. If we let f denote the function that assigns y to
x, then f (x) = ax + b, and f is called a linear function.

Take an arbitrary value of x. Then

f (x + 1) − f (x) = a(x + 1) + b − ax − b = a

This shows that a measures the change in the value of the function when x increases by
1 unit. For this reason, the number a is the slope of the line (or the function).

y � ax � b    (a � 0)

b

y

x

y � ax � b    (a � 0)

b

y

x�b
a

y � b    (a � 0)

b

y

x

Figure 1 Figure 2 Figure 3

If the slope a is positive, the line slants upward to the right, and the larger the value of a,
the steeper is the line. On the other hand, if a is negative, then the line slants downward to
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the right, and the absolute value of a measures the steepness of the line. For example, when
a = −3, the steepness is 3. In the special case when a = 0, the steepness is zero, because
the line is horizontal. Algebraically, we have y = ax + b = b for all x. The three different
cases are illustrated in Figs. 1 to 3. If x = 0, then y = ax + b = b, and b is called the
y-intercept (or often just the intercept).

E X A M P L E 1 Find and interpret the slopes of the following straight lines.

(a) C = 55.73x + 182 100 000 Estimated cost function for the US Steel Corp. (1917–
1938). (C is the total cost in dollars per year, and x is
the production of steel in tons per year).

(b) q = −0.15p + 0.14 Estimated annual demand function for rice in India for
the period 1949–1964. (p is price in Indian rupees, and
q is consumption per person.)

Solution:

(a) The slope is 55.73, which means that if production increases by 1 ton, then the cost
increases by $55.73.

(b) The slope is −0.15, which tells us that if the price increases by one Indian rupee, then
the quantity demanded decreases by 0.15 units.

How do we compute the slope of a straight line in the plane? Here is an easy way. Pick
two different points on the line P = (x1, y1) and Q = (x2, y2), as shown in Fig. 4.

a
1 R�

Q�

P�

P � (x1, y1)

Q � (x2, y2)

x2 � x1

y2 � y1

R � (x2, y1)

y

x

Figure 4 Slope a = (y2 − y1)/(x2 − x1).

The slope of the line is the ratio (y2 − y1)/(x2 − x1). If we denote the slope by a, then:

S L O P E O F A S T R A I G H T L I N E

The slope of the straight line l is

a = y2 − y1

x2 − x1
, x1 �= x2

where (x1, y1) and (x2, y2) are any two distinct points on l.
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Multiplying both the numerator and the denominator of (y2−y1)/(x2−x1) by −1, we obtain
(y1 − y2)/(x1 − x2). This shows that it does not make any difference which point is P and
which is Q. Moreover, the properties of similar triangles imply that the ratios Q′R′/P ′R′

and QR/PR in Fig. 4 must be equal. For this reason, the number a = (y2 − y1)/(x2 − x1)

is equal to the change in the value of y when x increases by 1 unit.

E X A M P L E 2 Determine the slopes of the three straight lines l, m, and n.

3

4

2

1

�1

�2

1 2 3 4 5 6

y

P

Q
l

x

P

Q

m

3

4

2

1

�1

�2

1 2 3 4 5 6

y

x

3

4

2

1

�1

�2

1 2 3 4 5 6

y

x

P

Q

n

Figure 5 The line l Figure 6 The line m Figure 7 The line n

Solution: The lines l, m, and n all pass through P = (2, 2). In Fig. 5 the point Q is (4, 3),
whereas in Fig. 6 it is (1, −2), and in Fig. 7 it is (5, −1). Therefore, the respective slopes
of the lines l, m, and n are

al = 3 − 2

4 − 2
= 1

2
, am = −2 − 2

1 − 2
= 4 , an = −1 − 2

5 − 2
= −1

The Point–Slope and Point–Point Formulas
Let us find the equation of a straight line l passing through the point P = (x1, y1) with slope
a. If (x, y) is any other point on the line, the slope a is given by the formula:

y − y1

x − x1
= a

Multiplying each side by x − x1, we obtain y − y1 = a(x − x1). Hence,

P O I N T — S L O P E F O R M U L A O F A S T R A I G H T L I N E

The equation of the straight line passing through (x1, y1) with slope a is

y − y1 = a(x − x1)

Note that when using this formula, x1 and y1 are fixed numbers giving the coordinates of
the fixed point. On the other hand, x and y are variables denoting the coordinates of an
arbitrary point on the line.

E X A M P L E 3 Find the equation of the line through (−2, 3) with slope −4. Then find the y-intercept
and the point at which this line intersects the x-axis (the x-intercept).
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Solution: The point–slope formula with (x1, y1) = (−2, 3) and a = −4 gives

y − 3 = (−4)(x − (−2)) or y − 3 = −4(x + 2) or 4x + y = −5

The y-intercept has x = 0, so y = −5. The line intersects the x-axis at the point where
y = 0, that is, where 4x = −5, so x = −5/4. The point of intersection with the x-axis is
therefore (−5/4, 0). (Draw a graph.)

Often we need to find the equation of the straight line that passes through two given distinct
points. Combining the slope formula and the point–slope formula, we obtain the following:

P O I N T — P O I N T F O R M U L A O F A S T R A I G H T L I N E

The equation of the straight line passing through (x1, y1) and (x2, y2), where
x1 �= x2, is obtained as follows:

1. Compute the slope of the line, a = y2 − y1

x2 − x1

2. Substitute the expression for a into the point–slope formula: y − y1 =
a(x − x1). The result is

y − y1 = y2 − y1

x2 − x1
(x − x1)

E X A M P L E 4 Find the equation of the line passing through (−1, 3) and (5, −2).

Solution: Let (x1, y1) = (−1, 3) and (x2, y2) = (5, −2). Then the point–point for-
mula gives

y − 3 = −2 − 3

5 − (−1)

[
x − (−1)

]
or y − 3 = −5

6
(x + 1) or 5x + 6y = 13

Graphical Solutions of Linear Equations

Section 2.4 dealt with algebraic methods for solving a system of two linear equations in two
unknowns. The equations are linear, so their graphs are straight lines. The coordinates of
any point on a line satisfy the equation of that line. Thus, the coordinates of any point of
intersection of these two lines will satisfy both equations. This means that any point where
these lines intersect will satisfy the equation system.

E X A M P L E 5 Solve each of the following three pairs of equations graphically:

(a)
x + y = 5

x − y = −1
(b)

3x + y = −7

x − 4y = 2
(c)

3x + 4y = 2

6x + 8y = 24
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Solution:

(2, 3)

1

1

y

x

x � y � �1

x � y � 5
1

1

y

x

(�2, �1)

3x � y � �7

x � 4y � 2 1

1

y

x

6x � 8y � 24

3x � 4y � 2

Figure 8 Figure 9 Figure 10

(a) Figure 8 shows the graphs of the straight lines x + y = 5 and x − y = −1. There is
only one point of intersection, which is (2, 3). The solution of the system is, therefore,
x = 2, y = 3.

(b) Figure 9 shows the graphs of the straight lines 3x + y = −7 and x − 4y = 2. There
is only one point of intersection, which is (−2, −1). The solution of the system is,
therefore, x = −2, y = −1.

(c) Figure 10 shows the graphs of the straight lines 3x + 4y = 2 and 6x + 8y = 24. These
lines are parallel and have no point of intersection. The system has no solutions.

Linear Inequalities

This section concludes by discussing how to represent linear inequalities geometrically. We
present two examples.

E X A M P L E 6 Sketch in the xy-plane the set of all pairs of numbers (x, y) that satisfy the inequality
2x + y ≤ 4. (Using set notation, this set is {(x, y) : 2x + y ≤ 4}.)
Solution: The inequality can be written as y ≤ −2x + 4. The set of points (x, y) that
satisfy the equation y = −2x + 4 is a straight line. Therefore, the set of points (x, y) that
satisfy the inequality y ≤ −2x + 4 must have y-values below those of points on the line
y = −2x + 4. So it must consist of all points that lie on or below this line. See Fig. 11.

3

4

5

2

1

�1
�1 1 2 3 4

y

x

2x � y � 4
(0, m�q)

(m�p, 0)

y

x

B

px � qy � m

Figure 11 {(x, y) : 2x + y ≤ 4} Figure 12 Budget set: px + qy ≤ m,
x ≥ 0, and y ≥ 0



Essential Math. for Econ. Analysis, 4th edn EME4_C04.TEX, 16 May 2012, 14:24 Page 94

94 C H A P T E R 4 / F U N C T I O N S O F O N E V A R I A B L E

E X A M P L E 7 A person has $m to spend on the purchase of two commodities. The prices of the two
commodities are $p and $q per unit. Suppose x units of the first commodity and y units of
the second commodity are bought. Assuming that negative purchases of either commodity
are impossible, one must have both x ≥ 0 and y ≥ 0. It follows that the person is restricted
to the budget set given by

B = {(x, y) : px + qy ≤ m, x ≥ 0, y ≥ 0}
as in (3.6.1). Sketch the budget set B in the xy-plane. Find the slope of the budget line
px + qy = m, and its x- and y-intercepts.

Solution: The set of points (x, y) that satisfy x ≥ 0 and y ≥ 0 is the first (nonnegative)
quadrant. If we impose the additional requirement that px+qy ≤ m, we obtain the triangular
domain B shown in Fig. 12.

If px + qy = m, then qy = −px + m and so y = (−p/q)x + m/q. This shows that
the slope is −p/q. The budget line intersects the x-axis when y = 0. Then px = m, so
x = m/p. The budget line intersects the y-axis when x = 0. Then qy = m, so y = m/q.
So the two points of intersection are (m/p, 0) and (0, m/q), as shown in Fig. 12.

P R O B L E M S F O R S E C T I O N 4 . 4

1. Find the slopes of the lines passing through the following pairs of points:

(a) (2, 3) and (5, 8) (b) (−1, −3) and (2, −5) (c)
(

1
2 , 3

2

)
and

(
1
3 , − 1

5

)
2. Draw graphs for the following straight lines:

(a) 3x + 4y = 12 (b)
x

10
− y

5
= 1 (c) x = 3

3. Suppose demand D for a good is a linear function of its price per unit, P . When price is $10,
demand is 200 units, and when price is $15, demand is 150 units. Find the demand function.

4. Find the slopes of the five lines L1 to L5 shown in the figure, and give equations describing
them.

1 2−2 −1 3 4 5 6 7 8 9 10 x

y
7

6

5

4

3

2

1

−1

−2

L1 L4

L5

L3

L2

Figure 13
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5. Decide which of the following relationships are linear:

(a) 5y + 2x = 2 (b) P = 10(1 − 0.3t) (c) C = (0.5x + 2)(x − 3)

(d) p1x1 + p2x2 = R (p1, p2, and R constants)

6. A printing company quotes the price of $1400 for producing 100 copies of a report, and $3000
for 500 copies. Assuming a linear relation, what would be the price of printing 300 copies?

7. Determine the equations for the following straight lines:

(a) L1 passes through (1, 3) and has a slope of 2.

(b) L2 passes through (−2, 2) and (3, 3).

(c) L3 passes through the origin and has a slope of −1/2.

(d) L4 passes through (a, 0) and (0, b) (suppose a �= 0).

8. Sketch in the xy-plane the set of all pairs of numbers (x, y) that satisfy the following inequalities:

(a) 2x + 4y ≥ 5 (b) x − 3y + 2 ≤ 0 (c) 100x + 200y ≤ 300

9. Solve the following three systems of equations graphically:

(a)
x − y = 5

x + y = 1
(b)

x + y = 2

x − 2y = 2

x − y = 2

(c)
3x + 4y = 1

6x + 8y = 6

⊂SM⊃10. Sketch in the xy-plane the set of all pairs of numbers (x, y) that satisfy all the following three
inequalities:

3x + 4y ≤ 12, x − y ≤ 1, and 3x + y ≥ 3

4.5 Linear Models
Linear relations occur frequently in mathematical models. The relationship between the
Celsius and Fahrenheit temperature scales, F = 9

5 C+32 (see Example 1.6.4), is an example
of an exact (by definition) linear relation between two variables. Most of the linear models
in economics are approximations to more complicated models. Two typical relations are
those shown in Example 4.4.1. Statistical methods have been devised to construct linear
functions that approximate the actual data as closely as possible. Let us consider a very
naive attempt to construct a linear model based on some population data.

E X A M P L E 1 A United Nations report estimated that the European population was 641 million in
1960, and 705 million in 1970. Use these estimates to construct a linear function of t that
approximates the population in Europe (in millions), where t is the number of years from
1960 (t = 0 is 1960, t = 1 is 1961, and so on). Then use the function to estimate the
population in 1975, 2000, and 1930.
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Solution: If P denotes the population in millions, we construct an equation of the form
P = at + b. We know that the graph must pass through the points (t1, P1) = (0, 641) and
(t2, P2) = (10, 705). So we use the point–point formula, replacing x and y with t and P ,
respectively. This gives

P − 641 = 705 − 641

10 − 0
(t − 0) = 64

10
t or P = 6.4 t + 641 (∗)

In Table 1, we have compared our estimates with UN forecasts. Note that because t = 0
corresponds to 1960, t = −30 will correspond to 1930.

Note that the slope of line (∗) is 6.4. This means that if the European population had
developed according to (∗), then the annual increase in the population would have been
constant and equal to 6.4 million.

Table 1 Population estimates for Europe

Year 1930 1975 2000

t −30 15 40

UN estimates 573 728 854

Formula (∗) gives 449 737 897

Actually, Europe’s population grew unusually fast during the 1960s. Of course, it grew un-
usually slowly when millions died during the war years 1939–1945. We see that formula (∗)

does not give very good results compared to the UN estimates. For a better way to model
population growth see Example 4.9.1.

E X A M P L E 2 (The Consumption Function) In Keynesian macroeconomic theory, total consump-
tion expenditure on goods and services, C, is assumed to be a function of national income
Y , with

C = f (Y )

In many models, following Keynes’s associate R. F. Kahn, the consumption function is
assumed to be linear, so that

C = a + b Y

The slope b is called the marginal propensity to consume. If C and Y are measured in
billions of dollars, the number b tells us by how many billions of dollars consumption
increases if national income increases by 1 billion dollars. Following Kahn’s insight, the
number b is usually thought to lie between 0 and 1.

In a study of the US economy for the period 1929–1941, T. Haavelmo estimated the
consumption function: C = 95.05 + 0.712 Y . Here, the marginal propensity to consume is
equal to 0.712.
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E X A M P L E 3 (Supply and Demand) Over a fixed period of time such as a week, the quantity of a
specific good that consumers demand (that is, are willing to buy) will depend on the price
of that good. Usually, as the price increases the demand will decrease.1 Also, the number of
units that the producers are willing to supply to the market during a certain period depends
on the price they are able to obtain. Usually, the supply will increase as the price increases.
So typical demand and supply curves are as indicated in Fig. 1.

P

Q

Pe
E

Qe

Supply curve

Demand curve 30

70

P

Q

P � 100 � D

P � 12 S � 5

Figure 1 Figure 2

The point E in Fig. 1, at which demand is equal to supply, represents an equilibrium. The
price P e at which this occurs is the equilibrium price and the corresponding quantity Qe

is the equilibrium quantity. The equilibrium price is thus the price at which consumers
will buy the same amount of the good as the producers wish to sell at that price.

As a very simple example, consider the following linear demand and supply functions:

(i) D = 100 − P (ii) S = 10 + 2P

or in inverse form, P = 100 − D and P = 1
2S − 5, as in Fig. 2. The quantity demanded

D equals the quantity supplied S provided 100 − P = 10 + 2P , that is, 3P = 90. So the
equilibrium price is P e = 30, with equilibrium quantity Qe = 70.

NOTE 1 A peculiarity of Fig. 1 is that, although quantity is usually regarded as a function
of price, here we measure price on the vertical axis and quantity on the horizontal axis. This
has been standard practice in elementary price theory since the fundamental ideas of the
French economist Antoine-Augustin Cournot and several other European contemporaries
became popularized by the English economist Alfred Marshall in the late 19th century.

E X A M P L E 4 (Linear Supply and Demand Functions) Consider the following general linear
demand and supply schedules:

(i) D = a − bP (ii) S = α + βP

1 For certain luxury goods like perfume, which are often given as presents, demand might increase
as the price increases. For absolutely essential goods, like insulin for diabetics, demand might be
almost independent of the price. Occasionally dietary staples could also be “Giffen goods” for
which demand rises as price rises. The explanation offered is that these foodstuffs are so essential
to a very poor household’s survival that a rise in price lowers real income substantially, and so
makes alternative sources of nourishment even less affordable.
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Here a and b are positive parameters of the demand function D, while α and β are positive
parameters of the supply function.

Such linear supply and demand functions play an important role in economics. It is often
the case that the market for a particular commodity, such as copper, can be represented
approximately by suitably estimated linear demand and supply functions.

The equilibrium price P e occurs where demand equals supply. Hence D = S at P = P e

implying that a − bP e = α + βP e, or a − α = (β + b)P e. The corresponding equilibrium
quantity is Qe = a − bP e. So equilibrium occurs at

P e = a − α

β + b
, Qe = a − b

a − α

β + b
= aβ + αb

β + b

P R O B L E M S F O R S E C T I O N 4 . 5

1. The consumption function C = 4141 + 0.78 Y was estimated for the UK during the period
1949–1975. What is the marginal propensity to consume?

2. Find the equilibrium price for each of the two linear models of supply and demand:

(a) D = 75 − 3P, S = 20 + 2P (b) D = 100 − 0.5P, S = 10 + 0.5P

3. The total cost C of producing x units of some commodity is a linear function of x. Records
show that on one occasion, 100 units were made at a total cost of $200, and on another occasion,
150 units were made at a total cost of $275. Express the linear equation for total cost C in terms
of the number of units x produced.

4. The expenditure of a household on consumer goods, C, is related to the household’s income,
y, in the following way: When the household’s income is $1000, the expenditure on consumer
goods is $900, and whenever income increases by $100, the expenditure on consumer goods
increases by $80. Express the expenditure on consumer goods as a function of income, assuming
a linear relationship.

5. For most assets such as cars, stereo equipment, and furniture, the value decreases, or depreciates,
each year. If the value of an asset is assumed to decrease by a fixed percentage of the original
value each year, it is referred to as straight line depreciation.

(a) Suppose the value of a car which initially costs $20 000 depreciates by 10% of its original
value each year. Find a formula for its value P(t) after t years.

(b) If a $500 washing machine is completely depreciated after 10 years (straight line depreci-
ation), find a formula for its value W(t) after t years.

6. (a) According to the 20th report of the International Commission on Whaling, the number N

of fin whales in the Antarctic for the period 1958–1963 was estimated to be

N = −17 400 t + 151 000, 0 ≤ t ≤ 5

where t = 0 corresponds to January 1958, t = 1 corresponds to January 1959, and so on.
According to this equation, how many fin whales would be left in April 1960?

(b) If the decrease continued at the same rate, when would there be no fin whales left? (Actually,
the 1993 estimate was approximately 21 000.)
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4.6 Quadratic Functions
Economists often find that linear functions are too simple for modelling economic phenom-
ena with acceptable accuracy. Indeed, many economic models involve functions that either
decrease down to some minimum value and then increase, or else increase up to some max-
imum value and then decrease. Some simple functions with this property are the general
quadratic functions

f (x) = ax2 + bx + c (a, b, and c are constants, a �= 0) (1)

(If a = 0, the function is linear; hence, the restriction a �= 0.) In general, the graph of
f (x) = ax2 + bx + c is called a parabola. The shape of this parabola roughly resembles⋂

when a < 0 and
⋃

when a > 0. Three typical cases are illustrated in Fig. 1. The graphs
are symmetric about the axis of symmetry, which is the vertical dashed line in each of the
three cases.

y

x

P

x2x1

y

x

P

y

x
P

(a) a < 0, b2 > 4ac (b) a > 0, b2 < 4ac (c) a > 0, b2 = 4ac

Figure 1 The graph of the parabola y = ax2 + bx + c for different values of a, b, and c

In order to investigate the function f (x) = ax2 + bx + c in more detail, we should find the
answers to the following questions:

A. For which values of x (if any) is ax2 + bx + c = 0?

B. What are the coordinates of the maximum/minimum point P , also called the vertex of
the parabola?

The answer to question A was given by the quadratic formula (2.3.4) and the subsequent
discussion of that formula. The easiest way to handle question B is to use derivatives, which
is the topic of Chapter 6. (See Problem 6.2.6.) However, let us briefly consider how the
“method of completing the squares” from Section 2.3 can be used to answer question B.

In fact, this method yields

f (x) = ax2 + bx + c = a
(
x + b

2a

)2 − b2 − 4ac

4a
(2)

as is easily verified by expanding the right-hand side and gathering terms.
Now, when x varies, only the value of a(x + b/2a)2 changes. This term is equal to 0

only when x = −b/2a, and if a > 0, it is never less than 0. This means that when a > 0,
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then the function f (x) attains its minimum when x = −b/2a, and the value of f (x) is then
equal to f (−b/2a) = −(b2 − 4ac)/4a = c − b2/4a. If a < 0 on the other hand, then
a(x + b/2a)2 ≤ 0 for all x, and the squared term is equal to 0 only when x = −b/2a.
Hence, f (x) attains its maximum when x = −b/2a in this second case.

To summarize, we have shown the following:

If a > 0, then f (x) = ax2 + bx + c has its minimum at x = −b/2a (3)

If a < 0, then f (x) = ax2 + bx + c has its maximum at x = −b/2a (4)

The axis of symmetry for a parabola is the vertical line through its vertex, which is the
point P in all three cases of Fig. 1.2 Indeed, formula (2) implies that, for any number u,
one has

f
(
− b

2a
+ u

)
= au2 − b2 − 4ac

4a
= f

(
− b

2a
− u

)
It follows that the quadratic function f (x) = ax2 + bx + c is symmetric about the vertical
line x = −b/2a which passes through P .

Quadratic Optimization Problems in Economics

Much of economic analysis is concerned with optimization problems. Economics, after all,
is the science of choice, and optimization problems are the form in which economists usually
model choice mathematically. A general discussion of such problems must be postponed
until we have developed the necessary tools from calculus. Here we show how the simple
results from this section on maximizing quadratic functions can be used to illustrate some
basic economic ideas.

E X A M P L E 1 The price P per unit obtained by a firm in producing and selling Q units is P = 102−2Q,
and the cost of producing and selling Q units is C = 2Q + 1

2Q2. Then the profit is3

π(Q) = PQ − C = (102 − 2Q)Q − (2Q + 1
2Q2) = 100Q − 5

2Q2

Find the value of Q which maximizes profits, and the corresponding maximal profit.

Solution: Using formula (4) we find that profit is maximized at

Q = Q∗ = − 100

2
(− 5

2

) = 20 with π∗ = π(Q∗) = − 1002

4
(− 5

2

) = 1000

This example is a special case of the monopoly problem studied in the next example.

2 The function f is symmetric about x = x0 if f (x0 + t) = f (x0 − t) for all x. See Section 5.2.
3 In mathematics π is used to denote the constant ratio 3.1415 . . . between the circumference of a

circle and its diameter. In economics, this constant is not used very often. Also, p and P usually
denote a price, so π has come to denote profit.
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E X A M P L E 2 (A Monopoly Problem) Consider a firm that is the only seller of the commodity it
produces, possibly a patented medicine, and so enjoys a monopoly. The total costs of the
monopolist are assumed to be given by the quadratic function

C = αQ + βQ2, Q ≥ 0

of its output level Q, where α and β are positive constants. For each Q, the price P at which
it can sell its output is assumed to be determined from the linear “inverse” demand function

P = a − bQ, Q ≥ 0

where a and b are constants with a > 0 and b ≥ 0. So for any nonnegative Q, the total
revenue R is given by the quadratic function R = PQ = (a − bQ)Q, and profit by the
quadratic function

π(Q) = R − C = (a − bQ)Q − αQ − βQ2 = (a − α)Q − (b + β)Q2

Assuming that the monopolist’s objective is to maximize the profit function π = π(Q), find
the optimal output level QM and the corresponding optimal profit πM .

Solution: By using (4), we see that there is a maximum of π at

QM = a − α

2(b + β)
with πM = (a − α)2

4(b + β)
(∗)

This is valid if a > α; if a ≤ α, the firm will not produce, but will have QM = 0 and
πM = 0. The two cases are illustrated in Figs. 2 and 3. In Fig. 3, the part of the parabola to
the left of Q = 0 is dashed, because it is not really relevant given the natural requirement
that Q ≥ 0. The price and cost associated with QM in (∗) can be found by routine algebra.

π

QQ M 2Q M

π

Q

Q M

Figure 2 The profit function, a > α Figure 3 The profit function, a ≤ α

If we put b = 0 in the price function P = a − bQ, then P = a for all Q. In this case,
the firm’s choice of quantity does not influence the price at all and so the firm is said to be
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perfectly competitive. By replacing a by P in our previous expressions, we see that profit
is maximized for a perfectly competitive firm at

Q∗ = P − α

2β
with π∗ = (P − α)2

4β
(∗∗)

provided that P > α. If P ≤ α, then Q∗ = 0 and π∗ = 0.

Solving the first equation in (∗∗) for P yields P = α + 2βQ∗. Thus, the equation

P = α + 2βQ (∗∗∗)

represents the supply curve of this perfectly competitive firm for P > α. For P ≤ α, the profit-
maximizing output Q∗ is 0. The supply curve relating the price on the market to the firm’s choice of
output quantity is shown in Fig. 4; it includes all the points of the line segment between the origin
and (0, α), where the price is too low for the firm to earn any profit by producing a positive output.

P

Q

α

P � α � 2 βQ

Figure 4 The supply curve of a perfectly competitive firm

Let us return to the monopoly firm (which has no supply curve). If it could somehow be made to
act like a competitive firm, taking price as given, it would be on the supply curve (∗∗∗). Given the
demand curve P = a − bQ, equilibrium between supply and demand occurs when (∗∗∗) is also
satisfied, and so P = a − bQ = α + 2βQ. Solving the second equation for Q, and then substituting
for P and π in turn, we see that the respective equilibrium levels of output, price, and profit would be

Qe = a − α

b + 2β
, P e = 2aβ + αb

b + 2β
, πe = β(a − α)2

(b + 2β)2

In order to have the monopolist mimic a competitive firm by choosing to be at (Qe, P e), it may be
desirable to tax (or subsidize) the output of the monopolist. Suppose that the monopolist is required
to pay a specific tax of t per unit of output. Because the tax payment tQ is added to the firm’s costs,
the new total cost function is

C = αQ + βQ2 + tQ = (α + t)Q + βQ2

Carrying out the same calculations as before, but with α replaced by α + t , gives the monopolist’s
choice of output as

QM
t =

⎧⎨
⎩

a − α − t

2(b + β)
, if a ≥ α + t

0, otherwise

So QM
t = Qe when (a − α − t)/2(b + β) = (a − α)/(b + 2β). Solving this equation for t

yields t = −(a − α)b/(b + 2β). Note that t is actually negative, indicating the desirability of
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subsidizing the output of the monopolist in order to encourage additional production. (Of course,
subsidizing monopolists is usually felt to be unjust, and many additional complications need to be
considered carefully before formulating a desirable policy for dealing with monopolists. Still the
previous analysis suggests that if it is desirable to lower a monopolist’s price or its profit, this is much
better done directly than by taxing its output.)

P R O B L E M S F O R S E C T I O N 4 . 6

1. (a) Let f (x) = x2 − 4x. Complete the following table and use it to sketch the graph of f :

x −1 0 1 2 3 4 5

f (x)

(b) Using (3), determine the minimum point of f .

(c) Solve the equation f (x) = 0.

2. (a) Let f (x) = − 1
2 x2 − x + 3

2 . Complete the following table and sketch the graph of f :

x −4 −3 −2 −1 0 1 2

f (x)

(b) Using (4), determine the maximum point of f .

(c) Solve the equation − 1
2 x2 − x + 3

2 = 0 for x.

(d) Show that f (x) = − 1
2 (x − 1)(x + 3), and use this to study how the sign of f (x) varies

with x. Compare the result with the graph.

3. Determine the maximum/minimum points by using (3) or (4):

(a) x2 + 4x (b) x2 + 6x + 18 (c) −3x2 + 30x − 30

(d) 9x2 − 6x − 44 (e) −x2 − 200x + 30 000 (f) x2 + 100x − 20 000

4. Find all the zeros of each quadratic function in Problem 3, and write each function in the form
a(x − x1)(x − x2) (if possible).

5. Find solutions to the following equations, where p and q are parameters.

(a) x2 − 3px + 2p2 = 0 (b) x2 − (p + q)x + pq = 0 (c) 2x2 + (4q − p)x = 2pq

6. A model by A. Sandmo in the theory of efficient loan markets involves the function

U(x) = 72 − (4 + x)2 − (4 − rx)2

where r is a constant. Find the value of x for which U(x) attains its largest value.
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7. (a) A farmer has 1000 metres of fence wire with which to make a rectangular enclosure, as
illustrated in the figure below. Find the areas of the three rectangles whose bases are 100,
250, and 350 metres.

(b) Let the base have length 250 + x. Then the height is 250 − x (see Fig. 5). What choice of
x gives the maximum area? 4

250 � x

250 � x 250 � x

250 � x

Figure 5

8. (a) If a cocoa shipping firm sells Q tons of cocoa in the UK, the price received is given by
PE = α1 − 1

3 Q. On the other hand, if it buys Q tons from its only source in Ghana, the
price it has to pay is given by PG = α2 + 1

6 Q. In addition, it costs γ per ton to ship cocoa
from its supplier in Ghana to its customers in the UK (its only market). The numbers α1,
α2, and γ are all positive. Express the cocoa shipper’s profit as a function of Q, the number
of tons shipped.

(b) Assuming that α1 − α2 − γ > 0, find the profit-maximizing shipment of cocoa. What
happens if α1 − α2 − γ ≤ 0?

(c) Suppose the government of Ghana imposes an export tax on cocoa of t per ton. Find the
new expression for the shipper’s profits and the new quantity shipped.

(d) Calculate the Ghanaian government’s export tax revenue T as a function of t , and compare
the graph of this function with the Laffer curve presented in Section 4.1.

(e) Advise the Ghanaian government on how to obtain as much tax revenue as possible.

HARDER PROBLEM

⊂SM⊃9. Let a1, a2, . . . , an and b1, b2, . . . , bn be arbitrary real numbers. We claim that the following
inequality (called the Cauchy–Schwarz inequality) is always valid:

(a1b1 + a2b2 + · · · + anbn)
2 ≤ (a2

1 + a2
2 + · · · + a2

n)(b
2
1 + b2

2 + · · · + b2
n) (5)

(a) Check the inequality for a1 = −3, a2 = 2, b1 = 5, and b2 = −2. (Then n = 2.)

(b) Prove (5) by means of the following trick: first, define f for all x by

f (x) = (a1x + b1)
2 + · · · + (anx + bn)

2

It should be obvious that f (x) ≥ 0 for all x. Write f (x) as Ax2 + Bx + C, where the
expressions for A, B, and C are related to the terms in (5). Because Ax2 + Bx + C ≥ 0
for all x, we must have B2 − 4AC ≤ 0. Why? The conclusion follows.

4 It is reported that certain surveyors in antiquity wrote contracts with farmers to sell them rectangular
pieces of land in which only the perimeter was specified. As a result, the lots were long narrow
rectangles.
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4.7 Polynomials
After considering linear and quadratic functions, the logical next step is to examine cubic
functions of the form

f (x) = ax3 + bx2 + cx + d (a, b, c, and d are constants; a �= 0) (1)

It is relatively easy to examine the behaviour of linear and quadratic functions. Cubic
functions are considerably more complicated, because the shape of their graphs changes
drastically as the coefficients a, b, c, and d vary. Two examples are given in Figs. 1 and 2.

5

10

15

�1�2 1 2 3 4

y

x

f (x) � �x3 � 4x2 � x � 6

y

Q

y � C (Q)

Figure 1 A cubic function Figure 2 A cubic cost function

Cubic functions do occasionally appear in economic models. Let us look at an example.

E X A M P L E 1 Consider a firm producing a single commodity. The total cost of producing Q units of
the commodity is C(Q). Cost functions often have the following properties: First, C(0) is
positive, because an initial fixed expenditure is involved. When production increases, costs
also increase. In the beginning, costs increase rapidly, but the rate of increase slows down
as production equipment is used for a higher proportion of each working week. However, at
high levels of production, costs again increase at a fast rate, because of technical bottlenecks
and overtime payments to workers, for example. It can be shown that the cubic cost function
C(Q) = aQ3 + bQ2 + cQ + d exhibits this type of behaviour provided that a > 0, b < 0,
c > 0, d > 0, and 3ac > b2. Such a function is sketched in Fig. 2.

Cubic cost functions whose coefficients have a different sign pattern have also been studied. For
instance, a study of a particular electric power generating plant revealed that over a certain period,
the cost of fuel y as a function of output Q was given by y = −Q3 + 214.2Q2 − 7900Q + 320700.
(This cost function cannot be valid for all Q, however, because it suggests that fuel costs would be
negative for large enough Q.)

The detailed study of cubic functions is made easier by applying the differential calculus,
as will be seen later.
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General Polynomials

Linear, quadratic, and cubic functions are all examples of polynomials. The function P

defined for all x by

P(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 (a’s are constants; an �= 0) (2)

is called the general polynomial of degree n with coefficients an, an−1, . . . , a0. When
n = 4, we obtain P(x) = a4x

4 + a3x
3 + a2x

2 + a1x + a0, which is the general quartic

function, or polynomial of degree 4. Neither 5 + 1

x2
nor

1

x3 − x + 2
are polynomials,

however.

Numerous problems in mathematics and its applications involve polynomials. Often,
one is particularly interested in finding the number and location of the zeros of P(x)—that
is, the values of x such that P(x) = 0. The equation

anx
n + an−1x

n−1 + · · · + a1x + a0 = 0 (3)

is called the general equation of degree n. It will soon be shown that this equation has
at most n (real) solutions, also called roots, but it need not have any. The corresponding
nth-degree polynomial has a graph which has at most n − 1 “turning points”, but there may
be fewer such points. For example, the 100th-degree equation x100 +1 = 0 has no solutions
because x100 + 1 is always greater than or equal to 1, and its graph has only one turning
point.

According to the fundamental theorem of algebra, every polynomial of the form (2)
can be written as a product of polynomials of degree 1 or 2.

Factoring Polynomials

Let P(x) and Q(x) be two polynomials for which the degree of P(x) is greater than or equal
to the degree of Q(x). Then there always exist unique polynomials q(x) and r(x) such that

P(x) = q(x)Q(x) + r(x) (4)

where the degree of r(x) is less than the degree of Q(x). This fact is called the remainder
theorem. When x is such that Q(x) �= 0, then (4) can be written in the form

P(x)

Q(x)
= q(x) + r(x)

Q(x)

where r(x) is the remainder. If r(x) = 0, we say that Q(x) is a factor of P(x), or that P(x)

is divisible by Q(x). Then P(x) = q(x)Q(x) or P(x)/Q(x) = q(x).
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An important special case is when Q(x) = x − a. Then Q(x) is of degree 1, so the
remainder r(x) must have degree 0, and is therefore a constant. In this special case, for
all x,

P(x) = q(x)(x − a) + r

For x = a in particular, we get P(a) = r . Hence, x−a divides P(x) if and only if P(a) = 0.
This important observation can be formulated as follows:

The polynomial P(x) has the factor x − a ⇐⇒ P(a) = 0 (5)

E X A M P L E 2 Prove that x − 5 is a factor of the polynomial P(x) = x3 − 3x2 − 50.

Solution: P(5) = 125 − 75 − 50 = 0, so according to (5), x − 5 divides P(x). (In fact,
P(x) = (x − 5)(x2 + 2x + 10).)

NOTE 1 It follows from (5) that an nth-degree polynomial P(x) can have at most n different
zeros. The reason is that each zero gives rise to a different factor of the form x −a. Then, as
an nth-degree polynomial, P(x) can have at most n such factors. The result in (5) is often
used when we try to factor polynomials.

NOTE 2 (Integer Solutions) Each integer m which satisfies the cubic equation

−x3 + 4x2 − x − 6 = 0 (∗)

must satisfy the equation m(−m2 + 4m − 1) = 6. Since −m2 + 4m − 1 is also an integer,
m must be a factor of the constant term 6. Thus ±1, ±2, ±3, and ±6 are the only possible
integer solutions. Direct substitution into the left-hand side (LHS) of equation (∗) reveals
that of these eight possibilities, −1, 2, and 3 are roots of the equation. A third-degree
equation has at most three roots, so we have found them all. In fact,

−x3 + 4x2 − x − 6 = −(x + 1)(x − 2)(x − 3)

In general:

Suppose that an, an−1, . . . , a1, a0 are all integers. Then all possible integer roots
of the equation

anx
n + an−1x

n−1 + · · · + a1x + a0 = 0

must be factors of the constant term a0.

(6)

E X A M P L E 3 Find all possible integer roots of the equation 1
2x3 − x2 + 1

2x − 1 = 0.
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Solution: We multiply both sides of the equation by 2 to obtain an equation whose coeffi-
cients are all integers:

x3 − 2x2 + x − 2 = 0

Now, all integer solutions of the equation must be factors of 2. So only ±1 and ±2 can be
integer solutions. A check shows that x = 2 is the only integer solution. In fact, because
x3 − 2x2 + x − 2 = (x − 2)(x2 + 1), there is only one real root.

E X A M P L E 4 Find possible quadratic and cubic functions which have the graphs in Figs. 3 and 4
respectively.

�2

2

�1

1

�1�2 1 2

y

x

f (x) � ?

�2

�3

�4

2

�1

1

�1�2�3 1 2

y

x

f (x) � ?

Figure 3 Figure 4

Solution: Figure 3: Since the graph intersects the x-axis at the two points x = −2 and
x = 2, we try the quadratic function f (x) = a(x−2)(x+2). Then f (0) = −4a. According
to the graph, f (0) = −2, so a = 1/2, and hence

f (x) = 1
2 (x − 2)(x + 2) = 1

2x2 − 2

Figure 4: Because the equation f (x) = 0 has roots x = −3, −1, 2, we try the cubic function
f (x) = b(x + 3)(x + 1)(x − 2). Then f (0) = −6b. According to the graph, f (0) = −3.
So b = 1/2, and hence

f (x) = 1
2 (x + 3)(x + 1)(x − 2)

Polynomial Division
One can divide polynomials in much the same way as one uses long division to divide num-
bers. To remind ourselves how long division works, consider a simple numerical example:

2735 ÷ 5 = 500 + 40 + 7
2500

235
200

35
35

0 remainder
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Hence, 2735 ÷ 5 = 547. Note that the horizontal lines instruct you to subtract the numbers
above the lines. (You might be more accustomed to a different way of arranging the numbers,
but the idea is the same.)

Consider next
(−x3 + 4x2 − x − 6) ÷ (x − 2)

We write the following:

(−x3 + 4x2 − x − 6) ÷ (x − 2) =
−x3 + 2x2

2x2 − x

2x2 − 4x

3x − 6

3x − 6

0 remainder

−x2 + 2x + 3

← −x2(x−2)

← 2x(x − 2) ←

← 3(x − 2) ←

(You can omit the boxes, but they should help you to see what is going on.) We conclude
that (−x3 + 4x2 − x − 6) ÷ (x − 2) = −x2 + 2x + 3. However, it is easy to see that
−x2 + 2x + 3 = −(x + 1)(x − 3). So

−x3 + 4x2 − x − 6 = −(x + 1)(x − 3)(x − 2)

E X A M P L E 5 Prove that the polynomial P(x) = −2x3 +2x2 +10x +6 has a zero at x = 3, and factor
the polynomial.

Solution: Inserting x = 3 yields P(3) = 0, so x = 3 is a zero. According to (5), the
polynomial P(x) has x − 3 as a factor. Performing the division (−2x3 + 2x2 + 10x + 6) ÷
(x − 3), we find that the result is −2(x2 + 2x + 1) = −2(x + 1)2, and so P(x) =
−2(x − 3)(x + 1)2.

Polynomial Division with a Remainder

The division 2734 ÷ 5 gives 546 and leaves the remainder 4. So 2734/5 = 546 + 4/5. We
consider a similar form of division for polynomials.

E X A M P L E 6 Perform the division: (x4 + 3x2 − 4) ÷ (x2 + 2x).

Solution: (x4 + 3x2 − 4) ÷ (x2 + 2x) = x2 − 2x + 7
x4 + 2x3

− 2x3 + 3x2 − 4
− 2x3 − 4x2

7x2 − 4
7x2 + 14x

− 14x − 4 remainder
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(The polynomial x4 + 3x2 − 4 has no terms in x3 and x, so we inserted some extra space
between the powers of x to make room for the terms in x3 and x that arise in the course of
the calculations.) We conclude that x4 + 3x2 − 4 = (x2 − 2x + 7)(x2 + 2x)+ (−14x − 4).
Hence,

x4 + 3x2 − 4

x2 + 2x
= x2 − 2x + 7 − 14x + 4

x2 + 2x

Rational Functions

A rational function is a function R(x) = P(x)/Q(x) that can be expressed as the ratio of
two polynomials P(x) and Q(x). This function is defined for all x where Q(x) �= 0. The
rational function R(x) is called proper if the degree of P(x) is less than the degree of Q(x).
When the degree of P(x) is greater than or equal to that of Q(x), then R(x) is called an
improper rational function. By using polynomial division, any improper rational function
can be written as a polynomial plus a proper rational function, as in Example 6.

E X A M P L E 7 One of the simplest types of rational function is

R(x) = ax + b

cx + d
(c �= 0)

(If c = 0, R(x) is a linear function.) The graph of R is a hyperbola. (See Fig. 5.1.7 for a
typical example where R(x) = (3x − 5)/(x − 2). See also the end of Section 5.5.) A very
simple case is

R(x) = a

x
(a > 0)

Figure 5 shows the graph of this function in the first quadrant. Note that the shaded area A

is always equal to a, independent of which point P we choose on the curve, since the area
is A = x0(a/x0) = a.

y � a�x
a�x0

x0

P

y

x

A

Figure 5 The area A is independent of P

Studying the behaviour of more complicated rational functions becomes easier once we
have developed the proper tools from calculus. (See e.g. Problem 7.9.7.)
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P R O B L E M S F O R S E C T I O N 4 . 7

⊂SM⊃1. Find all integer roots of the following equations:

(a) x4 − x3 − 7x2 + x + 6 = 0 (b) 2x3 + 11x2 − 7x − 6 = 0

(c) x4 + x3 + 2x2 + x + 1 = 0 (d) 1
4 x3 − 1

4 x2 − x + 1 = 0

2. Find all integer roots of the following equations:

(a) x2 + x − 2 = 0 (b) x3 − x2 − 25x + 25 = 0 (c) x5 − 4x3 − 3 = 0

⊂SM⊃3. Perform the following divisions:

(a) (2x3 + 2x − 1) ÷ (x − 1) (b) (x4 + x3 + x2 + x) ÷ (x2 + x)

(c) (x5 − 3x4 + 1) ÷ (x2 + x + 1) (d) (3x8 + x2 + 1) ÷ (x3 − 2x + 1)

⊂SM⊃4. Find possible formulas for each of the three polynomials with graphs shown in Fig. 6.

�1 3

y

x

(1, �2)

�3

�12

21

y

x �3 2

y

x

6

(a)

Figure 6

(b) (c)

5. Perform the following divisions:

(a) (x2 − x − 20)÷ (x − 5) (b) (x3 − 1)÷ (x − 1) (c) (−3x3 + 48x)÷ (x − 4)

6. Show that the division (x4 + 3x2 + 5) ÷ (x − c) leaves a remainder for all values of c.

7. Prove that R(x) = ax + b

cx + d
= a

c
+ bc − ad

c(cx + d)
(c �= 0).

⊂SM⊃8. The following function has been used in demand theory:

E = α
x2 − γ x

x + β
(α, β, and γ are constants)

Perform the division (x2 − γ x) ÷ (x + β), and use the result to express E as a sum of a linear
function and a proper fraction.
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4.8 Power Functions
Consider the general power function f defined by the formula

f (x) = Axr (x > 0, r and A are any constants) (1)

We saw in Section 1.5 how the number xr can be defined for all rational numbers r (that is,
for all fractional exponents). When we consider the power function, we assume that x > 0.
This is because for many values of r , such as r = 1/2, the symbol xr is not defined for
negative values of x. And we exclude x = 0 because 0r is undefined if r ≤ 0.

Here are three examples of why powers with rational exponents are needed:

A. The formula S ≈ 4.84V 2/3 gives the approximate surface area S of a ball as a function
of its volume V . (See Problem 6.)

B. The flow of blood (in litres per second) through the heart of an individual is approxi-
mately proportional to x0.7, where x is the body weight.

C. The formula Y = 2.262K0.203L0.763(1.02)t appears in a study of the growth of national
product, and shows how powers with fractional exponents can arise in economics. (Here
Y is the net national product, K is capital stock, L is labour, and t is time.)

So far we have defined xr for any rational number r . We also need to consider xr when r

is irrational in order for xr to be defined for all real numbers r . How do we define, say, 5
raised to the irrational power π , that is 5π? Because π is close to 3.1, we should define 5π

as approximately 53.1 = 531/10 = 10
√

531, which is defined. An even better approximation is
5π ≈ 53.14 = 5314/100 = 5157/50 = 50

√
5157. We can continue by taking more decimal places

in the representation of π = 3.14159 26535, . . ., and our approximation will be better with
every additional decimal digit. Then the meaning of 5π should be reasonably clear. In any
case, most readers would be content with just using a calculator to find that 5π ≈ 156.993.
(Section 7.11 provides further discussion of the definition of xr when r is irrational.)

Graphs of Power Functions

We return to the power function f (x) = xr , which is now defined for all real numbers r

provided that x > 0. We always have f (1) = 1r = 1, so the graph of the function passes
through the point (1, 1) in the xy-plane. The shape of the graph depends crucially on the
value of r , as Figs. 1–3 indicate.

1

2

3

1 2 3

y � xr  (0 � r � 1)

y

x

1

2

3

1 2 3

y � xr  (r � 1)

y

x

1

2

3

1 2 3

y � xr  (r � 0)

y

x

Figure 1 Figure 2 Figure 3

If 0 < r < 1, the graph is like that in Fig. 1, which resembles the graph of f (x) = x0.5

shown in Fig. 4.3.8. For r > 1 the graph is like that shown in Fig. 2. (For r = 2, the graph is
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the half of the parabola y = x2 shown in Fig. 4.3.6.) Finally, for r < 0, the graph is shown
in Fig. 3. (For r = −1, the graph is half of the hyperbola y = 1/x shown in Fig. 4.3.9.)

Figure 4 illustrates how the graph of y = xr changes with changing positive values of
the exponent.

1

2

1 2

y � x3

y � x2

y � x1�2

y � x1�3

y � x

y

x

Figure 4

P R O B L E M S F O R S E C T I O N 4 . 8

1. Sketch the graphs of y = x−3, y = x−1, y = x−1/2, and y = x−1/3, defined for x > 0.

2. Use a calculator to find approximate values for (a)
√

2
√

2
(b) ππ

3. Solve the following equations for x: (a) 22x = 8 (b) 33x+1 = 1/81 (c) 10x2−2x+2 = 100

⊂SM⊃4. Match each of the graphs A–F with one of the functions (a)–(f) in the following table. (In (f)
try to find a suitable function which has the remaining graph.)

(a) y = 1
2 x2 − x − 3

2 has graph (b) y = 2
√

2 − x has graph

(c) y = − 1
2 x2 + x + 3

2 has graph (d) y = (
1
2

)x − 2 has graph

(e) y = 2
√

x − 2 has graph (f) y = has graph

y

x

y

x

y

x

A B C

y

x

y

x

y

x

D E F

5. Find t when (a) 35t9t = 27 (b) 9t = (27)1/5/3
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6. The formulas for the surface area S and the volume V of a ball with radius r are S = 4πr2 and
V = (4/3)πr3. Express S as a power function of V .

4.9 Exponential Functions
A quantity that increases (or decreases) by a fixed factor per unit of time is said to increase
(or decrease) exponentially. If the fixed factor is a, this leads to the exponential function

f (t) = Aat (a and A are positive constants) (1)

(It is obvious how to modify the subsequent discussion for the case when A is negative.)
Note that if f (t) = Aat , then f (t + 1) = Aat+1 = Aat · a1 = af (t), so the value of
f at time t + 1 is a times the value of f at time t . If a > 1, then f is increasing; if
0 < a < 1, then f is decreasing. (See Figs. 1 and 2.) Because f (0) = Aa0 = A, we can
write f (t) = f (0)at .

Exponential functions appear in many important economic, social, and physical models.
For instance, economic growth, population growth, continuously accumulated interest,
radioactive decay, and decreasing illiteracy have all been described by exponential functions.
In addition, the exponential function is one of the most important functions in statistics.

NOTE 1 Observe the fundamental difference between the two functions

f (x) = ax and g(x) = xa

The second of these two is one of the power functions discussed in Section 4.8. For the
exponential function ax , it is the exponent x that varies, while the base a is constant. For the
power function xa , on the other hand, the exponent a is constant, while the base x varies.

A

f (t) � Aat

(a � 1)

y

t

y

t

A

f (t) � Aat

(0 � a � 1)

Figure 1 Graph of f (t) = Aat (a > 1) Figure 2 Graph of f (t) = Aat (0 < a < 1)

E X A M P L E 1 (Population Growth) Consider a growing population like that of Europe during the
20th century. In Example 4.5.1, we constructed a linear function P = 6.4 t + 641, where P

denotes the population in millions, t = 0 corresponds to the year 1960 when the population
was 641 million, and t = 10 corresponds to the year 1970 when the population estimate
was 705 million. According to this formula, the annual increase in population would be
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constant and equal to 6.4 million. This is a very unreasonable assumption. After all, the
linear function implies that, for t ≤ −101 (i.e., for years before 1860), the population of
Europe was negative!

In fact, according to UN estimates, the European population was expected to grow by
approximately 0.72% annually during the period 1960 to 2000. With a population of 641
million in 1960, the population in 1961 would then be 641 · 1.0072 (see Section 1.2), which
is approximately 645 million. Next year, in 1962, it would have grown to 641 · 1.00722,
which is approximately 650 million. If growth were to continue at 0.72% annually, the
population figure would grow by the factor 1.0072 each year. Then, t years after 1960, the
population would be given by

P(t) = 641 · 1.0072t

Thus, P(t) is an exponential function of the form (1). For the year 2000, corresponding to
t = 40, the formula yields the estimate P(40) ≈ 854 million. (The actual figure turned out
to be about 728 million, which shows the limitations of naive projections.)

Many countries, particularly in Africa, have recently had far faster population growth than
Europe. For instance, during the 1970s and 1980s, the growth rate of Zimbabwe’s population
was close to 3.5% annually. If we let t = 0 correspond to the census year 1969 when the
population was 5.1 million, the population t years after 1969 is P(t) = 5.1 · 1.035t . If we
calculate P(20), P(40), and P(60) using this formula, we get roughly 10, 20, and 40. Thus,
the population of Zimbabwe roughly doubles after 20 years; during the next 20 years, it
doubles again, and so on. We say that the doubling time of the population is approximately
20 years. Of course, this kind of extrapolation is quite dubious, because exponential growth
of population cannot go on forever. (If the growth rate were to continue at 3.5% annually,
there was no emigration, and the Zimbabwean territory did not expand, then by year 2296
each Zimbabwean would have only 1 square metre of land on average. See Problem 6.)

If a > 1 (and A > 0), the exponential function f (t) = Aat is increasing. Its doubling
time is the time it takes for it to double. Its value at t = 0 is A, so the doubling time t∗

is given by the equation f (t∗) = Aat∗ = 2A, or after cancelling A, by at∗ = 2. Thus the
doubling time of the exponential function f (t) = Aat is the power to which a must be
raised in order to get 2.5 (In Problem 7 you will be asked to show that the doubling time is
independent of which year you take as the base.)

E X A M P L E 2 Use your calculator to find the doubling time of

(a) a population (like that of Zimbabwe) increasing at 3.5% annually (thus confirming the
earlier calculations)

(b) the population of Kenya in the 1980s (which then had the world’s highest annual growth
rate of population, 4.2%).

Solution:
(a) The doubling time t∗ is given by the equation 1.035t∗ = 2. Using a calculator shows

that 1.03515 ≈ 1.68, whereas 1.03525 ≈ 2.36. Thus, t∗ must lie between 15 and 25.
Because 1.03520 ≈ 1.99, t∗ is close to 20. In fact, t∗ ≈ 20.15.

5 By using natural logarithms (see Example 4.10.2) we find that t∗ = ln 2/ ln a.
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(b) The doubling time t∗ is given by the equation 1.042t∗ = 2. Using a calculator, we find
that t∗ ≈ 16.85. Thus, with a growth rate of 4.2%, Kenya’s population would double
in less than 17 years.

E X A M P L E 3 (Compound Interest) A savings account of $K that increases by p% interest each
year will have increased after t years to K(1 +p/100)t (see Section 1.2). According to this
formula with K = 1, a deposit of $1 earning interest at 8% per year (p = 8) will have
increased after t years to (1 + 8/100)t = 1.08t .

Table 1 How $1 of savings increases with time at 8% annual interest

t 1 2 5 10 20 30 50 100 200

(1.08)t 1.08 1.17 1.47 2.16 4.66 10.06 46.90 2199.76 4 838 949.60

After 30 years, $1 of savings has increased to more than $10, and after 200 years, it has
grown to more than $4.8 million! Observe that the expression 1.08t defines an exponential
function of the type (1) with a = 1.08. Even if a is only slightly larger than 1, f (t) will
increase very quickly when t is large.

E X A M P L E 4 (Continuous Depreciation) Each year the value of most assets such as cars, stereo
equipment, or furniture decreases, or depreciates. If the value of an asset is assumed to
decrease by a fixed percentage each year, then the depreciation is called continuous. (Straight
line depreciation was discussed in Problem 4.5.5.)

Assume that a car, which at time t = 0 has the value P0, depreciates at the rate of 20%
each year over a 5 year period. What is its value A(t) at time t , for t = 1, 2, 3, 4, 5?

Solution: After 1 year its value is P0 − (20P0/100) = P0(1 − 20/100) = P0(0.8)1.
Thereafter it depreciates each subsequent year by the factor 0.8. Thus, after t years, its
value is A(t) = P0(0.8)t . In particular, A(5) = P0(0.8)5 ≈ 0.32P0, so after 5 years its
value has decreased to about 32% of its original value.

The most important properties of the exponential function are summed up by the following:

T H E G E N E R A L E X P O N E N T I A L F U N C T I O N

The general exponential function with base a > 0 is

f (x) = Aax

where a is the factor by which f (x) changes when x increases by 1.

If a = 1 + p/100, where p > 0 and A > 0, then f (x) will increase by p% for
each unit increase in x.

If a = 1 − p/100, where 0 < p < 100 and A > 0, then f (x) will decrease by
p% for each unit increase in x.
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The Natural Exponential Function
Each base a of f (x) = Aax gives a different exponential function. In mathematics, one
particular value of a gives an exponential function that is far more important than all others.
One might guess that a = 2 or a = 10 would be this special base. Certainly, powers to the
base of 2 are important in computing, and powers to the base 10 occur in our usual decimal
number system. Nevertheless, once we have studied some calculus, it will turn out that the
most important base for an exponential function is an irrational number a little larger than
2.7. In fact, it is so distinguished that it is denoted by the single letter e, probably because
it is the first letter of the word “exponential”. Its value to 15 decimals is6

e = 2.7 18281828459045 . . .

Many formulas in calculus become much simpler when e is used as the base for exponential
functions. Given this base e, the corresponding exponential function

f (x) = ex (2)

is called the natural exponential function. Later (in Example 7.6.2) we shall give an
explicit way of approximating ex to an arbitrary degree of accuracy. Of course, all the usual
rules for powers apply also to the natural exponential function. In particular,

(a) eset = es+t (b)
es

et
= es−t (c) (es)t = est

The graphs of f (x) = ex and f (x) = e−x are given in Fig. 3.

1

2

3

4

�1�2 1 2

y

x

y � exy � e�x

Figure 3 The graphs of y = ex and y = e−x

Powers with e as their base, even e1, are difficult to compute by hand. A pocket
calculator with an ex function key can do this immediately, however. For instance,
one finds that e1.0 ≈ 2.7183, e0.5 ≈ 1.6487, and e−π ≈ 0.0432.

NOTE 2 Sometimes the notation exp(u), or even exp u, is used in place of eu. If u

is a complicated expression like x3 + x
√

x − 1/x + 5, it is easier to read and write
exp(x3 + x

√
x − 1/x + 5) instead of ex3+x

√
x−1/x+5.

6 Though the number e had appeared over 100 years earlier, the Swiss mathematician Euler was
the first to denote it by the letter e. He subsequently proved that it was irrational and calculated it
to 23 decimal places.
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P R O B L E M S F O R S E C T I O N 4 . 9

1. If the population of Europe grew at the rate of 0.72% annually, what would be the doubling
time?

2. The population of Botswana was estimated to be 1.22 million in 1989, and to be growing at the
rate of 3.4% annually. If t = 0 denotes 1989, find a formula for the population P(t) at date t .
What is the doubling time?

3. A savings account with an initial deposit of $100 earns 12% interest per year. What is the amount
of savings after t years? Make a table similar to Table 1. (Stop at 50 years.)

4. Fill in the following table and sketch the graphs of y = 2x and y = 2−x .

x −3 −2 −1 0 1 2 3

2x

2−x

5. Use your calculator to fill in the following table:

x −2 −1 0 1 2

y = 1√
2π

e− 1
2 x2

Use it to find five points on the “bell curve” graph of

y = 1√
2π

e− 1
2 x2

(the normal density function)

which is one of the most important functions in statistics.

6. The area of Zimbabwe is approximately 3.91 · 1011 square metres. Referring to the text at the
end of Example 1 and using a calculator, solve the equation 5.1 · 106 · 1.035t = 3.91 · 1011 for
t , and interpret your answer. (Recall that t = 0 corresponds to 1969.)

7. With f (t) = Aat , if f (t + t∗) = 2f (t), prove that at∗ = 2. (This shows that the doubling time
t∗ of the general exponential function is independent of the initial time t .)

8. Which of the following equations do not define exponential functions of x?

(a) y = 3x (b) y = x
√

2 (c) y = (
√

2)x (d) y = xx (e) y = (2.7)x (f) y = 1/2x

9. Suppose that all prices rise at the same proportional rate in a country whose inflation rate is 19%
per year. For an item that currently costs P0, use the implied formula P(t) = P0(1.19)t for the
price after t years in order to predict the prices of:

(a) A 20 kg bag of corn, presently costing $16, after 5 years.

(b) A $4.40 can of coffee after 10 years. (c) A $250 000 house after 4 years.
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10. Find possible exponential functions for the graphs in Fig. 4.

2

y

x

(2, 8)

2
3

y

x

(1, 6)

��1,   �

y

x

1
4�4,   �

4

(a) (b) (c)

Figure 4

4.10 Logarithmic Functions
The doubling time of an exponential function f (t) = Aat was defined as the time it takes
for f (t) to become twice as large. In order to find the doubling time t∗, we must solve the
equation at∗ = 2 for t∗. In economics, we often need to solve similar problems:

A. At the present rate of inflation, how long will it take the price level to triple?

B. If the world’s population grows at 2% per year, how long does it take to double its size?

C. If $1000 is invested in a savings account bearing interest at the annual rate of 8%, how
long does it take for the account to reach $10 000?

All these questions involve solving equations of the form ax = b for x. For instance, problem
C reduces to the problem of finding which x solves the equation 1000(1.08)x = 10 000.

We begin with equations in which the base of the exponential is e, which was, as you
recall, the irrational number 2.718 . . .. Here are some examples:

(i) ex = 4 (ii) 5e−3x = 16 (iii) Aαe−αx = k

In all these equations, the unknown x occurs as an exponent. We therefore introduce the
following useful definition. If eu = a, we call u the natural logarithm of a, and we write
u = ln a. Hence, we have the following definition of the symbol ln a:

eln a = a (a is any positive number) (1)

Thus, ln a is the power of e you need to get a. In particular, if ex = 4, then x must be ln 4.
Because eu is a strictly increasing function of u, it follows that ln a is uniquely determined

by the definition (1). You should memorize this definition. It is the foundation for everything
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in this section, and for a good part of what comes later. The following example illustrates
how to use this definition.

E X A M P L E 1 Find the following:

(a) ln 1 (b) ln e (c) ln(1/e) (d) ln 4 (e) ln(−6)

Solution:

(a) ln 1 = 0, because e0 = 1 and so 0 is the power of e that you need to get 1.

(b) ln e = 1, because e1 = e and so 1 is the power of e that you need to get e.

(c) ln(1/e) = ln e−1 = −1, because −1 is the power of e that you need to get 1/e.

(d) ln 4 is the power of e you need to get 4. Because e1 ≈ 2.7 and e2 = e1 · e1 ≈ 7.3, the
number ln 4 must lie between 1 and 2. By using the ex key on a calculator, you should
be able to find a good approximation to ln 4 by trial and error. However, it is easier to
press 4 and the ln x key. Then you find that ln 4 ≈ 1.386. Thus, e1.386 ≈ 4.

(e) ln(−6) would be the power of e you need to get −6. Because ex is positive for all x, it is
obvious that ln(−6) must be undefined. (The same is true for ln x whenever x ≤ 0.)

The following box collects some useful rules for natural logarithms.

R U L E S F O R T H E N A T U R A L L O G A R I T H M I C F U N C T I O N L N :

(a) ln(xy) = ln x + ln y (x and y positive)

(The logarithm of a product is the sum of the logarithms of the factors.)

(b) ln
x

y
= ln x − ln y (x and y positive)

(The logarithm of a quotient is the difference between the logarithms of its nu-
merator and denominator.)

(c) ln xp = p ln x (x positive)

(The logarithm of a power is the exponent multiplied by the logarithm of the
base.)

(d) ln 1 = 0, ln e = 1, x = eln x, (x > 0) and ln ex = x

(2)

To show (a), observe first that the definition of ln(xy) implies that eln(xy) = xy. Furthermore,
x = eln x and y = eln y , so

eln(xy) = xy = eln xeln y = eln x+ln y (∗)
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where the last step uses the rule eset = es+t . In general, eu = ev implies u = v, so we
conclude from (∗) that ln(xy) = ln x + ln y.

The proofs of (b) and (c) are based on the rules es/et = es−t and (es)t = est , respectively,
and are left to the reader. Finally, (d) displays some important properties for convenient
reference.

It is tempting to replace ln(x + y) by ln x + ln y, but this is quite wrong. In fact, ln x + ln y

is equal to ln(xy), not to ln(x + y).

There are no simple formulas for ln(x + y) and ln(x − y).

Here are some examples that apply the previous rules.

E X A M P L E 2 Recall that the doubling time t∗ of an exponential function f (t) = Aat is given by the
formula at∗ = 2. Solve this equation for t∗.

Solution: Taking the natural logarithm of both sides of the equation yields ln at∗ = ln 2.
Using rule (c) we get t∗ ln a = ln 2, and so t∗ = ln 2/ ln a.

E X A M P L E 3 Express (a) ln 4, (b) ln
3√

25, and (c) ln(1/16) in terms of ln 2.

Solution:

(a) ln 4 = ln(2 · 2) = ln 2 + ln 2 = 2 ln 2. (Or: ln 4 = ln 22 = 2 ln 2.)

(b) We have
3√

25 = 25/3. Therefore, ln
3√

25 = ln 25/3 = (5/3) ln 2.

(c) ln(1/16) = ln 1 − ln 16 = 0 − ln 24 = −4 ln 2. (Or: ln(1/16) = ln 2−4 = −4 ln 2.)

E X A M P L E 4 Solve the following equations for x:

(a) 5e−3x = 16 (b) Aαe−αx = k (c) (1.08)x = 10 (d) ex + 4e−x = 4

Solution:

(a) Take ln of each side of the equation to obtain ln(5e−3x) = ln 16. The product rule gives
ln(5e−3x) = ln 5+ ln e−3x . Here ln e−3x = −3x, by rule (d). Hence, ln 5−3x = ln 16,
which gives

x = 1

3
(ln 5 − ln 16) = 1

3
ln

5

16

(b) We argue as in (a) and obtain ln(Aαe−αx) = ln k, or ln(Aα) + ln e−αx = ln k, so
ln(Aα) − αx = ln k. Finally, therefore,

x = 1

α
[ln(Aα) − ln k] = 1

α
ln

Aα

k
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(c) Again we take the ln of each side of the equation and obtain x ln 1.08 = ln 10. So the
solution is x = ln 10/ ln 1.08, which is ≈ 29.9. Thus, it takes just short of 30 years for
$1 to increase to $10 when the interest rate is 8%. (See Table 1 in Example 4.9.3.)

(d) It is very tempting to begin with ln(ex + 4e−x) = ln 4, but this leads nowhere, because
ln(ex + 4e−x) cannot be further evaluated. Instead, we argue like this: Putting u = ex

gives e−x = 1/ex = 1/u, so the equation is u + 4/u = 4, or u2 + 4 = 4u. Solving
this quadratic equation for u yields u = 2 as the only solution. Hence, ex = 2, and
so x = ln 2.

The Function g(x) = ln x

For each positive number x, the number ln x is defined by eln x = x. In other words, u = ln x

is the solution of the equation eu = x. This definition is illustrated in Fig. 1. We call the
resulting function

g(x) = ln x (x > 0) (3)

the natural logarithm of x. Think of x as a point moving upwards on the vertical axis from
the origin. As x increases from values less than 1 to values greater than 1, so g(x) increases
from negative to positive values. Because eu tends to 0 as u becomes large negative, so
g(x) becomes large negative as x tends to 0. Repeating the definition of ln x, then inserting
y = ln x and taking the ln of each side, yields

(i) eln x = x for all x > 0 (ii) ln ey = y for all y

1

f (u) � eu

g (x)

v

u

x

�1

1

2

1 2 3 4

y

x

g (x) � ln x

Figure 1 Illustration of the
definition of g(x) = ln x

Figure 2 The graph of the
logarithmic function g(x) = ln x

In Fig. 2 we have drawn the graph of g(x) = ln x. The shape of this graph ought to be
remembered. It can be obtained by reflecting the graph of Fig. 1 about the line v = u so that
the u- and v-axes are interchanged, and become the y- and x-axes of Fig. 2, respectively.
According to Example 1, we have g(1/e) = −1, g(1) = 0, and g(e) = 1. Observe that this
corresponds well with the graph.

Logarithms with Bases other than e
Recall that we defined ln x as the exponent to which we must raise the base e in order to obtain x.
From time to time, it is useful to have logarithms based on numbers other than e. For many years,
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until the use of mechanical and then electronic calculators became widespread, tables of logarithms
to the base 10 were frequently used to simplify complicated calculations involving multiplication,
division, square roots, and so on.

Suppose that a is a fixed positive number (usually chosen > 1). If au = x, then we call u the
logarithm of x to base a and write u = loga x. The symbol loga x is then defined for every positive
number x by the following:

aloga x = x (4)

For instance, log2 32 = 5, because 25 = 32, whereas log10(1/100) = −2, because 10−2 = 1/100.
Note that ln x is loge x.

By taking the ln on each side of (4), we obtain loga x · ln a = ln x, so that

loga x = 1

ln a
ln x (5)

This reveals that the logarithm of x in the system with base a is proportional to ln x, with a propor-
tionality factor 1/ ln a. It follows immediately that loga obeys the same rules as ln:

(a) loga(xy) = loga x + loga y,

(c) loga xp = p loga x,

(b) loga(x/y) = loga x − loga y

(d) loga 1 = 0 and loga a = 1
(6)

For example, (a) follows from the corresponding rule for ln:

loga(xy) = 1

ln a
ln(xy) = 1

ln a
(ln x + ln y) = 1

ln a
ln x + 1

ln a
ln y = loga x + loga y

P R O B L E M S F O R S E C T I O N 4 . 1 0

1. Express as multiples of ln 3: (a) ln 9 (b) ln
√

3 (c) ln 5
√

32 (d) ln
1

81

2. Solve the following equations for x:

(a) 3x = 8 (b) ln x = 3 (c) ln(x2 − 4x + 5) = 0

(d) ln[x(x − 2)] = 0 (e)
x ln(x + 3)

x2 + 1
= 0 (f) ln(

√
x − 5) = 0

⊂SM⊃3. Solve the following equations for x:

(a) 3x4x+2 = 8 (b) 3 ln x + 2 ln x2 = 6 (c) 4x − 4x−1 = 3x+1 − 3x

(d) log2 x = 2 (e) logx e2 = 2 (f) log3 x = −3

⊂SM⊃4. (a) Let f (t) = Aert and g(t) = Best , with A > 0, B > 0, and r �= s. Solve the equation
f (t) = g(t) for t .

(b) In 1990 the GNP (gross national product) of China was estimated to be 1.2 ·1012 US dollars,
and the rate of growth was estimated to be r = 0.09. By comparison, the GNP for the USA
was reported as $5.6 ·1012, with an estimated rate of growth of s = 0.02. If the GNP of each
country continued to grow exponentially at the rates r = 0.09 and s = 0.02, respectively,
when would the GNP of the two nations be the same?

5. Which of the following formulas are always true and which are sometimes false (all variables
are positive)?

(a) (ln A)4 = 4 ln A (b) ln B = 2 ln
√

B (c) ln A10 − ln A4 = 3 ln A2
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6. Which of the following formulas are always true and which are sometimes false (all variables
are positive)?

(a) ln
A + B

C
= ln A + ln B − ln C (b) ln

A + B

C
= ln(A + B) − ln C

(c) ln
A

B
+ ln

B

A
= 0 (d) p ln(ln A) = ln(ln Ap)

(e) p ln(ln A) = ln(ln A)p (f)
ln A

ln B + ln C
= ln A(BC)−1

7. Simplify the following expressions:

(a) exp
[
ln(x)

] − ln
[
exp(x)

]
(b) ln

[
x4 exp(−x)

]
(c) exp

[
ln(x2) − 2 ln y

]

R E V I E W P R O B L E M S F O R C H A P T E R 4

1. (a) Let f (x) = 3 − 27x3. Compute f (0), f (−1), f (1/3), and f (
3
√

2).

(b) Show that f (x) + f (−x) = 6 for all x.

2. (a) Let F(x) = 1 + 4x

x2 + 4
. Compute F(0), F(−2), F(2), and F(3).

(b) What happens to F(x) when x becomes large positive or negative?

(c) Give a rough sketch of the graph of F .

3. Figure A combines the graphs of a quadratic function f and a linear function g. Use the graphs
to find those x where: (i) f (x) ≤ g(x) (ii) f (x) ≤ 0 (iii) g(x) ≥ 0.

y

−4
−3
−2
−1

1
2
3
4
5
6

x−3 −2 −1 1 2 3 4

y

x

y = g(x)

y = f (x)

Figure A

4. Find the domains of:

(a) f (x) =
√

x2 − 1 (b) g(x) = 1√
x − 4

(c) h(x) =
√

(x − 3)(5 − x)

5. (a) The cost of producing x units of a commodity is given by C(x) = 100 + 40x + 2x2.
Find C(0), C(100), and C(101) − C(100).

(b) Find C(x + 1) − C(x), and explain in words the meaning of the difference.
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6. Find the slopes of the straight lines (a) y = −4x + 8 (b) 3x + 4y = 12 (c)
x

a
+ y

b
= 1

7. Find equations for the following straight lines:

(a) L1 passes through (−2, 3) and has a slope of −3.

(b) L2 passes through (−3, 5) and (2, 7).

(c) L3 passes through (a, b) and (2a, 3b) (suppose a �= 0).

8. If f (x) = ax + b, f (2) = 3, and f (−1) = −3, then f (−3) = ?

9. Fill in the following table, then make a rough sketch of the graph of y = x2ex .

x −5 −4 −3 −2 −1 0 1

y = x2ex

10. Find the equation for the parabola y = ax2 +bx+c that passes through the three points (1, −3),
(0, −6), and (3, 15). (Hint: Determine a, b, and c.)

11. (a) If a firm sells Q tons of a product, the price P received per ton is P = 1000 − 1
3 Q. The

price it has to pay per ton is P = 800 + 1
5 Q. In addition, it has transportation costs of 100

per ton. Express the firm’s profit π as a function of Q, the number of tons sold, and find
the profit-maximizing quantity.

(b) Suppose the government imposes a tax on the firm’s product of 10 per ton. Find the new
expression for the firm’s profits π̂ and the new profit-maximizing quantity.

12. In Example 4.6.1, suppose a tax of t per unit produced is imposed. If t < 100, what production
level now maximizes profits?

13. (a) A firm produces a commodity and receives $100 for each unit sold. The cost of producing
and selling x units is 20x+0.25x2 dollars. Find the production level that maximizes profits.

(b) A tax of $10 per unit is imposed. What is now the optimal production level?

(c) Answer the question in (b) if the sales price per unit is p, the total cost of producing and
selling x units is αx + βx2, and the tax per unit is t .

⊂SM⊃14. Write the following polynomials as products of linear factors:

(a) p(x) = x3 + x2 − 12x (b) q(x) = 2x3 + 3x2 − 18x + 8

15. Which of the following divisions leave no remainder? (a and b are constants; n is a natural
number.)

(a) (x3 − x − 1)/(x − 1) (b) (2x3 − x − 1)/(x − 1)

(c) (x3 − ax2 + bx − ab)/(x − a) (d) (x2n − 1)/(x + 1)

16. Find the values of k that make the polynomial q(x) divide the polynomial p(x):

(a) p(x) = x2 − kx + 4; q(x) = x − 2 (b) p(x) = k2x2 − kx − 6; q(x) = x + 2

(c) p(x) = x3 − 4x2 + x + k; q(x) = x + 2 (d) p(x) = k2x4 − 3kx2 − 4; q(x) = x − 1
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⊂SM⊃17. The cubic function p(x) = 1
4 x3 − x2 − 11

4 x + 15
2 has three real zeros. Verify that x = 2 is one

of them, and find the other two.

18. In 1964 a five-year plan was introduced in Tanzania. One objective was to double the real per
capita income over the next 15 years. What is the average annual rate of growth of real income
per capita required to achieve this objective?

⊂SM⊃19. Figure B shows the graphs of two functions f and g. Check which of the constants a, b, c, p,
q, and r are > 0, = 0, or < 0.

y

x

y

x

y = f (x) = ax + b

x + c
y = g(x) = px2 + qx + r

Figure B

20. (a) Determine the relationship between the Celsius (C) and Fahrenheit (F) temperature scales
when you know that (i) the relation is linear; (ii) water freezes at 0◦C and 32◦F; and
(iii) water boils at 100◦C and 212◦F.

(b) Which temperature is represented by the same number in both scales?

21. Solve for t : (a) x = eat+b (b) e−at = 1/2 (c)
1√
2π

e− 1
2 t2 = 1

8

⊂SM⊃22. Prove the following equalities (with appropriate restrictions on the variables):

(a) ln x − 2 = ln(x/e2) (b) ln x − ln y + ln z = ln
xz

y

(c) 3 + 2 ln x = ln(e3x2) (d)
1

2
ln x − 3

2
ln

1

x
− ln(x + 1) = ln

x2

x + 1
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The paradox is now fully established that the

utmost abstractions are the true weapons with

which to control our thought of concrete facts.

—A.N. Whitehead

This chapter begins by examining more closely functions of one variable and their graphs. In

particular, we shall consider how changes in a function relate to shifts in its graph, and how

to construct new functions from old ones. Next we discuss when a function has an inverse, and

explain how an inverse function reverses the effect of the original function, and vice versa.

Any equation in two variables can be represented by a curve (or a set of points) in the xy-

plane. Some examples illustrate this. The chapter ends with a discussion of the general concept

of a function, which is one of the most fundamental in mathematics, of great importance also

in economics.

5.1 Shifting Graphs
Bringing a significant new oil field into production will affect the supply curve for oil, with
consequences for its equilibrium price. Adopting an improved technology in the production
of a commodity will imply an upward shift in its production function. This section studies
in general how the graph of a function f (x) relates to the graphs of the functions

f (x) + c, f (x + c), cf (x), and f (−x)

Here c is a positive or negative constant. Before formulating any general rules, consider the
following example.

E X A M P L E 1 We know the graph of y = √
x, which is one of those drawn in Fig. 1. Sketch the graphs

of y = √
x + 2, y = √

x − 2, y = √
x + 2, y = √

x − 2, y = 2
√

x, y = −√
x, and

y = √−x.

Solution: The graphs of y = √
x + 2 and y = √

x − 2, shown in Fig. 1, are obviously
obtained by moving the graph of y = √

x upwards or downwards by two units, respectively.
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The function y = √
x + 2 is defined for x + 2 ≥ 0, that is, for x ≥ −2. Its graph, which

is shown in Fig. 2, is obtained by moving the graph of y = √
x two units to the left. In the

same way the graph of y = √
x − 2 is obtained by moving the graph of y = √

x two units
to the right, as shown in Fig. 2.

The graph of y = 2
√

x is obtained by stretching the graph of f vertically upwards by
a factor of two, as shown in Fig. 3. The graph of y = −√

x is obtained by reflecting the
graph of y = √

x about the x-axis, as shown in Fig. 4.

Finally, the function y = √−x, is defined for −x ≥ 0, that is, for x ≤ 0, and its graph
is shown in Fig. 5. It is obtained by reflecting the graph of y = √

x about the y-axis.

y � �x
3

4

2

1

�1

�2

1 2 3 4 5

y

x

y � �x � 2

y � �x � 2

y � �x

3

4

2

1

�1

�2

�2 �1 1 2 3 4 5

y

x

y � �x � 2

y � �x � 2

Figure 1 y = √
x ± 2 Figure 2 y = √

x ± 2

3

4

2

1

1 2 3 4 5

y

x

y � �x

y � 2�x 2

1

�1

�2

1 2 3 4 5

y

x

y � �x

y � ��x

Figure 3 y =√
x and y =2

√
x Figure 4 y = ±√

x

�2�3�5 �4 �1 1 2 3 4 5

2

3

1

y

x

y � �xy � ��x

Figure 5 y = √±x
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General rules for shifting the graph of y = f (x):

(i) If y = f (x) is replaced by y = f (x) + c, the graph is moved upwards by c

units if c > 0 (downwards if c < 0).

(ii) If y = f (x) is replaced by y = f (x + c), the graph is moved c units to the
left if c > 0 (to the right if c < 0).

(iii) If y = f (x) is replaced by y = cf (x), the graph is stretched vertically if
c > 0 (stretched vertically and reflected about the x-axis if c < 0).

(iv) If y = f (x) is replaced by y = f (−x), the graph is reflected about the
y-axis.

(1)

NOTE 1 If the independent variable is y and x = g(y), then in the recipe one should
interchange the words “upwards” with “to the right”, and “downwards” with “to the left”.

Combining these rules with Figures 4.3.5–4.3.10, a large number of useful graphs can be
sketched with ease, as the following example illustrates.

E X A M P L E 2 Sketch the graphs of (i) y = 2 − (x + 2)2 (ii) y = 1

x − 2
+ 3

Solution:
(i) First y = x2 is reflected about the x-axis to obtain the graph of y = −x2. This graph

is then moved 2 units to the left, which results in the graph of y = −(x + 2)2. Finally,
this new graph is raised by 2 units, and we obtain the graph shown in Fig. 6.

(ii) The graph of y = 1/(x − 2) is obtained by moving the graph of y = 1/x in Fig. 4.3.9
2 units to the right. By moving the new graph 3 units up, we get the graph in Fig. 7.

y � 2 � (x � 2)2

y � �(x � 2)2

y � x2

y � �x2

�2�4 2

2

1

�1

�2

y

x

y �            � 3
1

x � 2

2 4 6

2

6

4

y

x

Figure 6 y = 2 − (x + 2)2 Figure 7 y = 1/(x − 2) + 3

E X A M P L E 3 In Example 4.5.3 we studied the simple demand and supply functions

D = 100 − P, S = 10 + 2P (∗)
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which gave the equilibrium price P e = 30 with corresponding quantity Qe = 70. Suppose
that there is a shift to the right in the supply curve, so that the new supply at price P is
S̃ = 16+2P . Then the new equilibrium price P̃ e is determined by the equation 100− P̃ e =
16+2P̃ e, which gives P̃ e = 28, with corresponding quantity Q̃e = 100 −28 = 72. Hence
the new equilibrium price is lower than the old one, while the quantity is higher. The outward
shift in the supply curve from S to S̃ implies that the equilibrium point moves down to the
right along the unchanged demand curve. This is shown in Fig. 8.

30
28

70 72

P

Q, D, S

D � 100 � P

S � 10 � 2P

S̃ � 16 � 2P

Pe

Qe

P̃e

Q̃ e

S � α � βP

S̃ � α̃ � βP

P

Q, D, S

D � a � bP

Figure 8 Figure 9

In Example 4.5.4 we studied the general linear demand and supply functions

D = a − bP, S = α + βP

The equilibrium price P e and corresponding equilibrium quantity Qe were given by

P e = a − α

β + b
, Qe = aβ + αb

β + b

Suppose that there is a shift in the supply curve so that the new supply at each price P

is S̃ = α̃ + βP , where α̃ > α. Then the new equilibrium price P̃ e is determined by the
equation a − bP̃ e = α̃ + βP̃ e, implying that

P̃ e = a − α̃

β + b
, with Q̃e = a − bP̃ e = aβ + α̃b

β + b

The differences between the new and the old equilibrium prices and quantities are

P̃ e − P e = α − α̃

β + b
and Q̃e − Qe = (α̃ − α)b

β + b
= −b(P̃ e − P e)

We see that P̃ e is less than P e (because α̃ > α), while Q̃e is larger than Qe. This is shown
in Fig. 9. The rightward shift in the supply curve from S to S̃ implies that the equilibrium
point moves down and to the right along the unchanged demand curve. Upward shifts in
the supply curve resulting from, for example, taxation or increased cost, can be analysed in
the same way. So can shifts in the demand curve.
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E X A M P L E 4 Suppose a person earning y (dollars) in a given year pays f (y) (dollars) in income
tax. The government decides to reduce taxes. One proposal is to allow every individual
to deduct d dollars from their taxable income before the tax is calculated. An alternative
proposal involves calculating income tax on the full amount of taxable income, and then
allowing each person a “tax credit” that deducts c dollars from the total tax due. Illustrate
graphically the two proposals for a “normal” tax function f , and mark off the income y∗

where the two proposals yield the same tax revenue.

y*

c

dTax (T )

Income (y)

T � f (y) T2 � f (y) � c

T1 � f (y � d )

Figure 10 The graphs of T1 = f (y −d) and T2 = f (y)−c

Solution: Figure 10 illustrates the situation for a “progressive” tax schedule in which the
average tax rate, T/y = f (y)/y, is an increasing function of y. First draw the graph of the
original tax function, T = f (y). If taxable income is y and the deduction is d, then y − d

is the reduced taxable income, and so the tax liability is f (y − d). By shifting the graph of
the original tax function d units to the right, we obtain the graph of T1 = f (y − d).

The graph of T2 = f (y) − c is obtained by lowering the graph of T = f (y) by c units.
The income y∗ which gives the same tax under the two different schemes is given by
the equation

f (y∗ − d) = f (y∗) − c

Note that T1 > T2 when y < y∗, but that T1 < T2 when y > y∗. Thus, the tax credit
is worth more to those with low incomes; the deduction is worth more to those with high
incomes (as one might expect).

P R O B L E M S F O R S E C T I O N 5 . 1

1. Use Fig. 4.3.6 and rules for shifting graphs to sketch the graphs of

(a) y = x2 + 1 (b) y = (x + 3)2 (c) y = 3 − (x + 1)2

2. If y = f (x) has the graph suggested in Fig. 11, sketch the graphs of

(a) y = f (x − 2) (b) y = f (x) − 2 (c) y = f (−x)
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y � f (x)

y

x

(0, 2)

(�2, 0)

(1, 0)

Figure 11

3. Suppose that in the model (∗) of Example 3, there is a positive shift in demand so that the new
demand at price P is D̃ = 106 − P . Find the new equilibrium point and illustrate.

4. Use Fig. 4.3.10 and the rules for shifting graphs to sketch the graph of y = 2 − |x + 2|.

5. Starting with the graph of f (x) = 1/x2, sketch the graph of g(x) = 2 − (x + 2)−2.

6. Suppose in Example 4 that f (y) = Ay + By2 where A and B are positive parameters. Find y∗
in this case.

5.2 New Functions from Old
Figure 1 gives a graphical representation of the number of male and female students regis-
tered at a certain university in the period 1986 to 1997.

f (t)

m (t)

86 97

86 97 t

t

m (t) � f (t)

m (t)

86 91 97

60

100

20

Number in thousands

Male

Female

Year

Figure 1

Let f (t) and m(t) denote the number of female and male students in year t , while n(t)

denotes the total number of students. Of course,

n(t) = f (t) + m(t)
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The graph of the total number n(t) is obtained by piling the graph of f (t) on top of the graph
of m(t). Suppose in general that f and g are functions which both are defined in a set A

of real numbers. The function F defined by the formula F(x) = f (x) + g(x) is called the
sum of f and g, and we write F = f + g. The function G defined by G(x) = f (x)− g(x)
is called the difference between f and g, and we write G = f − g.

Sums and differences of functions are often seen in economic models. Consider the
following typical examples.

E X A M P L E 1 The cost of producing Q units of a commodity is C(Q). The cost per unit of output,
A(Q) = C(Q)/Q, is called the average cost.

A(Q) = C(Q)/Q (average cost)

If, in particular, C(Q) = aQ3 + bQ2 + cQ + d is a cubic cost function of the type shown
in Fig. 4.7.2, the average cost is

A(Q) = aQ2 + bQ + c + d/Q, Q > 0

Thus A(Q) is a sum of a quadratic function y = aQ2 +bQ+c and the hyperbola y = d/Q.
Figure 2 shows how the graph of the average cost function A(Q) is obtained by piling the
graph of the hyperbola y = d/Q onto the graph of the parabola y = aQ2 + bQ + c.

Note that for small values of Q the graph of A(Q) is close to the graph of y = d/Q,
while for large values of Q, the graph is close to the parabola (since d/Q is small when Q

is large).

aQ2 � bQ � c

y

Q

d�Q

y

Q

d�Q

aQ2 � bQ � c

A(Q)
y

Q

Figure 2 A(Q) = (aQ2 + bQ + c) + d/Q = C(Q)/Q

Let R(Q) denote the revenues obtained by producing (and selling) Q units. Then the profit
π(Q) is given by

π(Q) = R(Q) − C(Q)

An example showing how to construct the graph of the profit function π(Q) is given in
Fig. 3. In this case the firm gets a fixed price p per unit, so that the graph of R(Q) is a
straight line through the origin. The graph of −C(Q) must be added to that of R(Q). The
production level which maximizes profit is Q∗.
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Q*

C (Q)
R (Q)

π (Q)

y

Q

Figure 3 π(Q) = R(Q) − C(Q)

Products and Quotients
If f and g are defined in a set A, the function F defined by F(x) = f (x) ·g(x) is called the
product of f and g, and we put F = f ·g (or fg). The function F defined where g(x) �= 0
by F(x) = f (x)/g(x) is called the quotient of f and g, and we write F = f/g. We have
already seen examples of these operations. It is difficult to give useful general rules about
the behaviour of the graphs of fg and f/g given the graphs of f and g.

Composite Functions
Suppose the demand for a commodity is a function x of its price p. Suppose that price p is
not constant, but depends on time t . Then it is natural to regard x as a function of t .

In general, if y is a function of u, and u is a function of x, then y can be regarded as a
function of x. We call y a composite function of x. If we denote the two functions involved
by f and g, with y = f (u) and u = g(x), then we can replace u by g(x) and so write y in
the form

y = f
(
g(x)

)
Note that when computing f

(
g(x)

)
, we first apply g to x to obtain g(x), and then we apply

f to g(x). The operation of first applying g to x and then f to g(x) defines a composite
function. Here g(x) is called the kernel, or interior function, while f is called the exterior
function.

NOTE 1 The function that maps x to f
(
g(x)

)
is often denoted by f � g. This is read as

“f of g” or “f after g”, and is called the composition of f with g. Correspondingly, g � f

denotes the function that maps x to g
(
f (x)

)
. Thus, we have

(f � g)(x) = f
(
g(x)

)
and (g � f )(x) = g

(
f (x)

)
Usually, f � g and g � f are quite different functions. For instance, if g(x) = 2 − x2 and
f (u) = u3, then (f � g)(x) = (2 − x2)3, whereas (g � f )(x) = 2 − (x3)2 = 2 − x6; the
two resulting polynomials are not the same.
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It is easy to confuse f �g with f ·g, especially typographically. But these two functions
are defined in entirely different ways. When we evaluate f � g at x, we first compute
g(x) and then evaluate f at g(x). On the other hand, the product f · g of f and g is the
function whose value at a particular number x is simply the product of f (x) and g(x), so
(f · g)(x) = f (x) · g(x).

Many calculators have several built-in functions. When we enter a number x0 and
press the key for the function f , we obtain f (x0). When we compute a composite
function given f and g, and try to obtain the value of f

(
g(x)

)
, we proceed in a similar

manner: enter the number x0, then press the g key to get g(x0), and again press the f key
to get f (g(x0)). Suppose the machine has the functions 1/x and

√
x . If we enter the

number 9, then press 1/x followed by
√

x ,we get 1/3 = 0.33 . . . The computation we
have performed can be illustrated as follows:

1/x
√

x

9 −→ 1/9 −→ 1/3.

Using function notation, f (x) = √
x and g(x) = 1/x, so f (g(x)) = f (1/x) = √

1/x =
1/

√
x. In particular, f (g(9)) = 1/

√
9 = 1/3.

E X A M P L E 2 Write the following as composite functions:

(a) y = (x3 + x2)50 (b) y = e−(x−μ)2
(μ is a constant)

Solution:

(a) You should ask yourself: What is the natural way of computing the values of this
function? Given a value of x, you first compute x3 + x2, which gives the interior
function, g(x) = x3 + x2. Then take the fiftieth power of the result, so the exterior
function is f (u) = u50. Hence,

f (g(x)) = f (x3 + x2) = (x3 + x2)50

(b) We can choose the interior function as g(x) = −(x − μ)2 and the exterior function as
f (u) = eu. Then

f (g(x)) = f (−(x − μ)2) = e−(x−μ)2

We could also have chosen g(x) = (x − μ)2 and f (u) = e−u.

Symmetry

The function f (x) = x2 satisfies f (−x) = f (x), as indeed does any even power x2n (with n

an integer, positive or negative). So if f (−x) = f (x) for all x in the domain of f , implying
that the graph of f is symmetric about the y-axis as shown in Fig. 4, then f is called an
even function.
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On the other hand, any odd power x2n+1 (with n an integer) such as f (x) = x3 satisfies
f (−x) = −f (x). So if f (−x) = −f (x) for all x in the domain of f , implying that the
graph of f is symmetric about the origin, as shown in Fig. 5, then f is called an odd
function.

Finally, f is symmetric about a if f (a + x) = f (a − x) for all x. The graph of f is
then symmetric about the line x = a as in Fig. 6. In Sec. 4.6 we showed that the quadratic
function f (x) = ax2 + bx + c is symmetric about x = −b/2a. The function y = e−(x−μ)2

from Example 2(b) is symmetric about x = μ.

y

x

f

x�x

y

x

f

x
�x

y

x

f

a a�xa�x

Figure 4 Even function Figure 5 Odd function Figure 6 Symmetric about x = a

P R O B L E M S F O R S E C T I O N 5 . 2

1. Show graphically how you find the graph of y = 1
4 x2 + 1/x by adding the graph of 1/x to the

graph of y = 1
4 x2. Assume x > 0.

2. Sketch the graphs of: (a) y = √
x − x (b) y = ex + e−x (c) y = e−x2 + x

3. If f (x) = 3x − x3 and g(x) = x3, compute: (f + g)(x), (f − g)(x), (fg)(x), (f/g)(x),
f (g(1)), and g(f (1)).

4. Let f (x) = 3x + 7. Compute f (f (x)). Find the value x∗ when f (f (x∗)) = 100.

5. Compute ln(ln e) and (ln e)2. What do you notice? (This illustrates how, if we define the function
f 2 by f 2(x) = (f (x))2, then, in general, f 2(x) �= f (f (x)).)

5.3 Inverse Functions
Suppose that the demand quantity D for a commodity depends on the price per unit P

according to

D = 30

P 1/3

This formula tells us directly the demand D corresponding to a given price P . If, for example,
P = 27, then D = 30/271/3 = 10. So D is a function of P . That is, D = f (P ) with
f (P ) = 30/P 1/3. Note that demand decreases as the price increases.

If we look at the matter from a producer’s point of view, however, it may be more
natural to treat output as something it can choose and consider the resulting price. The
producer wants to know the inverse function, in which price depends on the quantity sold.
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This functional relationship is obtained by solving D = 30/P 1/3 for P . First we obtain
P 1/3 = 30/D and then (P 1/3)3 = (30/D)3, so that the original equation is equivalent to

P = 27 000

D3

This equation gives us directly the price P corresponding to a given output D. For example,
if D = 10, then P = 27 000/103 = 27. In this case, P is a function g(D) of D, with
g(D) = 27 000/D3.

The two variables D and P in this example are related in a way that allows each to be
regarded as a function of the other. In fact, the two functions

f (P ) = 30p−1/3 and g(D) = 27 000D−3

are inverses of each other. We say that f is the inverse of g, and that g is the inverse of f .
Note that the two functions f and g convey exactly the same information. For example,

the fact that demand is 10 at price 27 can be expressed using either f or g:

f (27) = 10 or g(10) = 27

In Example 4.5.3 we considered an even simpler demand function D = 100 − P . Solving
for P we get P = 100 − D, which was referred to as the inverse demand function.

Suppose in general that f is a function with domain Df = A, meaning that to each x in
A there corresponds a unique number f (x). Recall that if f has domain A, then the range
of f is the set B = Rf = {f (x) : x ∈ A}, which is also denoted by f (A). The range B

consists of all numbers f (x) obtained by letting x vary in A. Furthermore, f is said to be
one-to-one in A if f never has the same value at any two different points in A. In other
words, for each one y in B, there is exactly one x in A such that y = f (x). Equivalently, f

is one-to-one in A provided that it has the property that, whenever x1 and x2 both lie in A

and x1 �= x2, then f (x1) �= f (x2). It is evident that if a function is strictly increasing in all
of A, or strictly decreasing in all of A, then it is one-to-one. A particular one-to-one function
f is illustrated in Fig. 1; another function g that is not one-to-one is shown in Fig. 2.

f

f (A) � B

A

y

x

g

x1

y1

x2A

y

x

Figure 1 f is one-to-one with domain A and
range B. f has an inverse

Figure 2 g is not one-to-one and hence
has no inverse over A. Which x-value
should be associated with y1?
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Let f be a function with domain A and range B. If and only if f is one-to-one, it
has an inverse function g with domain B and range A. The function g is given
by the following rule: For each y in B, the value g(y) is the unique number x in
A such that f (x) = y. Then

g(y) = x ⇐⇒ y = f (x) (x ∈ A, y ∈ B)

(1)

A direct implication of (1) is that

g(f (x)) = x for all x in A and f (g(y)) = y for all y in B (2)

The equation g(f (x)) = x shows what happens if we first apply f to x and then apply g

to f (x): we get x back because g undoes what f did to x. Note that if g is the inverse of a
function f , then f is also the inverse of g.

NOTE 1 If g is the inverse of f , it is standard to use the notation f −1 for g. This some-
times leads to confusion. If a is a number, then a−1 means 1/a. But f −1(x) does not
mean 1/f (x) = (f (x))−1. For example: The functions defined by y = 1/(x2 +2x +3) and
y = x2 + 2x + 3 are not inverses of each other, but reciprocals.

In simple cases, we can use the same method as in the introductory example to find the
inverse of a given function (and hence automatically verify that the inverse exists). Some
more examples follow.

E X A M P L E 1 Solve the following equations for x and find the corresponding inverse functions:

(a) y = 4x − 3 (b) y = 5√
x + 1 (c) y = 3x − 1

x + 4

Solution:
(a) Solving the equation for x, we have the following equivalences for all x and all y:

y = 4x − 3 ⇐⇒ 4x = y + 3 ⇐⇒ x = 1
4y + 3

4

We conclude that f (x) = 4x − 3 and g(y) = 1
4y + 3

4 are inverses of each other.

(b) We begin by raising each side to the fifth power and so obtain the equivalences

y = 5√
x + 1 ⇐⇒ y5 = x + 1 ⇐⇒ x = y5 − 1

These are valid for all x and all y. Hence, we have shown that f (x) = 5
√

x + 1 and
g(y) = y5 − 1 are inverses of each other.
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(c) Here we begin by multiplying both sides of the equation by x + 4 to obtain y(x + 4) =
3x −1. From this equation, we obtain yx +4y = 3x −1 or x(3−y) = 4y +1. Hence,

x = 4y + 1

3 − y

We conclude that f (x) = (3x − 1)/(x + 4) and g(y) = (4y + 1)/(3 − y) are inverses
of each other. Observe that f is only defined for x �= −4, and g is only defined for
y �= 3. So the equivalence in (1) is valid only with these restrictions.

A Geometric Characterization of Inverse Functions

In our introductory example, we saw that f (P ) = 30p−1/3 and g(D) = 27 000D−3 were
inverse functions. Because of the concrete interpretation of the symbols P and D, it was
natural to describe the functions the way we did. In other circumstances, it may be convenient
to use the same variable as argument in both f and g. In Example 1(a), we saw that
f (x) = 4x − 3 and g(y) = 1

4y + 3
4 were inverses of each other. If also we use x instead of

y as the variable of the function g, we find that

f (x) = 4x − 3 and g(x) = 1
4x + 3

4 are inverses of each other (∗)

In the same way, on the basis of Example 1(b) we can say that

f (x) = (x + 1)1/5 and g(x) = x5 − 1 are inverses of each other (∗∗)

There is an interesting geometric property of the graphs of inverse functions. For the pairs
of inverse functions in (∗) and (∗∗), the graphs of f and g are mirror images of each other
with respect to the line y = x. This is illustrated in Figs. 3 and 4.

g (x) � 14 x � 34

f (x) � 4x � 3 y � x
y

x2�2 4 6 8

2

�2

4

6

g (x) � x5 � 1

f (x) � (x � 1)

y � x

31�2

�2

1

y

x

1
5

3

Figure 3 f and g are inverses of each other Figure 4 f andg are inverses of each other

Suppose in general that f and g are inverses of each other. The fact that (a, b) lies on the
graph f means that b = f (a). According to (1), this implies that g(b) = a, so that (b, a)

lies on the graph of g. Because (a, b) and (b, a) lie symmetrically about the line y = x (see
Problem 8), we have the following conclusion:
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When two functions f and g are inverses of each other, then the graphs of
y = f (x) and y = g(x) are symmetric about the line y = x. (The units on the
coordinate axes must be same.)

(3)

NOTE 2 When the functions f and g are inverses of each other, then by definition (1), the
equations y = f (x) and x = g(y) are equivalent. The two functions actually have exactly
the same graph, though in the second case we should think of x depending on y, instead
of the other way around. On the other hand, the graphs of y = f (x) and y = g(x) are
symmetric about the line y = x.

For instance, Examples 4.5.3 and 5.1.3 discuss demand and supply curves. These can be
thought of as the graphs of a function where quantity Q depends on price P , or equivalently
of the inverse function where price P depends on quantity Q.

In all the examples examined so far, the inverse could be expressed in terms of known
formulas. It turns out that even if a function has an inverse, it may be impossible to express
it in terms of a function we know. Inverse functions are actually an important source of new
functions. A typical case arises in connection with the exponential function. In Section 4.9
we showed that y = ex is strictly increasing and that it tends to 0 as x tends −∞ and to ∞
as x tends to ∞. For each positive y there exists a uniquely determined x such that ex = y.
In Section 4.10 we called the new function the natural logarithm function, ln, and we have
the equivalence y = ex ⇐⇒ x = ln y. The functions f (x) = ex and g(y) = ln y are
therefore inverses of each other. Because the ln function appears in so many connections,
it is tabulated, and moreover represented by a separate key on many calculators.

If a calculator has a certain function f represented by a key, then it will usually have
another which represents its inverse function f −1. If, for example, it has an ex -key,
it also has an ln x -key. Since f −1(f (x)) = x, if we enter a number x, press the

f -key and then press the f −1 -key, then we should get x back again. Try to enter 5, use
the ex -key and then the ln x -key. You should then get 5 back again. (One reason why you
might not get exactly 5 is a rounding error.)

If f and g are inverses of each other, the domain of f is equal to the range of g, and vice
versa. Consider the following examples.

E X A M P L E 2 The function f (x) = √
3x + 9, defined in the interval [−3,∞), is strictly increasing

and hence has an inverse. Find a formula for the inverse. Use x as the free variable for both
functions.

Solution: When x increases from −3 to ∞, f (x) increases from 0 to ∞, so the range of
f is [0, ∞). Hence f has an inverse g defined on [0, ∞). To find a formula for the inverse,
we solve the equation y = √

3x + 9 for x. Squaring gives y2 = 3x + 9, which solved for x

gives x = 1
3y2 −3. Interchanging x and y in this expression to make x the free variable, we

find that the inverse function of f is y = g(x) = 1
3x2 − 3, defined on [0, ∞). See Fig. 5.
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�3 3

3

�3

f (x) � �3x � 9

g (x) � 13 x2 � 3

y � x

y

x

Figure 5

E X A M P L E 3 Consider the function f defined by the formula f (x) = 4 ln(
√

x + 4 − 2).

(a) For which values of x is f (x) defined? Determine the range of f .
(b) Find a formula for its inverse. Use x as the free variable.

Solution:

(a) In order for
√

x + 4 to be defined, x must be ≥ −4. But we also have to make sure
that

√
x + 4 − 2 > 0, otherwise the logarithm is not defined. Now,

√
x + 4 − 2 > 0

means that
√

x + 4 > 2, or x + 4 > 4, that is, x > 0. The domain of f is therefore
(0, ∞). As x varies from near 0 to ∞, f (x) increases from −∞ to ∞. The range of f

is therefore (−∞, ∞).

(b) If y = 4 ln(
√

x + 4 − 2), then ln(
√

x + 4 − 2) = y/4, so that
√

x + 4 − 2 = ey/4

and then
√

x + 4 = 2 + ey/4. By squaring each side we obtain x + 4 = (2 + ey/4)2 =
4 + 4ey/4 + ey/2, so that x = 4ey/4 + ey/2. The inverse function, with x as the free
variable, is therefore y = ex/2 + 4ex/4. It is defined in (−∞, ∞) with range (0, ∞).

P R O B L E M S F O R S E C T I O N 5 . 3

1. Demand D as a function of price P is given by

D = 32

5
− 3

10
P

Solve the equation for P and find the inverse function.

2. The demand D for sugar in the US in the period 1915–1929, as a function of the price P , was
estimated by H. Schultz as

D = f (P ) = 157.8

P 0.3
(D and P are measured in appropriate units)

Solve the equation for P and so find the inverse of f .

3. Find the domains, ranges, and inverses of the functions given by the four formulas

(a) y = −3x (b) y = 1/x (c) y = x3 (d) y =
√√

x − 2
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⊂SM⊃4. The function f is defined by the following table:

x −4 −3 −2 −1 0 1 2

f (x) −4 −2 0 2 4 6 8

(a) Denote the inverse of f by f −1. What is its domain? What is the value of f −1(2)?

(b) Find a formula for a function f (x), defined for all real x, which agrees with this table. What
is the formula for its inverse?

5. Why does f (x) = x2, for x in (−∞, ∞), have no inverse function? Show that f restricted to
[0, ∞) has an inverse, and find that inverse.

6. Formalize the following statements:

(a) Halving and doubling are inverse operations.

(b) The operation of multiplying a number by 3 and then subtracting 2 is the inverse of the
operation of adding 2 to the number and then dividing by 3.

(c) The operation of subtracting 32 from a number and then multiplying the result by 5/9 is the
inverse of the operation of multiplying a number by 9/5 and then adding 32. “Fahrenheit to
Celsius, and Celsius to Fahrenheit”. (See Example 1.6.4.)

7. If f is the function that tells you how many kilograms of carrots you can buy for a specified
amount of money, then what does f −1 tell you?

8. (a) Draw a coordinate system in the plane. Show that points (3, 1) and (1, 3) are symmetric
about the line y = x, and the same for (5, 3) and (3, 5).

(b) Use properties of congruent triangles to prove that points (a, b) and (b, a) in the plane are
symmetric about the line y = x. What is the point half-way between these two points?

⊂SM⊃9. Find inverses of the following functions (use x as the independent variable):

(a) f (x) = (x3 − 1)1/3 (b) f (x) = x + 1

x − 2
(c) f (x) = (1 − x3)1/5 + 2

⊂SM⊃10. The functions defined by the following formulas are strictly increasing in their domains. Find
the domain of each inverse function, and a formula for the corresponding inverse.

(a) y = ex+4 (b) y = ln x − 4, x > 0 (c) y = ln
(
2 + ex−3

)

HARDER PROBLEM

11. Find the inverse of f (x) = 1
2 (ex − e−x). (Hint: You need to solve a quadratic equation in

z = ex .)
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5.4 Graphs of Equations
The equations

x
√

y = 2, x2 + y2 = 16, and y3 + 3x2y = 13

are three examples of equations in two variables x and y. A solution of such an equation is
an ordered pair (a, b) such that the equation is satisfied when we replace x by a and y by
b. The solution set of the equation is the set of all solutions. Representing all pairs in the
solution set in a Cartesian coordinate system gives a set called the graph of the equation.

E X A M P L E 1 Find some solutions of each of the equations x
√

y = 2 and x2 + y2 = 16, and try to
sketch their graphs.

Solution: From x
√

y = 2 we obtain y = 4/x2. Hence it is easy to find corresponding
values for x and y as given in Table 1.

Table 1 Solutions of x
√

y = 2

x 1 2 4 6

y 4 1 1/4 1/9

The graph is drawn in Fig. 1, along with the four points in the table.

2 4 6

2

4

6
x �y � 2

y

x

�2 2

2

�2

x2 � y2 � 16
y

x

�2 �1�4 �3 1 2 3 4

2

3

1

y

x

Figure 1 x
√

y = 2 Figure 2 x2 + y2 = 16 Figure 3 y3 + 3x2y = 13

For x2 +y2 = 16, if y = 0, x2 = 16, so x = ±4. Thus (4, 0) and (−4, 0) are two solutions.
Table 2 combines these with some other solutions.

Table 2 Solutions of x2 + y2 = 16

x −4 −3 −1 0 1 3 4

y 0 ±√
7 ±√

15 ±4 ±√
15 ±√

7 0

In Fig. 2 we have plotted the points given in the table, and the graph seems to be a circle.
(This is confirmed in the next section.)
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E X A M P L E 2 What can you say about the graph of the equation y3 + 3x2y = 13?

Solution: If x = 0, then y3 = 13, so that y = 3
√

13 ≈ 2.35. Hence (0,
3
√

13) lies on
the graph. Note that if (x0, y0) lies on the graph, so does (−x0, y0), since x is raised to the
second power. Hence the graph is symmetric about the y-axis. You may notice that (2, 1),
and hence (−2, 1), are solutions. (Additional points can found by solving the equation for
x, to obtain x = ±√

(13 − y3)/3y.)
If we write the equation in the form

y = 13

y2 + 3x2
(∗)

we see that no point (x, y) on the graph can have y ≤ 0, so that the whole graph lies above
the x-axis. From (∗) it also follows that if x is large positive or negative, then y must be
small. Figure 3 displays the graph, drawn by computer program, which accords with these
findings.

Vertical-Line Test

Graphs of different functions can have innumerable different shapes. However, not all curves
in the plane are graphs of functions. By definition, a function assigns to each point x in the
domain only one y-value. The graph of a function therefore has the property that a vertical
line through any point on the x-axis has at most one point of intersection with the graph.
This simple vertical-line test is illustrated in Figs. 4 and 5.

y

x

y

x

Figure 4 The graph represents
a function

Figure 5 The graph does not
represent a function

The graph of the circle x2 + y2 = 16, shown in Fig. 2, is a typical example of a graph that
does not represent a function, since it does not pass the vertical-line test. A vertical line
x = a for any a with −4 < a < 4 intersects the circle at two points. Solving the equation
x2 + y2 = 16 for y, we obtain y = ±√

16 − x2. Note that the upper semicircle alone is the
graph of the function y = √

16 − x2, and the lower semicircle is the graph of the function
y = −√

16 − x2. Both these functions are defined on the interval [−4, 4].

Choosing Units

A function of one variable is a rule assigning numbers in its range to numbers in its domain.
When we describe an empirical relationship by means of a function, we must first choose
the units of measurement. For instance we might measure time in years, days, or weeks.
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We might measure money in dollars, yen, or euros. The choice we make will influence the
visual impression conveyed by the graph of the function.

Figure 6 illustrates a standard trick which is often used to influence people’s impressions
of empirical relationships. In both diagrams time is measured in years and consumption in
billions of dollars. They both graph the same function. But if you were trying to impress an
audience with the performance of the national economy, which one would you choose?

68 69 70 71 72 73 74

4.0

4.5

3.5

5.5

6.0

6.5

5.0

Consump. (in billion dollars)

Year 68 69 70 71 72 73 74

2.0

3.0

1.0

5.0

6.0

4.0

Consump. (in billion dollars)

Year

Figure 6 Graphical representations of the same function with different units of measurement

Compound Functions

Sometimes a function is defined in several pieces, by giving a separate formula for each of
a number of disjoint parts of the domain. Two examples of such compound functions are
presented next.

E X A M P L E 3 Draw the graph of the function f defined by

f (x) =
⎧⎨
⎩

−x for x ≤ 0

x2 for 0 < x ≤ 1

1.5 for x > 1

Solution: The graph is drawn in Fig. 7. The arrow at (1, 1.5) indicates that this point
is not part of the graph of the function. The function has a discontinuity at x = 1. (See
Section 7.8.)

1

2

�1 1

y

x

5

10

15

10 20 30 40 50 60 70

Tax ($1000)

Income ($1000)

Figure 7 Graph of the function in
Example 3

Figure 8 US Federal Income Tax in 2004
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E X A M P L E 4 (US Federal Income Tax (2004) for Single Persons) In Fig. 8 we show a part of the graph
of this income tax function.1 The marginal rate of tax on income up to $7150 was 10%,
on income between $7151 and $29 050 it was 15%, then on income between $29 051 and
$70 350 it was 25%. For income above this level there are higher marginal rates; the highest
has 35% for income above $319 100.

P R O B L E M S F O R S E C T I O N 5 . 4

⊂SM⊃1. Try to sketch graphs of these equations by finding some particular solutions.

(a) x2 + 2y2 = 6 (b) y2 − x2 = 1

2. Try to sketch the graph of
√

x + √
y = 5 by finding some particular solutions.

3. The function F is defined for all RN ≥ 0 by the following formulas:

F(RN) =
{

0 for RN ≤ 7500
0.044(RN − 7500) for RN > 7500

Compute F(100 000), and sketch the graph of F .

5.5 Distance in the Plane. Circles
Let P1 = (x1, y1) and P2 = (x2, y2) be two points in the xy-plane as shown in Fig. 1.

d

P1 � (x1, y1)

P2 � (x2, y2)

x2 � x1

y2 � y1

y

x

3

2

1

�2

�1
�1�2�4 �3 1 2 3 4 5 6

P1 � (�4, 3)

P2 � (5,�1)

y

x

Figure 1 Figure 2

By Pythagoras’s theorem, stated in the appendix, the distance d between P1 and P2 satisfies
the equation d2 = (x2 − x1)

2 + (y2 − y1)
2. This gives the following important formula:

1 Of course, Fig. 8 is an idealization. The true income tax function is defined only for integral
numbers of dollars—or, more precisely, it is a discontinuous “step function” which jumps up
slightly whenever income rises by another dollar.
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D I S T A N C E F O R M U L A

The distance between the points (x1, y1) and (x2, y2) is

d =
√

(x2 − x1)2 + (y2 − y1)2
(1)

We considered two points in the first quadrant to prove the distance formula. It turns out
that the same formula is valid irrespective of where the two points P1 and P2 lie. Note also
that since (x1 − x2)

2 = (x2 − x1)
2 and (y1 − y2)

2 = (y2 − y1)
2, it makes no difference

which point is P1 and which is P2.
Some find formula (1) hard to grasp. In words it tells us that we can find the distance

between two points in the plane as follows:

Take the difference between the x-coordinates and square what you get. Do the same with
the y-coordinates. Add the results and then take the square root.

E X A M P L E 1 Find the distance d between P1 = (−4, 3) and P2 = (5, −1). (See Fig. 2.)

Solution: Using (1) with x1 = −4, y1 = 3 and x2 = 5, y2 = −1, we have

d =
√

(5 − (−4))2 + (−1 − 3)2 =
√

92 + (−4)2 =
√

81 + 16 =
√

97 ≈ 9.85

Circles

Let (a, b) be a point in the plane. The circle with radius r and centre at (a, b) is the set of
all points (x, y) whose distance from (a, b) is equal to r . Applying the distance formula to
the typical point (x, y) on the circle shown in Fig. 3 gives

√
(x − a)2 + (y − b)2 = r

Squaring each side yields:

E Q U A T I O N O F A C I R C L E

The equation of a circle with centre at (a, b) and radius r is

(x − a)2 + (y − b)2 = r2
(2)

A graph of (2) is shown in Fig. 3. Note that if we let a = b = 0 and r = 4, then (2) reduces
to x2 + y2 = 16. This is the equation of a circle with centre at (0, 0) and radius 4, as shown
in Fig. 5.4.2.
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r

(x, y)

(a, b)

y

x

3

3

4

2

1

�1

�2

�2�3�4�5�6 �1 1

y

x

Figure 3 Circle with centre at (a, b) and
radius r

Figure 4 Circle with centre at (−4, 1)

and radius 3

E X A M P L E 2 Find the equation of the circle with centre at (−4, 1) and radius 3.

Solution: Here a = −4, b = 1, and r = 3. (See Fig. 4.) So according to (2), the equation
for the circle is

(x + 4)2 + (y − 1)2 = 9 (∗)

Expanding the squares to obtain x2 +8x +16+y2 −2y +1 = 9, and then collecting terms,
we have

x2 + y2 + 8x − 2y + 8 = 0 (∗∗)

The equation of the circle given in (∗∗) has the disadvantage that we cannot immediately
read off its centre and radius. If we are given equation (∗∗), however, we can use the method
of “completing the squares” to deduce (∗) from (∗∗). See Problem 5.

Ellipses and Hyperbolas
A very important type of curve in physics and astronomy is the ellipse. (After all, the
planets, including the Earth, move around the Sun in orbits that are approximately elliptical.)
Occasionally, ellipses also appear in economics and statistics. The simplest type of ellipse
has the equation

(x − x0)
2

a2
+ (y − y0)

2

b2
= 1 (ellipse) (3)

This ellipse has centre at (x0, y0) and its graph is shown in Fig. 5. Note that when a = b,
the ellipse degenerates into a circle.

b

a

(x, y)

y0

x0

y

x

b
ay0

x0

y

x

b
ay0

x0

y

x

Figure 5 Ellipse Figure 6 Hyperbola Figure 7 Hyperbola
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Figures 6 and 7 show the graphs of the two hyperbolas

(x − x0)
2

a2
− (y − y0)

2

b2
= +1 and

(x − x0)
2

a2
− (y − y0)

2

b2
= −1 (4)

respectively. The asymptotes are the dashed lines in Figs. 6 and 7. They are the same pair
in each figure. Their equations are y − y0 = ± b

a
(x − x0).

We end this section by noting that the graph of the general quadratic equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (5)

where A, B, and C are not all 0, will have one of the following shapes:

• If 4AC > B2, either an ellipse (possibly a circle), or a single point, or empty.

• If 4AC = B2, either a parabola, or one line or two parallel lines, or empty.

• If 4AC < B2, either a hyperbola, or two intersecting lines.

P R O B L E M S F O R S E C T I O N 5 . 5

1. Determine the distances between the following pairs of points:

(a) (1, 3) and (2, 4) (b) (−1, 2) and (−3, 3) (c) (3/2, −2) and (−5, 1)

(d) (x, y) and (2x, y + 3) (e) (a, b) and (−a, b) (f) (a, 3) and (2 + a, 5)

2. The distance between (2, 4) and (5, y) is
√

13. Find y. (Explain geometrically why there must
be two values of y.)

3. Find the distances between each pair of points:

(a) (3.998, 2.114) and (1.130, −2.416) (b) (π, 2π) and (−π, 1)

4. Find the equations of the circles with:

(a) Centre at (2, 3) and radius 4. (b) Centre at (2, 5) and one point at (−1, 3).

5. To show that the graph of x2 +y2 −10x +14y +58 = 0 is a circle, we can argue like this: First
rearrange the equation to read (x2 − 10x) + (y2 + 14y) = −58. Completing the two squares
gives: (x2 − 10x + 52) + (y2 + 14y + 72) = −58 + 52 + 72 = 16. Thus the equation becomes

(x − 5)2 + (y + 7)2 = 16

whose graph is a circle with centre (5, −7) and radius
√

16 = 4. Use this method to find the
centre and the radius of the two circles with equations:

(a) x2 + y2 + 10x − 6y + 30 = 0 (b) 3x2 + 3y2 + 18x − 24y = −39

6. Prove that if the distance from a point (x, y) to the point (−2, 0) is twice the distance from (x, y)

to (4, 0), then (x, y) must lie on the circle with centre (6, 0) and radius 4.
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7. In Example 4.7.7 we considered the function y = (ax + b)/(cx + d), and we claimed that for
c �= 0 the graph was a hyperbola. See how this accords with the classification below (5).

HARDER PROBLEM

⊂SM⊃8. Show that the graph of

x2 + y2 + Ax + By + C = 0 (A, B, and C constants) (∗)

is a circle if A2 + B2 > 4C. Find its centre and radius. (See Problem 5.) What happens if
A2 + B2 ≤ 4C?

5.6 General Functions
So far we have studied functions of one variable. These are functions whose domain is a set
of real numbers, and whose range is also a set of real numbers. Yet a realistic description of
many economic phenomena requires considering a large number of variables simultaneously.
For example, the demand for a good like butter is a function of several variables such as
the price of the good, the prices of complements like bread, substitutes like olive oil or
margarine, as well as consumers’ incomes, their doctors’ advice, and so on.

Actually, you have probably already seen many special functions of several variables.
For instance, the formula V = πr2h for the volume V of a cylinder with base radius r

and height h involves a function of two variables. (Of course, in this case π ≈ 3.14159 is
a mathematical constant.) A change in one of these variables will not affect the value of
the other variable. For each pair of positive numbers (r, h), there is a definite value for the
volume V . To emphasize that V depends on the values of both r and h, we write

V (r, h) = πr2h

For r = 2 and h = 3, we obtain V (2, 3) = 12π , whereas r = 3 and h = 2 give
V (3, 2) = 18π . Also, r = 1 and h = 1/π give V (1, 1/π) = 1. Note in particular that
V (2, 3) �= V (3, 2).

In some abstract economic models, it may be enough to know that there is some func-
tional relationship between variables, without specifying the dependence more closely. For
instance, suppose a market sells three commodities whose prices per unit are respectively p,
q, and r . Then economists generally assume that the demand for one of the commodities by
an individual with income m is given by a function f (p, q, r, m) of four variables, without
necessarily specifying the precise form of that function.

An extensive discussion of functions of several variables begins in Chapter 11. This
section introduces an even more general type of function. In fact, general functions of
the kind presented here are of fundamental importance in practically every area of pure
and applied mathematics, including mathematics applied to economics. Here is the general
definition:
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A function is a rule which to each element in a set A associates one and only one
element in a set B.

(1)

The following indicates how very wide is the concept of a function.

E X A M P L E 1 (a) The function that assigns to each triangle in a plane the area of that triangle (measured,
say, in cm2).

(b) The function that determines the social security number, or other identification number,
of each taxpayer.

(c) The function that for each point P in a horizontal plane determines the point lying
3 units above P .

(d) Let A be the set of possible actions that a person can choose in a certain situation.
Suppose that every action a in A produces a certain result (say, a certain profit) ϕ(a).
In this way, we have defined a function ϕ with domain A.

If we denote the function by f , the set A is called the domain of f , and B is called the
target or the codomain. The two sets A and B need not consist of numbers, but can be sets
of arbitrary elements. The definition of a function requires three objects to be specified:

(i) A domain A

(ii) A target B

(iii) A rule that assigns a unique element in B to each element in A.

Nevertheless, in many cases, we refrain from specifying the sets A and/or B explicitly when
it is obvious from the context what these sets are.

An important requirement in the definition of a function is that to each element in the
domain A, there corresponds a unique element in the target B. While it is meaningful to talk
about the function that assigns the natural mother to every child, the rule that assigns the
aunt to any child does not, in general, define a function, because many children have more
than one aunt. Explain why the following rule, as opposed to the one in Example 1(c), does
not define a function: “to a point P in the plane assign a point that lies 3 units from P ”.

f (x)x

A B

f

Figure 1 A function from A to B

If f is a function with domain A and target B, we often say that f is a function from A to
B, and write f : A → B. The functional relationship is often represented as in Fig. 1. Other
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words that are sometimes used instead of “function” include transformation and map or
mapping.

The particular value f (x) is often called the image of the element x by the function f .
The set of elements in B that are images of at least one element in A is called the range of
the function. Thus, the range is a subset of the target. If we denote the range of f by Rf ,
then Rf = {f (x) : x ∈ A}. This is also written as f (A). The range of the function in
Example 1(a) is the set of all positive numbers. Explain why the range of the function in (c)
must be a whole plane.

The definition of a function requires that only one element in B be assigned to each
element in A. However, different elements in A might be mapped to the same element
in B. In Example 1(a), for instance, many different triangles have the same area. If each
element of B is the image of at most one element in A, the function f is called one-to-one.
Otherwise, if one or more elements of B are the images of more than one element in A, the
function f is many-to-one. (If a relation is one-to-many, it is not even a function.)

The social security function in Example 1(b) is one-to-one, because two different taxpay-
ers should always have different social security numbers. Can you explain why the function
defined in Example 1(c) is also one-to-one, whereas the function that assigns to each child
his or her mother is not?

Inverse Functions

The definition of inverse function in Sec. 5.3 can easily be extended to general functions.
Suppose f is a one-to-one function from a set A to a set B, and assume that the range of
f is all of B. We can then define a function g from B to A by the following obvious rule:
Assign to each element v of B the one and only element u = g(v) of A that f maps to
v—that is, the u satisfying v = f (u). Because f is one-to-one, there can be only one u in
A such that v = f (u), so g is a function, its domain is B and its target and range are both
equal to A. The function g is called the inverse function of f . For instance, the inverse of
the social security function mentioned in Example 1(b) is the function that, to each social
security number in its range, assigns the person carrying that number.

P R O B L E M S F O R S E C T I O N 5 . 6

⊂SM⊃1. Which of the following rules define functions?

(a) The rule that assigns to each person in a classroom his or her height.

(b) The rule that assigns to each mother her youngest child alive today.

(c) The rule that assigns the perimeter of a rectangle to its area.

(d) The rule that assigns the surface area of a spherical ball to its volume.

(e) The rule that assigns the pair of numbers (x + 3, y) to the pair of numbers (x, y).

2. Determine which of the functions defined in Problem 1 are one-to-one, and which then have an
inverse. Determine each inverse when it exists.
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1. Use Fig. 4.3.10 and the rules for shifting graphs to sketch the graphs of

(a) y = |x| + 1 (b) y = |x + 3| (c) y = 3 − |x + 1|

2. If f (x) = x3 − 2 and g(x) = (1 − x)x2, compute: (f + g)(x), (f − g)(x), (fg)(x), (f/g)(x),
f (g(1)), and g(f (1)).

3. (a) Consider the demand and supply curves

D = 150 − 1
2 P, S = 20 + 2P

Find the equilibrium price P ∗, and the corresponding quantity Q∗.

(b) Suppose a tax of $2 per unit is imposed on the producer. How will this influence the
equilibrium price?

(c) Compute the total revenue obtained by the producer before the tax is imposed (R∗) and
after (R̂).

4. Demand D as a function of price P is given by D = 32
5 − 3

10 P . (See Problem 4.2.7 for an
economic interpretation.) Solve the equation for P and find the inverse demand function.

5. The demand D for a product as a function of the price P is given by D = 120 − 5P . Solve the
equation for P and so find the inverse demand function.

6. Find the inverses of the functions given by the formulas:

(a) y = 100 − 2x (b) y = 2x5 (c) y = 5e3x−2

⊂SM⊃7. The following functions are strictly increasing in their domains. Find the domains of their
inverses and formulas for the inverses. Use x as the free variable.

(a) f (x) = 3 + ln(ex − 2), x > ln 2

(b) f (x) = a

e−λx + a
, a and λ positive, x ∈ (−∞, ∞)

8. Determine the distances between the following pairs of points:

(a) (2, 3) and (5, 5) (b) (−4, 4) and (−3, 8) (c) (2a, 3b) and (2 − a, 3b)

9. Find the equations of the circles with:

(a) Centre at (2, −3) and radius 5. (b) Centre at (−2, 2) and a point at (−10, 1).

10. A point P moves in the plane so that it is always equidistant from each of the points A = (3, 2)

and B = (5, −4). Find a simple equation that the coordinates (x, y) of P must satisfy. (Hint:
Compute the square of the distance from P to A and to B, respectively.)

11. Each person in a team is known to have red blood cells that belong to one and only one of four
blood groups denoted A, B, AB, and O. Consider the function that assigns each person in the
team to his or her blood group. Can this function be one-to-one if the team consists of at least
five persons?
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D I F F E R E N T I A T I O N

To think of it [differential calculus] merely as a

more advanced technique is to miss its real content.

In it, mathematics becomes a dynamic mode of thought,

and that is a major mental step in the ascent of man.

—J. Bronowski (1973)

An important topic in many scientific disciplines, including economics, is the study of how

quickly quantities change over time. In order to compute the future position of a planet,

to predict the growth in population of a biological species, or to estimate the future demand

for a commodity, we need information about rates of change.

The concept used to describe the rate of change of a function is the derivative, which is the

central concept in mathematical analysis. This chapter defines the derivative of a function and

presents some of the important rules for calculating it.

Isaac Newton (1642–1727) and Gottfried Wilhelm Leibniz (1646–1716) discovered most

of these general rules independently of each other. This initiated differential calculus, which

has been the foundation for the development of modern science. It has also been of central

importance to the theoretical development of modern economics.

6.1 Slopes of Curves
Even though in economics we are usually interested in the derivative as a rate of change, we
begin this chapter with a geometrical motivation for the concept. When we study the graph
of a function, we would like to have a precise measure of the steepness of the graph at a point.

L

P

a

y

x

f (a)
y � f (x)

Figure 1 f ′(a) = 1/2
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We know that for the line y = px + q, the number p denotes its slope. If p is large and
positive, then the line rises steeply from left to right; if p is large and negative, the line
falls steeply. But for an arbitrary function f , what is the steepness of its graph? A natural
answer is to define the steepness or slope of a curve at a particular point as the slope of the
tangent to the curve at that point—that is, as the slope of the straight line which just touches
the curve at that point. For the curve in Fig. 1 the steepness at point P is seen to be 1/2,
because the slope of the tangent line L is 1/2.

In Fig. 1, the point P has coordinates
(
a, f (a)

)
. The slope of the tangent to the graph at

P is called the derivative of f (x) at x = a, and we denote this number by f ′(a) (read as
“f prime a”). In general, we have

f ′(a) = the slope of the tangent to the curve y = f (x) at the point
(
a, f (a)

)
Thus, in Fig. 1, we have f ′(a) = 1/2.

E X A M P L E 1 Find f ′(1), f ′(4), and f ′(7) for the function whose graph is shown in Fig. 2.

P

Q
R

y

x

y � f (x)

1 2 3 4 5 6 7 8

4

3

2

1

Figure 2

Solution: At P = (1, 2), the tangent goes through the point (0, 1), and so has slope 1.
At the point Q = (4, 3) the tangent is horizontal, and so has slope 0. At R = (7, 2 1

2 ),
the tangent goes through (8, 2), and so has slope − 1

2 . Hence, f ′(1) = 1, f ′(4) = 0, and
f ′(7) = − 1

2 .

P R O B L E M S F O R S E C T I O N 6 . 1

1. Figure 3 shows the graph of a function f . Find the values of f (3) and f ′(3).

y

x

y � f (x)

1 2 3 4 5 6 7 8

4

3

2

1

y

x

y � g(x)

1 2 3 4 5 6 7 8

4

3

2

1

Figure 3 Figure 4

2. Figure 4 shows the graph of a function g. Find the values of g(5) and g′(5).
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6.2 Tangents and Derivatives
The previous section gave a rather vague definition of the tangent to a curve at a point. All
we said is that it is a straight line which just touches the curve at that point. We now give a
more formal definition of the same concept.

y

x

P

T

Q

y

x

P

T

Q

Figure 1 Figure 2

The geometrical idea behind the definition is easy to understand. Consider a point P on a
curve in the xy-plane (see Fig. 1). Take another point Q on the curve. The entire straight
line through P and Q is called a secant. If we keep P fixed, but let Q move along the
curve toward P , then the secant will rotate around P , as indicated in Fig. 2. The limiting
straight line PT toward which the secant tends is called the tangent (line) to the curve at P .
Suppose that the curve in Figs. 1 and 2 is the graph of a function f . The approach illustrated
in Fig. 2 allows us to find the slope of the tangent PT to the graph of f at the point P .

y

x

T

Q � (a � h, f (a � h))

P � (a, f (a))

f (a � h) � f (a)

h

f

Figure 3

Figure 3 reproduces the curve, the points P and Q, and the tangent PT in Fig. 2. Point P

in Fig. 3 has the coordinates
(
a, f (a)

)
. Point Q lies close to P and is also on the graph of

f . Suppose that the x-coordinate of Q is a + h, where h is a small number �= 0. Then the
x-coordinate of Q is not a (because Q �= P ), but a number close to a. Because Q lies on the
graph of f , the y-coordinate of Q is equal to f (a +h). Hence, the point Q has coordinates(
a + h, f (a + h)

)
. The slope mPQ of the secant PQ is therefore

mPQ = f (a + h) − f (a)

h
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This fraction is often called a Newton quotient of f . Note that when h = 0, the fraction
becomes 0/0 and so is undefined. But choosing h = 0 corresponds to letting Q = P . When
Q moves toward P along the graph of f , the x-coordinate of Q, which is a + h, must tend
to a, and so h tends to 0. Simultaneously, the secant PQ tends to the tangent to the graph
at P . This suggests that we ought to define the slope of the tangent at P as the number that
mPQ approaches as h tends to 0. In the previous section we called this number f ′(a). So
we propose the following definition of f ′(a):

f ′(a) =
{

the limit as h

tends to 0 of

}
f (a + h) − f (a)

h

It is common to use the abbreviated notation limh→0, or lim
h→0

, for “the limit as h tends to

zero” of an expression involving h. We therefore have the following definition:

D E F I N I T I O N O F T H E D E R I V A T I V E

The derivative of the function f at point a, denoted by f ′(a), is given by the
formula

f ′(a) = lim
h→0

f (a + h) − f (a)

h

(1)

The number f ′(a) gives the slope of the tangent to the curve y = f (x) at the point
(
a, f (a)

)
.

The equation for a straight line passing through (x1, y1) and having a slope b is given by
y − y1 = b(x − x1). Hence, we obtain:

D E F I N I T I O N O F T H E T A N G E N T

The equation for the tangent to the graph of y = f (x) at the point
(
a, f (a)

)
is

y − f (a) = f ′(a)(x − a)
(2)

So far the concept of a limit in the definition of f ′(a) is mathematically somewhat imprecise.
Section 6.5 discusses the concept of limit in more detail. Because it is relatively complicated,
we rely on intuition for the time being. Consider a simple example.

E X A M P L E 1 Use (1) to compute f ′(a) when f (x) = x2. Find in particular f ′(1/2) and f ′(−1). Give
geometric interpretations, and find the equation for the tangent at the point (1/2, 1/4).

Solution: For f (x) = x2, we have f (a + h) = (a + h)2 = a2 + 2ah + h2, and so
f (a + h) − f (a) = (a2 + 2ah + h2) − a2 = 2ah + h2. Hence, for all h �= 0, we obtain

f (a + h) − f (a)

h
= 2ah + h2

h
= h(2a + h)

h
= 2a + h (∗)
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because we can cancel h whenever h �= 0. But as h tends to 0, so 2a + h obviously tends
to 2a. Thus, we can write

f ′(a) = lim
h→0

f (a + h) − f (a)

h
= lim

h→0
(2a + h) = 2a

This shows that when f (x) = x2, then f ′(a) = 2a. For a = 1/2, we obtain f ′(1/2) =
2 · 1/2 = 1. Similarly, f ′(−1) = 2 · (−1) = −2.

Figure 4 provides a geometric interpretation of (∗). In Fig. 5, we have drawn the tangents
to the curve y = x2 corresponding to a = 1/2 and a = −1. At a = 1/2, we have
f (a) = (1/2)2 = 1/4 and f ′(1/2) = 1. According to (2), the equation of the tangent is
y − 1/4 = 1 · (x − 1/2) or y = x − 1/4. (Show that the other tangent drawn in Fig. 5 has
the equation y = −2x − 1.) Note that the formula f ′(a) = 2a shows that f ′(a) < 0 when
a < 0, and f ′(a) > 0 when a > 0. Does this agree with the graph?

a

h

(a � h)2 � a2 � 2ah � h2

a � h

P

Q

y

x

f (x) � x2

4

3

2

1

�1

�2 �1 1 2

f (x) � x2

y

x

Figure 4 f (x) = x2 Figure 5 f (x) = x2

If f is a relatively simple function, we can find f ′(a) by using the following recipe:

R E C I P E F O R C O M P U T I N G f ’ ( a )

(A) Add h to a and compute f (a + h).

(B) Compute the corresponding change in the function value: f (a +h)−f (a).

(C) For h �= 0, form the Newton quotient
f (a + h) − f (a)

h
.

(D) Simplify the fraction in step (C) as much as possible. Wherever possible,
cancel h from the numerator and denominator.

(E) Then f ′(a) is the limit of
f (a + h) − f (a)

h
as h tends to 0.

(3)

Let us apply this recipe to another example.

E X A M P L E 2 Compute f ′(a) when f (x) = x3.



Essential Math. for Econ. Analysis, 4th edn EME4_C06.TEX, 16 May 2012, 14:24 Page 160

160 C H A P T E R 6 / D I F F E R E N T I A T I O N

Solution: We follow the recipe in (3).

(A) f (a + h) = (a + h)3 = a3 + 3a2h + 3ah2 + h3

(B) f (a + h) − f (a) = (a3 + 3a2h + 3ah2 + h3) − a3 = 3a2h + 3ah2 + h3

(C)–(D)
f (a + h) − f (a)

h
= 3a2h + 3ah2 + h3

h
= 3a2 + 3ah + h2

(E) As h tends to 0, so 3ah+h2 also tends to 0; hence, the entire expression 3a2 +3ah+h2

tends to 3a2. Therefore, f ′(a) = 3a2.

We have thus shown that the graph of the function f (x) = x3 at the point x = a has a
tangent with slope 3a2. Note that f ′(a) = 3a2 > 0 when a �= 0, and f ′(0) = 0. The
tangent points upwards to the right for all a �= 0, and is horizontal at the origin. You should
look at the graph of f (x) = x3 in Fig. 4.3.7 to confirm this behaviour.

The recipe in (3) works well for simple functions like those in Examples 1 and 2. But
for more complicated functions such as f (x) = √

3x2 + x + 1 it is unnecessarily cumber-
some. The powerful rules explained in Sections 6.6–6.8 allow the derivatives of even quite
complicated functions to be found quite easily. Understanding these rules, however, relies
on the more precise concept of limits that we will provide in Section 6.5.

On Notation

We showed in Example 1 that if f (x) = x2, then for every a we have f ′(a) = 2a. We
frequently use x as the symbol for a quantity that can take any value, so we write f ′(x) = 2x.
Using this notation, our results from the two last examples are as follows:

f (x) = x2 �⇒ f ′(x) = 2x (4)

f (x) = x3 �⇒ f ′(x) = 3x2 (5)

The result in (4) is a special case of the following rule, which you are asked to show in
Problem 6.

f (x) = ax2 + bx + c �⇒ f ′(x) = 2ax + b (a, b, and c are constants) (6)

For a = 1, b = c = 0, this reduces to (4). Here are some other special cases of (6):

f (x) = 3x2 + 2x + 5 �⇒ f ′(x) = 2 · 3x + 2 = 6x + 2

f (x) = −16 + 1
2x − 1

16x2 �⇒ f ′(x) = 1
2 − 1

8x

f (x) = (x − p)2 = x2 − 2px + p2 �⇒ f ′(x) = 2x − 2p (p is a constant)
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If we use y to denote the typical value of the function y = f (x), we often denote the
derivative simply by y ′. We can then write y = x3 �⇒ y ′ = 3x2.

Several other forms of notation for the derivative are often used in mathematics and its
applications. One of them, originally due to Leibniz, is called the differential notation. If
y = f (x), then in place of f ′(x), we write

dy

dx
= dy/dx or

df (x)

dx
= df (x)/dx or

d

dx
f (x)

For instance, if y = x2, then

dy

dx
= 2x or

d

dx
(x2) = 2x

We can think of the symbol d/dx as an instruction to differentiate what follows with respect
to x. Differentiation occurs so often in mathematics that it has become standard to use w.r.t.
as an abbreviation for “with respect to”. At this point, we will only think of the symbol
dy/dx as meaning f ′(x) and will not consider how it might relate to dy divided by dx.
Later chapters discuss this notation in greater detail.

When we use letters other than f , x, and y, the notation for the derivative changes
accordingly. For example:

P(t) = t2 �⇒ P ′(t) = 2t; Y = K3 �⇒ Y ′ = 3K2; and A = r2 �⇒ dA/dr = 2r

P R O B L E M S F O R S E C T I O N 6 . 2

1. Let f (x) = 4x2. Show that f (5 + h) − f (5) = 40h + 4h2. Hence,

f (5 + h) − f (5)

h
= 40 + 4h

Using this result, find f ′(5). Compare the answer with (6).

2. (a) Let f (x) = 3x2 + 2x − 1. Show that for h �= 0,

f (x + h) − f (x)

h
= 6x + 2 + 3h

Use this result to find f ′(x).

(b) Find in particular f ′(0), f ′(−2), and f ′(3). Find also the equation of the tangent to the
graph at the point (0, −1).

3. (a) The demand function for a commodity with price P is given by the formula D(P ) = a−bP .
Find dD(P )/dP .

(b) The cost of producing x units of a commodity is given by the formula C(x) = p + qx2.
Find C ′(x), the marginal cost (see Section 6.4).
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4. Show that

f (x) = 1

x
= x−1 �⇒ f ′(x) = − 1

x2
= −x−2

(Hint: Show that [f (x + h) − f (x)]/h = −1/x(x + h).)

⊂SM⊃5. In each case, find the slope of the tangent to the graph of f at the specified point:

(a) f (x) = 3x + 2 at (0, 2) (b) f (x) = x2 − 1 at (1, 0)

(c) f (x) = 2 + 3/x at (3, 3) (d) f (x) = x3 − 2x at (0, 0)

(e) f (x) = x + 1/x at (−1, −2) (f) f (x) = x4 at (1, 1)

6. (a) If f (x) = ax2 + bx + c, show that [f (x + h) − f (x)]/h = 2ax + b + ah. Use this to
show that f ′(x) = 2ax + b.

(b) For what value of x is f ′(x) = 0? Explain this result in the light of (4.6.3) and (4.6.4).

7. The figure shows the graph of a function f . Determine the sign of the derivative f ′(x) at each
of the four points a, b, c, and d .

y � f (x) 

y

x
a b

c d

Figure 6

⊂SM⊃8. (a) Show that
(√

x + h − √
x

)(√
x + h + √

x
) = h.

(b) If f (x) = √
x, show that [f (x + h) − f (x)]/h = 1/

(√
x + h + √

x
)
.

(c) Use the result in part (b) to show that for x > 0,

f (x) = √
x �⇒ f ′(x) = 1

2
√

x
= 1

2
x−1/2

9. (a) If f (x) = ax3 + bx2 + cx + d, show that

f (x + h) − f (x)

h
= 3ax2 + 2bx + c + 3axh + ah2 + bh

and hence find f ′(x).

(b) Show that the result in part (a) generalizes Example 2 and Problem 6(a).

HARDER PROBLEM

10. Show that
f (x) = x1/3 �⇒ f ′(x) = 1

3 x−2/3

(Hint: Prove that [(x + h)1/3 − x1/3][(x + h)2/3 + (x + h)1/3x1/3 + x2/3] = h. Then follow the
argument used to solve Problem 8.)
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6.3 Increasing and Decreasing Functions
The terms increasing and decreasing functions have been used previously to describe the
behaviour of a function as we travel from left to right along its graph. In order to establish
a definite terminology, we introduce the following definitions. We assume that f is defined
in an interval I and that x1 and x2 are numbers from that interval.

If f (x2) ≥ f (x1) whenever x2 > x1, then f is increasing in I

If f (x2) > f (x1) whenever x2 > x1, then f is strictly increasing in I

If f (x2) ≤ f (x1) whenever x2 > x1, then f is decreasing in I

If f (x2) < f (x1) whenever x2 > x1, then f is strictly decreasing in I

y

x

y

x

y

x

y

x

Increasing Strictly increasing Decreasing Strictly decreasing

Figure 1

Figure 1 illustrates these definitions. Note that we allow an increasing (or decreasing) func-
tion to have sections where the graph is horizontal. This does not quite agree with common
language. Few people would say that their salary increases when it stays constant!

To find out on which intervals a function is (strictly) increasing or (strictly) decreasing
using the definitions, we have to consider the sign of f (x2)−f (x1) whenever x2 > x1. This
is usually quite difficult to do directly by checking the values of f (x) at different points x.
In fact, we already know a good test of whether a function is increasing or decreasing, in
terms of the sign of its derivative:

f ′(x) ≥ 0 for all x in the interval I ⇐⇒ f is increasing in I (1)

f ′(x) ≤ 0 for all x in the interval I ⇐⇒ f is decreasing in I (2)

Using the fact that the derivative of a function is the slope of the tangent to its graph, the
equivalences in (1) and (2) seem almost obvious. An observation which is equally correct
is the following:

f ′(x) = 0 for all x in the interval I ⇐⇒ f is constant in I (3)

A precise proof of (1)–(3) relies on the mean-value theorem. See Note 8.4.2.
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E X A M P L E 1 Use result (6) in the previous section to find the derivative of f (x) = 1
2x2 − 2. Then

examine where f is increasing/decreasing.

Solution: We find that f ′(x) = x, which is ≥ 0 for x ≥ 0 and ≤ 0 if x ≤ 0, and thus
f ′(0) = 0. We conclude that f is increasing in [0, ∞) and decreasing in (−∞, 0]. Draw
the graph of f .

E X A M P L E 2 Examine where f (x) = − 1
3x3 + 2x2 − 3x + 1 is increasing/decreasing. Use the result

in Problem 9 of the previous section to find its derivative.

Solution: The formula in the problem can be used with a = −1/3, b = 2, c = −3, and
d = 1. Thus f ′(x) = −x2 + 4x − 3. Solving the equation f ′(x) = −x2 + 4x − 3 = 0
yields x = 1 and x = 3, and thus f ′(x) = −(x − 1)(x − 3) = (x − 1)(3 − x). A sign
diagram for (x −1)(3−x) (see Example 1.6.2) reveals that f ′(x) = (x −1)(3−x) is ≥ 0 in
the interval [1, 3], and ≤ 0 in (−∞, 1] and in [3,∞). We conclude that f (x) is increasing
in [1, 3], but decreasing in (−∞, 1] and in [3, ∞). See Fig. 2.

1 2 3 4

3

2

1
f (x) � �1

3 x3 � 2x2 � 3x � 1

y

x

Figure 2

If f ′(x) is strictly positive in an interval, the function should be strictly increasing. Indeed,

f ′(x) > 0 for all x in the interval I �⇒ f (x) is strictly increasing in I (4)

f ′(x) < 0 for all x in the interval I �⇒ f (x) is strictly decreasing in I (5)

The implications in (4) and (5) give sufficient conditions for f to be strictly increasing or
decreasing. They cannot be reversed to give necessary conditions. For example, if f (x) =
x3, then f ′(0) = 0. Yet f is strictly increasing. (See Problem 3.)

NOTE 1 In student papers (and economics books), the following statement is often seen:
“Suppose that f is strictly increasing—that is, f ′(x) > 0.” The example f (x) = x3 shows
that the statement is wrong. A function can be strictly increasing even though the derivative
is 0 at certain points. In fact, suppose that f ′(x) ≥ 0 for all x in I and f ′(x) = 0 at only a
finite number of points in I . Then f ′(x) > 0 in any subinterval between two adjacent zeros
of f ′(x), and so f is strictly increasing on each such subinterval. It follows that f is strictly
increasing on the whole interval.
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P R O B L E M S F O R S E C T I O N 6 . 3

1. By using (1) and (2) in this section, as well as (6) in the previous section, examine where
f (x) = x2 − 4x + 3 is increasing/decreasing. (Compare with Fig. 4.3.3.)

2. Examine where f (x) = −x3 +4x2 −x −6 is increasing/decreasing. (Use the result in Problem
9 in the previous section. Compare with Fig. 4.7.1.)

3. Show that f (x) = x3 is strictly increasing. (Hint: Consider the sign of

x3
2 − x3

1 = (x2 − x1)(x
2
1 + x1x2 + x2

2 ) = (x2 − x1)
[(

x1 + 1
2 x2

)2 + 3
4 x2

2

]
.)

6.4 Rates of Change
The derivative of a function at a particular point was defined as the slope of the tangent to
its graph at that point. Economists interpret the derivative in many important ways, starting
with the rate of change of an economic variable.

Suppose that a quantity y is related to a quantity x by y = f (x). If x has the value a,
then the value of the function is f (a). Suppose that a is changed to a + h. The new value
of y is f (a + h), and the change in the value of the function when x is changed from a to
a + h is f (a + h) − f (a). The change in y per unit change in x has a particular name, the
average rate of change of f over the interval from a to a + h. It is equal to

f (a + h) − f (a)

h

Note that this fraction is precisely the Newton quotient of f . Taking the limit as h tends
to 0 gives the derivative of f at a, which we interpret as follows:

The instantaneous rate of change of f at a is f ′(a)

This very important concept appears whenever we study quantities that change. When time
is the independent variable, we often use the “dot notation” for differentiation with respect
to time. For example, if x(t) = t2, we write ẋ(t) = 2t .

Sometimes we are interested in studying the proportion f ′(a)/f (a), interpreted as fol-
lows:

The relative rate of change of f at a is
f ′(a)

f (a)

In economics, relative rates of change are often seen. Sometimes they are called pro-
portional rates of change. They are usually quoted in percentages per unit of time—for
example, percentages per year (or per annum, for those who think Latin is still a useful
language). Often we will describe a variable as increasing at, say, 3% a year if there is a
relative rate of change of 3/100 each year.
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E X A M P L E 1 Let N(t) be the number of individuals in a population (of, say, humans, animals, or plants)
at time t . If t increases to t + h, then the change in population is equal to N(t + h) − N(t)

individuals. Hence,
N(t + h) − N(t)

h

is the average rate of change. Taking the limit as h tends to 0 gives Ṅ(t) = dN/dt for the
rate of change of population at time t .

In Example 4.5.1 the formula P = 6.4 t + 641 was used (misleadingly) as an estimate
of Europe’s population (in millions) at a date which comes t years after 1960. In this case,
the rate of change is dP/dt = 6.4 million per year, the same for all t .

E X A M P L E 2 Let K(t) be the capital stock in an economy at time t . The rate of change K̇(t) of K(t)

is called the rate of investment1 at time t . It is usually denoted by I (t), so

K̇(t) = I (t) (1)

E X A M P L E 3 Consider a firm producing some commodity in a given period, and let C(x) denote
the cost of producing x units. The derivative C ′(x) at x is called the marginal cost at x.
According to the definition, it is equal to

C′(x) = lim
h→0

C(x + h) − C(x)

h
(marginal cost) (2)

When h is small in absolute value, we obtain the approximation

C ′(x) ≈ C(x + h) − C(x)

h
(3)

Thus for h small, a linear approximation to C(x + h) − C(x), the incremental cost of
producing h units of extra output, is hC ′(x), the product of the marginal cost and the change
in output. This is true even when h < 0, signifying a decrease in output and, provided that
C ′(x) > 0, a lower cost.

NOTE 1 Putting h = 1 in (3) makes marginal cost approximately equal to

C ′(x) ≈ C(x + 1) − C(x) (4)

This is approximately equal to the incremental cost C(x + 1)−C(x), that is, the additional
cost of producing one more unit than x. In elementary economics books marginal cost is
often defined as the difference C(x + 1) − C(x) because more appropriate concepts from
differential calculus cannot be used.

1 Actually, it is the net rate of investment. Some investment is needed to replace depreciated capital;
including this as well gives gross investment.
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This book will sometimes offer economic interpretations of a derivative that, like Note 1,
consider the change in a function when a variable x is increased by one whole unit; it would
be more accurate to consider the change in the function per unit increase, for small increases.
Here is an example.

E X A M P L E 4 Let C(x) denote the cost in millions of dollars for removing x% of the pollution in a
lake. Give an economic interpretation of the equality C ′(50) = 3.

Solution: Because of the linear approximation C(50 +h)−C(50) ≈ hC ′(50), the precise
interpretation of C ′(50) = 3 is that, starting at 50%, for each 1% of pollution that is removed,
the extra cost is about 3 million dollars. Less precisely, C ′(50) = 3 means that it costs about
3 million dollars extra to remove 51% instead of 50% of the pollution.

NOTE 2 Following Example 3, economists often use the word “marginal” to indicate
a derivative. To mention just two of many examples we shall encounter, the marginal
propensity to consume is the derivative of the consumption function with respect to in-
come; similarly, the marginal product (or productivity) of labour is the derivative of the
production function with respect to labour input.

Empirical Functions

The very definition of the derivative assumes that arbitrarily small increments in the in-
dependent variable are possible. In practical problems it is impossible to implement, or
even measure, arbitrarily small changes in the variable. For example, economic quantities
that vary with time, such as a nation’s domestic product or the number of its people who
are employed, are usually measured at intervals of days, weeks, or years. Further, the cost
functions of the type we discussed in Example 2 are often defined only for integer values
of x. In all these cases, the variables only take discrete values. The graphs of such func-
tions, therefore, will only consist of discrete points. For functions of this type in which
time and numbers both change discretely, the concept of the derivative is not defined. To
remedy this, the actual function is usually replaced by a “smooth” function that is a “good
approximation” to the original function.

1928 1929

30 000

20 000

10 000

Unemployment

t 1928 1929

30 000

20 000

10 000

Unemployment

t

Figure 1 Unemployment in Norway
(1928–1929)

Figure 2 A smooth curve approximating
the points in Fig. 1.
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As an illustration, Fig. 1 graphs observations of the number of registered unemployed in
Norway for each month of the years 1928–1929. This was a period in which Norway was
still largely an agricultural economy, in which unemployment rose during the autumn and
fell during the spring. In Fig. 2 we show the graph of a “smooth” function that approximates
the points plotted in Fig. 1.

P R O B L E M S F O R S E C T I O N 6 . 4

1. Let C(x) = x2 + 3x + 100 be the cost function of a firm. Show that the average per unit rate
of change when x is changed from 100 to 100 + h is

C(100 + h) − C(100)

h
= 203 + h (h �= 0)

What is the marginal cost C ′(100)? Use (6.2.6) to find C ′(x) and, in particular, C ′(100).

2. If the cost function of a firm is C(x) = kx + I , give economic interpretations of the parameters
k and I .

3. If the total saving of a country is a function S(Y ) of the national product Y , then S ′(Y ) is called
the marginal propensity to save (MPS). Find the MPS for the following functions:

(a) S(Y ) = a + bY (b) S(Y ) = 100 + 0.1Y + 0.0002Y 2

4. If the tax a family pays is a function of its income y given by T (y), then T ′(y) is called the
marginal tax rate. Characterize the following tax function by determining its marginal rate:

T (y) = ty (t is a constant number in (0, 1))

5. Let x(t) denote the number of barrels of oil left in a well at time t , where time is measured in
minutes. What is the interpretation of ẋ(0) = −3?

6. The total cost of producing x units of a commodity is C(x) = x3 − 90x2 + 7500x, x ≥ 0.

(a) Compute the marginal cost function C ′(x). (Use the result in Problem 6.2.9.)

(b) For which value of x is the marginal cost the least?

7. (a) The profit function is π(Q) = 24Q − Q2 − 5. Find the marginal profit, and find the value
Q∗ of Q that maximizes profits.

(b) The revenue function is R(Q) = 500Q − 1
3 Q3. Find the marginal revenue.

(c) Find marginal cost when C(Q) = −Q3 + 214.2Q2 − 7900Q + 320 700. (This particular
cost function is mentioned in Example 4.7.1.)

8. Refer to the definition given in Example 3. Compute the marginal cost in the following two
cases:

(a) C(x) = a1x
2 + b1x + c1

(b) C(x) = a1x
3 + b1



Essential Math. for Econ. Analysis, 4th edn EME4_C06.TEX, 16 May 2012, 14:24 Page 169

S E C T I O N 6 . 5 / A D A S H O F L I M I T S 169

6.5 A Dash of Limits
In Section 6.2 we defined the derivative of a function based on the concept of a limit. The
same concept has many other uses in mathematics, as well as in economic analysis, so now
we should take a closer look. Here we give a preliminary definition and formulate some
important rules for limits. In Section 7.9, we discuss the limit concept more closely.

E X A M P L E 1 Consider the function F defined by the formula

F(x) = ex − 1

x

where e ≈ 2.7 is the base for the natural exponential function. (See Section 4.9.) Note that
if x = 0, then e0 = 1, and the fraction collapses to the absurd expression “0/0”. Thus, the
function F is not defined for x = 0, but one can still ask what happens to F(x) when x is
close to 0. Using a calculator (except when x = 0), we find the values shown in Table 1.

Table 1 Values of F(x) = (ex − 1)/x when x is close to 0

x −1 −0.1 −0.001 −0.0001 0.0 0.0001 0.001 0.1 1

F(x) 0.632 0.956 0.999 1.000 ∗ 1.000 1.001 1.052 1.718

∗ not defined

From the table it appears that as x gets closer and closer to 0, so the fraction F(x) gets
closer and closer to 1. It therefore seems reasonable to assume that F(x) tends to 1 in the
limit as x tends to 0. We write2

lim
x→0

ex − 1

x
= 1 or

ex − 1

x
→ 1 as x → 0

Figure 1 shows a portion of the graph of F . The function F is defined for all x, except at
x = 0, and limx→0 F(x) = 1. (A small circle is used to indicate that the corresponding
point (0, 1) is not in the graph of F .)

�2 �1 1 2

3

2

1

y

x

ex � 1
x

F (x) �

Figure 1

2 Indeed, later it will be shown that the number e is defined so that this limit is 1.
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Suppose, in general, that a function f is defined for all x near a, but not necessarily at
x = a. Then we say that f (x) has the number A as its limit as x tends to a, if f (x) tends
to A as x tends to (but is not equal to) a. We write

lim
x→a

f (x) = A or f (x) → A as x → a

It is possible, however, that the value of f (x) does not tend to any fixed number as x tends
to a. Then we say that limx→a f (x) does not exist, or that f (x) does not have a limit as x

tends to a.

E X A M P L E 2 Examine the limit lim
h→0

√
h + 1 − 1

h
using a calculator.

Solution: By choosing numbers h close to 0, we find the following table:

Table 2 Values of F(h) = (
√

h + 1 − 1)/h when h is close to 0

h −0.5 −0.2 −0.1 −0.01 0.0 0.01 0.1 0.2 0.5

F(h) 0.586 0.528 0.513 0.501 ∗ 0.499 0.488 0.477 0.449

∗ not defined

This suggests that lim
h→0

√
h + 1 − 1

h
= 0.5.

The limits we claim to have found in Examples 1 and 2 are both based on a rather shaky
numerical procedure. For instance, in Example 2, can we really be certain that our guess is
correct? Could it be that if we chose h values even closer to 0, the fraction would tend to
a limit other than 0.5, or maybe not have any limit at all? Further numerical computations
will support our belief that the initial guess is correct, but we can never make a table that
has all the values of h close to 0, so numerical computation alone can never establish with
certainty what the limit is. This illustrates the need to have a rigorous procedure for finding
limits, based on a precise mathematical definition of the limit concept. This definition is
given in Section 7.8, but here we merely give a preliminary definition which will convey
the right idea.

Writing limx→a f (x) = A means that we can make f (x) as close to A as we
want for all x sufficiently close to (but not equal to) a.

(1)

We emphasize:

(a) The number limx→a f (x) depends on the value of f (x) for x-values close to a, but not
on how f behaves at the precise value of x = a. When finding limx→a f (x), we are
simply not interested in the value f (a), or even in whether f is defined at a.

(b) When we compute limx→a f (x), we must take into consideration x-values on both
sides of a.
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Rules for Limits
Since limits cannot really be determined merely by numerical computations, we use simple
rules instead. Their validity can be shown later once we have a precise definition of the limit
concept. These rules are very straightforward and we have even used a few of them already
in the previous section.

Suppose that f and g are defined as functions of x in a neighbourhood of a (but not
necessarily at a). Then we have the following rules written down in a way that makes them
easy to refer to later:3

R U L E S F O R L I M I T S

If lim
x→a

f (x) = A and lim
x→a

g(x) = B, then

(a) lim
x→a

(
f (x) ± g(x)

) = A ± B

(b) lim
x→a

(
f (x) · g(x)

) = A · B

(c) lim
x→a

f (x)

g(x)
= A

B
(if B �= 0)

(d) lim
x→a

(
f (x)

)r = Ar (if Ar is defined and r is any real number)

(2)

It is easy to give intuitive explanations for these rules. Suppose that limx→a f (x) = A and
that limx→a g(x) = B. Then we know that, when x is close to a, then f (x) is close to A

and g(x) is close to B. So intuitively the sum f (x) + g(x) is close to A + B, the difference
f (x) − g(x) is close to A − B, the product f (x)g(x) is close to A · B, and so on.

These rules can be used repeatedly to obtain new extended rules such as

lim
x→a

[f1(x) + f2(x) + · · · + fn(x)] = lim
x→a

f1(x) + lim
x→a

f2(x) + · · · + lim
x→a

fn(x)

lim
x→a

[f1(x) · f2(x) · · · fn(x)] = lim
x→a

f1(x) · lim
x→a

f2(x) · · · lim
x→a

fn(x)

In words: the limit of a sum is the sum of the limits, and the limit of a product is equal to
the product of the limits.

Suppose the function f (x) is equal to the same constant value c for every x. Then

lim
x→a

c = c (at every point a)

It is also evident that if f (x) = x, then

lim
x→a

f (x) = lim
x→a

x = a (at every point a)

Combining these two simple limits with the general rules allows easy computation of the
limits for certain combinations of functions.
3 Using the identities f (x)− g(x) = f (x)+ (−1)g(x), and f (x)/g(x) = f (x)(g(x))−1, it is clear

that some of these rules follow from others.
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E X A M P L E 3 Compute the following limits:

(a) lim
x→−2

(x2 + 5x) (b) lim
x→4

2x3/2 − √
x

x2 − 15
(c) lim

x→a
Axn

Solution: Using the rules for limits specified in (2), we get

(a) lim
x→−2

(x2 + 5x) = lim
x→−2

(x · x) + lim
x→−2

(5 · x)

=
(

lim
x→−2

x
)(

lim
x→−2

x
)

+
(

lim
x→−2

5
)(

lim
x→−2

x
)

= (−2)(−2) + 5 · (−2) = −6

(b) lim
x→4

2x3/2 − √
x

x2 − 15
=

2 lim
x→4

x3/2 − lim
x→4

√
x

limx→4 x2 − 15
= 2 · 43/2 − √

4

42 − 15
= 2 · 8 − 2

16 − 15
= 14

(c) lim
x→a

Axn = (
lim
x→a

A
)(

lim
x→a

xn
) = A · (

lim
x→a

x
)n = A · an

It was easy to find the limits in this last example by using the rules specified in (2). Examples 1
and 2 are more difficult. They involve a fraction whose numerator and denominator both
tend to 0. A simple observation can sometimes help us find such limits (provided that they
exist). Because limx→a f (x) can only depend on the values of f when x is close to, but not
equal to a, we have the following:

If the functions f and g are equal for all x close to a (but not necessarily at
x = a), then limx→a f (x) = limx→a g(x) whenever either limit exists.

(3)

Here are some examples of how this rule works.

E X A M P L E 4 Compute the limit lim
x→2

3x2 + 3x − 18

x − 2
.

Solution: We see that both numerator and denominator tend to 0 as x tends to 2. Because
the numerator 3x2 + 3x − 18 is equal to 0 for x = 2, it has x − 2 as a factor. In fact,
3x2 + 3x − 18 = 3(x − 2)(x + 3). Hence,

f (x) = 3x2 + 3x − 18

x − 2
= 3(x − 2)(x + 3)

x − 2

For x �= 2, we can cancel x − 2 from both numerator and denominator to obtain 3(x + 3).
So the functions f (x) and g(x) = 3(x + 3) are equal for all x �= 2. By (3), it follows that

lim
x→2

3x2 + 3x − 18

x − 2
= lim

x→2
3(x + 3) = 3(2 + 3) = 15
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E X A M P L E 5 Compute the following limits: (a) lim
h→0

√
h + 1 − 1

h
(b) lim

x→4

x2 − 16

4
√

x − 8
.

Solution:

(a) The numerator and the denominator both tend to 0 as h tends to 0. Here we must use a little
trick. We multiply both numerator and denominator by

√
h + 1 + 1 to get

√
h + 1 − 1

h
=

(√
h + 1 − 1

) (√
h + 1 + 1

)
h

(√
h + 1 + 1

) = h + 1 − 1

h
(√

h + 1 + 1
) = 1√

h + 1 + 1

where the common factor h has been cancelled. For all h �= 0 (and h ≥ −1), the given function
is equal to 1/(

√
h + 1 + 1), which tends to 1/2 as h tends to 0. We conclude that the limit of

our function is equal to 1/2, which confirms the result in Example 2.

(b) We must try to simplify the fraction because x = 4 gives 0/0. Again we can use a trick to
factorize the fraction as follows:

x2 − 16

4
√

x − 8
= (x + 4)(x − 4)

4
(√

x − 2
) = (x + 4)

(√
x + 2

) (√
x − 2

)
4

(√
x − 2

) (∗)

Here we have used the factorization x − 4 = (√
x + 2

) (√
x − 2

)
, which is correct for x ≥ 0.

In the last fraction of (∗), we can cancel
√

x − 2 when
√

x − 2 �= 0—that is, when x �= 4.
Using (3) again gives

lim
x→4

x2 − 16

4
√

x − 8
= lim

x→4

1

4
(x + 4)(

√
x + 2) = 1

4
(4 + 4)(

√
4 + 2) = 8

P R O B L E M S F O R S E C T I O N 6 . 5

1. Determine the following by using the rules for limits:

(a) lim
x→0

(3 + 2x2) (b) lim
x→−1

3 + 2x

x − 1
(c) lim

x→2
(2x2 + 5)3

(d) lim
t→8

(
5t + t2 − 1

8 t3
)

(e) lim
y→0

(y + 1)5 − y5

y + 1
(f) lim

z→−2

1/z + 2

z

2. Examine the following limits numerically by using a calculator:

(a) lim
h→0

2h − 1

h
(b) lim

h→0

3h − 1

h
(c) lim

λ→0

3λ − 2λ

λ

3. Consider the following limit: lim
x→1

x2 + 7x − 8

x − 1
.

(a) Examine the limit numerically by making a table of values of the fraction when x is close
to 1.

(b) Find the limit precisely by using the method in Example 4.

4. Compute the following limits:

(a) lim
x→2

(x2 + 3x − 5) (b) lim
y→−3

1

y + 8
(c) lim

x→0

x3 − 2x − 1

x5 − x2 − 1

(d) lim
x→0

x3 + 3x2 − 2x

x
(e) lim

h→0

(x + h)3 − x3

h
(f) lim

x→0

(x + h)3 − x3

h
(h �= 0)
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⊂SM⊃5. Compute the following limits:

(a) lim
h→2

1

3
− 2

3h

h − 2
(b) lim

x→0

x2 − 1

x2
(c) lim

t→3

3

√
32t − 96

t2 − 2t − 3

(d) lim
h→0

√
h + 3 − √

3

h
(e) lim

t→−2

t2 − 4

t2 + 10t + 16
(f) lim

x→4

2 − √
x

4 − x

⊂SM⊃6. If f (x) = x2 + 2x, compute the following limits:

(a) lim
x→1

f (x) − f (1)

x − 1
(b) lim

x→2

f (x) − f (1)

x − 1
(c) lim

h→0

f (2 + h) − f (2)

h

(d) lim
x→a

f (x) − f (a)

x − a
(e) lim

h→0

f (a + h) − f (a)

h
(f) lim

h→0

f (a + h) − f (a − h)

h

HARDER PROBLEM

7. Compute the following limits. (Hint: For part (b), write the fraction as a function of u =
3
√

27 + h.)

(a) lim
x→2

x2 − 2x

x3 − 8
(b) lim

h→0

3
√

27 + h − 3

h
(c) lim

x→1

xn − 1

x − 1
(n is a natural number)

6.6 Simple Rules for Differentiation
The derivative of a function f was defined by the formula

f ′(x) = lim
h→0

f (x + h) − f (x)

h
(∗)

If this limit exists, we say that f is differentiable at x. The process of finding the derivative
of a function is called differentiation. It is useful to think of this as an operation that
transforms one function f into a new function f ′. The function f ′ is then defined for the
values of x where the limit in (∗) exists. If y = f (x), we can use the symbols y ′ and dy/dx

as alternatives to f ′(x).
In Section 6.2 we used formula (∗) to find the derivatives of some simple functions.

However, it is difficult and time consuming to apply the definition directly in each separate
case. We now embark on a systematic programme to find general rules which ultimately
will give mechanical and efficient procedures for finding the derivative of very many differ-
entiable functions specified by a formula, even one that is complicated. We start with some
simple rules.

If f is a constant function, then its derivative is 0:

f (x) = A �⇒ f ′(x) = 0 (1)
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The result is easy to see geometrically. The graph of f (x) = A is a straight line parallel to
the x-axis. The tangent to the graph is the line itself, which has slope 0 at each point (see
Fig. 1). You should now use the definition of f ′(x) to get the same answer.

The next two rules are also very useful.

y = A + f (x) �⇒ y ′ = f ′(x) (Additive constants disappear) (2)

y = Af (x) �⇒ y ′ = Af ′(x) (Multiplicative constants are preserved) (3)

f (x) � A

y

x

y � A � f (x) 

y � f (x) 

y

xx

A

Figure 1 The derivative of a
constant is 0.

Figure 2 The two graphs have parallel tangents
for every x, so the functions have the same
derivatives.

Rule (2) is illustrated in Fig. 2, where A is positive. The graph of A + f (x) is that of f (x)

shifted upwards by A units in the direction of the y-axis. So the tangents to the two curves
y = f (x) and y = f (x)+A at the same value of x must be parallel. In particular, they must
have the same slope. Again you should try to use the definition of f ′(x) to give a formal
proof of this assertion.

Let us prove rule (3) by using the definition of a derivative. If g(x) = Af (x), then
g(x + h) − g(x) = Af (x + h) − Af (x) = A [f (x + h) − f (x)], and so

g′(x) = lim
h→0

g(x + h) − g(x)

h
= A lim

h→0

f (x + h) − f (x)

h
= Af ′(x)

Here is an economic illustration of rule (3). Suppose f (t) denotes the sales revenue at
time t of firm A, and firm B’s sales revenue g(t) at each time is 3 times as large as that
of A. Then the growth rate of B’s revenues is 3 times as large as that of A. In mathematical
notation: g(t) = 3f (t) �⇒ g′(t) = 3f ′(t). However, the firms’ relative growth rates
f ′(t)/f (t) and g′(t)/g(t) will be equal.

In Leibniz’s notation, the three results are as follows:

d

dx
A = 0,

d

dx
[A + f (x)] = d

dx
f (x),

d

dx
[Af (x)] = A

d

dx
f (x)

E X A M P L E 1 Suppose we know f ′(x), and that C �= 0. Find the derivatives of

(a) 5 + f (x) (b) f (x) − 1
2 (c) 4f (x) (d) − f (x)

5
(e)

Af (x) + B

C
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Solution: We obtain

(a)
d

dx

(
5 + f (x)

) = f ′(x)

(b)
d

dx

(
f (x) − 1

2

) = d

dx

(− 1
2 + f (x)

) = f ′(x)

(c)
d

dx

(
4f (x)

) = 4f ′(x)

(d)
d

dx

(
−f (x)

5

)
= d

dx

(
−1

5
f (x)

)
= −1

5
f ′(x)

(e)
d

dx

(
Af (x) + B

C

)
= d

dx

(
A

C
f (x) + B

C

)
= A

C
f ′(x)

Few rules of differentiation are more useful than the following:

P O W E R R U L E

f (x) = xa �⇒ f ′(x) = axa−1 (a is an arbitrary constant) (4)

For a = 2 and a = 3 this rule was confirmed in Section 6.2. The method used in these two
examples can be generalized to the case where a is an arbitrary natural number. Later we
shall see that the rule is valid for all real numbers a.

E X A M P L E 2 Use (4) to compute the derivative of: (a) y = x5 (b) y = 3x8 (c) y = x100

100
.

Solution:

(a) y = x5 �⇒ y ′ = 5x5−1 = 5x4 (b) y = 3x8 �⇒ y ′ = 3 · 8x8−1 = 24x7

(c) y = x100

100
= 1

100
x100 �⇒ y ′ = 1

100
100x100−1 = x99

E X A M P L E 3 Use (4) to compute:

(a)
d

dx

(
x−0.33) (b)

d

dr
(−5r−3) (c)

d

dp
(Apα + B) (d)

d

dx

(
A√
x

)

Solution:

(a)
d

dx

(
x−0.33) = −0.33x−0.33−1 = −0.33x−1.33

(b)
d

dr
(−5r−3) = (−5)(−3)r−3−1 = 15r−4

(c)
d

dp
(Apα + B) = Aαpα−1

(d)
d

dx

(
A√
x

)
= d

dx
(Ax−1/2) = A

(
−1

2

)
x−1/2−1 = −A

2
x−3/2 = −A

2x
√

x
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E X A M P L E 4 The so-called Pareto income distribution is described by the formula

f (r) = B

rβ
= Br−β, r > 0 (5)

where B and β are positive constants and r is income measured in, say, dollars. Here f (r)�r

is approximately the proportion of the population who earn between r and r + �r dollars.
See Section 9.4. The distribution function gives a good approximation for incomes above a
certain threshold level. For these, empirical estimates of β have usually been in the interval
2.4 < β < 2.6 . Compute f ′(r) and comment on its sign.

Solution: We find that f ′(r) = −βBr−β−1 = −βB/rβ+1, so f ′(r) < 0, and f (r) is
strictly decreasing.

P R O B L E M S F O R S E C T I O N 6 . 6

1. Compute the derivatives of the following functions of x:

(a) y = 5 (b) y = x4 (c) y = 9x10 (d) y = π7

2. Suppose we know g′(x). Find expressions for the derivatives of the following:

(a) 2g(x) + 3 (b) − 1
6 g(x) + 8 (c)

g(x) − 5

3

3. Find the derivatives of the following:

(a) x6 (b) 3x11 (c) x50 (d) −4x−7

(e)
x12

12
(f) − 2

x2
(g)

3
3
√

x
(h) − 2

x
√

x

4. Compute the following: (a)
d

dr
(4πr2) (b)

d

dy

(
Ayb+1) (c)

d

dA

(
1

A2
√

A

)

5. Explain why

f ′(a) = lim
x→a

f (x) − f (a)

x − a

Use this to find f ′(a) when f (x) = x2.

6. For each of the following functions, find a function F(x) that has f (x) as its derivative, that is
F ′(x) = f (x). (Note that you are not asked to find f ′(x).)

(a) f (x) = x2 (b) f (x) = 2x + 3 (c) f (x) = xa (a �= −1)

HARDER PROBLEM

7. The following limits all take the form lim
h→0

[f (a + h) − f (a)]/h. Use your knowledge of de-

rivatives to find the limits.

(a) lim
h→0

(5 + h)2 − 52

h
(b) lim

s→0

(s + 1)5 − 1

s
(c) lim

h→0

5(x + h)2 + 10 − 5x2 − 10

h
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6.7 Sums, Products, and Quotients
If we know f ′(x) and g′(x), then what are the derivatives of f (x) + g(x), f (x) − g(x),
f (x) · g(x), and f (x)/g(x)? You will probably guess the first two correctly, but are less
likely to be right about the last two (unless you have already learned the answers).

Sums and Differences

Suppose f and g are both defined in a set A of real numbers.

D I F F E R E N T I A T I O N O F S U M S A N D D I F F E R E N C E S

If both f and g are differentiable at x, then the sum f + g and the difference
f − g are both differentiable at x, and

F(x) = f (x) ± g(x) �⇒ F ′(x) = f ′(x) ± g′(x)

(1)

In Leibniz’s notation:

d

dx

(
f (x) ± g(x)

) = d

dx
f (x) ± d

dx
g(x)

Proof for the case F (x) = f (x) + g(x): The Newton quotient of F is

F(x + h) − F(x)

h
= (f (x + h) + g(x + h)) − (f (x) + g(x))

h

= f (x + h) − f (x)

h
+ g(x + h) − g(x)

h

When h → 0, the last two fractions tend to f ′(x) and g′(x), respectively, and thus the sum of the
fractions tends to f ′(x) + g′(x). Hence,

F ′(x) = lim
h→0

F(x + h) − F(x)

h
= f ′(x) + g′(x)

The proof of the other case is similar—only some of the signs change in an obvious way.

E X A M P L E 1 Compute
d

dx

(
3x8 + x100/100

)
.

Solution: d
dx

(
3x8 + x100/100

) = d
dx

(3x8) + d
dx

(
x100/100

) = 24x7 + x99, where we used
(1) and the results from Example 6.6.2.

E X A M P L E 2 In Example 6.4.3, C(x) denoted the cost of producing x units of some commodity in a
given period. If R(x) is the revenue from selling those x units, then the profit function is
the difference between the revenues and the costs, π(x) = R(x) − C(x). According to (1),
π ′(x) = R′(x)−C ′(x). In particular, π ′(x) = 0 when R′(x) = C ′(x). In words: Marginal
profit is 0 when marginal revenue is equal to marginal cost.
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Rule (1) can be extended to sums of an arbitrary number of terms. For example,

d

dx
(f (x) − g(x) + h(x)) = f ′(x) − g′(x) + h′(x)

which we see by writing f (x) − g(x) + h(x) as (f (x) − g(x)) + h(x), and then using (1).
Using the rules above makes it easy to differentiate any polynomial.

Products

Suppose f (x) = x and g(x) = x2, then (f · g)(x) = x3. Here f ′(x) = 1, g′(x) = 2x,
and (f ·g)′(x) = 3x2. Hence, the derivative of (f ·g)(x) is not equal to f ′(x) ·g′(x) = 2x.
The correct rule for differentiating a product is a little more complicated.

T H E D E R I V A T I V E O F A P R O D U C T

If both f and g are differentiable at the point x, then so is F = f · g, and

F(x) = f (x) · g(x) �⇒ F ′(x) = f ′(x) · g(x) + f (x) · g′(x)
(2)

Briefly formulated: The derivative of the product of two functions is equal to the derivative
of the first times the second, plus the first times the derivative of the second. The formula,
however, is much easier to digest than these words.

In Leibniz’s notation, the product rule is expressed as:

d

dx

[
f (x) · g(x)

] = [ d

dx
f (x)

] · g(x) + f (x) · [ d

dx
g(x)

]
Before demonstrating why (2) is valid, here are two examples:

E X A M P L E 3 Use (2) to find h′(x) when h(x) = (x3 − x) · (5x4 + x2).

Solution: We see that h(x) = f (x) ·g(x) with f (x) = x3 − x and g(x) = 5x4 + x2. Here
f ′(x) = 3x2 − 1 and g′(x) = 20x3 + 2x. Thus,

h′(x) = f ′(x) · g(x) + f (x) · g′(x) = (3x2 − 1) · (5x4 + x2) + (x3 − x) · (20x3 + 2x)

Usually we simplify the answer by expanding to obtain just one polynomial. Simple com-
putation gives

h′(x) = 35x6 − 20x4 − 3x2

Alternatively, we can begin by expanding the expression for h(x). Do so and verify that you
get the same expression for h′(x) as before.



Essential Math. for Econ. Analysis, 4th edn EME4_C06.TEX, 16 May 2012, 14:24 Page 180

180 C H A P T E R 6 / D I F F E R E N T I A T I O N

E X A M P L E 4 We illustrate the product rule for differentiation in a simple economic setting. Let D(P )

denote the demand function for a product. By selling D(P ) units at price P per unit,
the producer earns revenue R(P ) given by R(P ) = PD(P ). Usually D′(P ) is negative
because demand goes down when the price increases. According to the product rule for
differentiation,

R′(P ) = D(P ) + PD′(P ) (∗)

For an economic interpretation, suppose P increases by one dollar. The revenue R(P )

changes for two reasons. First, R(P ) increases by 1 ·D(P ), because each of the D(P ) units
brings in one dollar more. But a one dollar increase in the price per unit causes demand to
change by D(P + 1) − D(P ) units, which is approximately D′(P ). The (positive) loss due
to a one dollar increase in the price per unit is then −PD′(P ), which must be subtracted
from D(P ) to obtain R′(P ), as in equation (*). The resulting expression merely expresses
the simple fact that R′(P ), the total rate of change of R(P ), is what you gain minus what
you lose.

We have now seen how to differentiate products of two functions. What about products of
more than two functions? For example, suppose that

y = f (x)g(x)h(x)

What is y ′? We extend the same technique shown earlier and put y = [
f (x)g(x)

]
h(x).

Then the product rule gives

y ′ = [f (x)g(x)]′ h(x) + [f (x)g(x)] h′(x)

= [
f ′(x)g(x) + f (x)g′(x)

]
h(x) + f (x)g(x)h′(x)

= f ′(x)g(x)h(x) + f (x)g′(x)h(x) + f (x)g(x)h′(x)

If none of the three functions is equal to 0, we can write the result in the following way:4

(fgh)′

fgh
= f ′

f
+ g′

g
+ h′

h

By analogy, it is easy to write down the corresponding result for a product of n functions.
In words, the relative rate of growth of the product is the sum of the relative rates at which
each factor is changing.

Proof of (2): Suppose f and g are differentiable at x, so that the two Newton quotients

f (x + h) − f (x)

h
and

g(x + h) − g(x)

h

tend to the limits f ′(x) and g′(x), respectively, as h tends to 0. We must show that the Newton
quotient of F also tends to a limit, which is given by f ′(x)g(x) + f (x)g′(x). The Newton quotient
of F is

F(x + h) − F(x)

h
= f (x + h)g(x + h) − f (x)g(x)

h
(∗)

4 If all the variables are positive, this result is easier to show using logarithmic differentiation. See
Section 6.11.
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To proceed further we must somehow transform the right-hand side (RHS) to involve the Newton
quotients of f and g. We use a trick: The numerator of the RHS is unchanged if we both subtract
and add the number f (x)g(x + h). Hence, with a suitable regrouping of terms, we have

F(x + h) − F(x)

h
= f (x + h)g(x + h) − f (x)g(x + h) + f (x)g(x + h) − f (x)g(x)

h

= f (x + h) − f (x)

h
g(x + h) + f (x)

g(x + h) − g(x)

h

As h tends to 0, the two Newton quotients tend to f ′(x) and g′(x), respectively. Now we can write
g(x + h) for h �= 0 as

g(x + h) =
[

g(x + h) − g(x)

h

]
h + g(x)

By the product rule for limits and the definition of g′(x), this tends to g′(x) · 0 + g(x) = g(x) as
h tends to 0. It follows that the Newton quotient of F tends to f ′(x)g(x) + f (x)g′(x) as h tends
to 0.

Quotients
Suppose F(x) = f (x)/g(x), where f and g are differentiable in x with g(x) �= 0. Bearing
in mind the complications in the formula for the derivative of a product, one should be
somewhat reluctant to make a quick guess as to the correct formula for F ′(x).

In fact, it is quite easy to find the formula for F ′(x) if we assume that F(x) is differ-
entiable. From F(x) = f (x)/g(x) it follows that f (x) = F(x)g(x). Thus, the product
rule gives f ′(x) = F ′(x) · g(x) + F(x) · g′(x). Solving for F ′(x) yields F ′(x) · g(x) =
f ′(x) − F(x) · g′(x), and so

F ′(x) = f ′(x) − F(x)g′(x)

g(x)
= f ′(x) − [f (x)/g(x)] g′(x)

g(x)

Multiplying both numerator and denominator of the last fraction by g(x) gives the following
important formula.

T H E D E R I V A T I V E O F A Q U O T I E N T

If f and g are differentiable at x and g(x) �= 0, then F = f/g is differentiable
at x, and

F(x) = f (x)

g(x)
�⇒ F ′(x) = f ′(x) · g(x) − f (x) · g′(x)(

g(x)
)2

(3)

In words: The derivative of a quotient is equal to the derivative of the numerator times the
denominator minus the numerator times the derivative of the denominator, this difference
then being divided by the square of the denominator. In simpler notation, we have(

f

g

)′
= f ′g − fg′

g2
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NOTE 1 In the product rule formula, the two functions appear symmetrically, so that it
is easy to remember. In the formula for the derivative of a quotient, the expressions in the
numerator must be in the right order. Here is how you check that you have the order right.
Write down the formula you believe is correct. Put g ≡ 1. Then g′ ≡ 0, and your formula
ought to reduce to f ′. If you get −f ′, then your signs are wrong.

E X A M P L E 5 Compute F ′(x) and F ′(4) when F(x) = 3x − 5

x − 2
.

Solution: We apply (3) with f (x) = 3x−5, g(x) = x−2. Then f ′(x) = 3 and g′(x) = 1.
So we obtain, for x �= 2:

F ′(x) = 3 · (x − 2) − (3x − 5) · 1

(x − 2)2
= 3x − 6 − 3x + 5

(x − 2)2
= −1

(x − 2)2

To find F ′(4), we put x = 4 in the formula for F ′(x) to get F ′(4) = −1/(4 − 2)2 = −1/4.
Note that F ′(x) < 0 for all x �= 2. Hence F is strictly decreasing both for x < 2 and for
x > 2. Note that (3x − 5)/(x − 2) = 3 + 1/(x − 2). The graph is shown in Fig. 5.1.7.

E X A M P L E 6 Let C(x) be the total cost of producing x units of a commodity. Then C(x)/x is the
average cost of producing x units. Find an expression for d

dx

[
C(x)/x

]
.

Solution:
d

dx

(
C(x)

x

)
= C ′(x)x − C(x)

x2
= 1

x

(
C ′(x) − C(x)

x

)
(4)

Note that the marginal cost C ′(x) exceeds the average cost C(x)/x if and only if average cost
increases as output increases. (In a similar way, if a basketball team recruits a new player,
the average height of the team increases if and only if the new player’s height exceeds the
old average height.)

The formula for the derivative of a quotient becomes more symmetric if we consider relative
rates of change. By using (3), simple computation shows that

F(x) = f (x)

g(x)
�⇒ F ′(x)

F (x)
= f ′(x)

f (x)
− g′(x)

g(x)
(5)

The relative rate of change of a quotient is equal to the relative rate of change of the
numerator minus the relative rate of change of the denominator.

Let W(t) be the nominal wage rate and P(t) the price index at time t . Then w(t) =
W(t)/P (t) is called the real wage rate. According to (5),

ẇ(t)

w(t)
= Ẇ (t)

W(t)
− Ṗ (t)

P (t)

The relative rate of change of the real wage rate is equal to the difference between the
relative rates of change of the nominal wage rate and the price index. Thus, if nominal
wages increase at the rate of 5% per year but prices rise by 6% per year, then real wages fall
by 1%. Also, if inflation leads to wages and prices increasing at the same relative rate, then
the real wage rate is constant.
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P R O B L E M S F O R S E C T I O N 6 . 7

In Problems 1–4, differentiate the functions defined by the various formulas.

1. (a) x + 1 (b) x + x2 (c) 3x5 + 2x4 + 5

(d) 8x4 + 2
√

x (e) 1
2 x − 3

2 x2 + 5x3 (f) 1 − 3x7

2. (a) 3
5 x2 − 2x7 + 1

8 − √
x (b) (2x2 − 1)(x4 − 1) (c)

(
x5 + 1

x

)
(x5 + 1)

⊂SM⊃3. (a)
1

x6
(b) x−1(x2 + 1)

√
x (c)

1√
x3

(d)
x + 1

x − 1

(e)
x + 1

x5
(f)

3x − 5

2x + 8
(g) 3x−11 (h)

3x − 1

x2 + x + 1

4. (a)

√
x − 2√
x + 1

(b)
x2 − 1

x2 + 1
(c)

x2 + x + 1

x2 − x + 1

5. Let x = f (L) be the output when L units of labour are used as input. Assume that f (0) = 0,
f ′(L) > 0, and f ′′(L) < 0 for L > 0. Average productivity is g(L) = f (L)/L.

(a) Let L∗ > 0. Indicate on a figure the values of f ′(L∗) and g(L∗). Which is the larger?

(b) How does the average productivity change when labour input increases?

⊂SM⊃6. For each of the following functions, determine the intervals where it is increasing.

(a) y = 3x2 − 12x + 13 (b) y = 1
4 (x4 − 6x2) (c) y = 2x

x2 + 2
(d) y = x2 − x3

2(x + 1)

⊂SM⊃7. Find the equations for the tangents to the graphs of the following functions at the specified
points:

(a) y = 3 − x − x2 at x = 1 (b) y = x2 − 1

x2 + 1
at x = 1

(c) y =
(

1

x2
+ 1

)
(x2 − 1) at x = 2 (d) y = x4 + 1

(x2 + 1)(x + 3)
at x = 0

8. Consider the extraction of oil from a well. Let x(t) be the rate of extraction in barrels per day
and p(t) the price in dollars per barrel at time t . Then R(t) = p(t)x(t) is the revenue in dollars
per day. Find an expression for Ṙ(t), and give it an economic interpretation in the case when
p(t) and x(t) are both increasing. (Hint: R(t) increases for two reasons . . . )

⊂SM⊃9. Differentiate the following functions w.r.t. t :

(a)
at + b

ct + d
(b) tn

(
a
√

t + b
)

(c)
1

at2 + bt + c

10. If f (x) = √
x, then f (x) ·f (x) = x. Use the product rule to find a formula for f ′(x). Compare

this with the result in Problem 6.2.8.
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11. Prove the power rule
y = xa ⇒ y ′ = axa−1

for a = −n, where n is a natural number, by using the relation f (x) = x−n = 1/xn and the
quotient rule (3).

6.8 Chain Rule
Suppose that y is a function of u, and that u is a function of x. Then y is a composite
function of x. Suppose that x changes. This gives rise to a two-stage “chain reaction”: first,
u reacts directly to the change in x; second, y reacts to this change in u. If we know the
rates of change du/dx and dy/du, then what is the rate of change dy/dx? It turns out that
the relationship between these rates of change is simply:

dy

dx
= dy

du
· du

dx
(Chain Rule) (1)

A slightly more detailed formulation says that if y is a differentiable function of u, and u is
a differentiable function of x, then y is a differentiable function of x, and (1) holds.

An important special case is when y = ua . Then dy/du = aua−1, and the chain rule
yields the generalized power rule:

y = ua �⇒ y ′ = aua−1u′ (u = g(x)) (2)

It is easy to remember the chain rule when using Leibniz’s notation. The left-hand side of
(1) is exactly what results if we “cancel” the du on the right-hand side. Of course, because
dy/du and du/dx are not fractions (but merely symbols for derivatives) and du is not a
number, cancelling is not defined.5

The chain rule is very powerful. Facility in applying it comes from a lot of practice.

E X A M P L E 1 (a) Find dy/dx when y = u5 and u = 1 − x3.

(b) Find dy/dx when y = 10

(x2 + 4x + 5)7
.

Solution:

(a) Here we can use (1) directly. Since dy/du = 5u4 and du/dx = −3x2, we have

dy

dx
= dy

du
· du

dx
= 5u4(−3x2) = −15x2u4 = −15x2(1 − x3)4

(b) If we write u = x2 + 4x + 5, then y = 10u−7. By the generalized power rule, one has

dy

dx
= 10(−7)u−8u′ = −70u−8(2x + 4) = −140(x + 2)

(x2 + 4x + 5)8

5 It has been suggested that proving (1) by cancelling du is not much better than proving that
64/16 = 4 by cancelling the two sixes: 6\4/16\ = 4.
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NOTE 1 After a little training, the intermediate steps become unnecessary. For example,
to differentiate the composite function

y = ( 1 − x3︸ ︷︷ ︸
u

)5

suggested by Example 1(a), we can think of y as y = u5, where u = 1 − x3. We can
then differentiate both u5 and 1 − x3 in our heads, and immediately write down y ′ =
5(1 − x3)4(−3x2).

NOTE 2 If you differentiate y = x5/5 using the quotient rule, you obtain the right answer,
but commit a small “mathematical crime”. This is because it is much easier to write y as
y = (1/5)x5 to get y ′ = (1/5)5x4 = x4. In the same way, it is unnecessarily cumbersome
to apply the quotient rule to the function given in Example 1(b). The generalized power rule
is much more effective.

E X A M P L E 2 Differentiate the functions

(a) y = (x3 + x2)50 (b) y =
(

x − 1

x + 3

)1/3

(c) y =
√

x2 + 1

Solution:
(a) y = (x3 + x2)50 = u50 where u = x3 + x2, so u′ = 3x2 + 2x. Then (2) gives

y ′ = 50u50−1 · u′ = 50(x3 + x2)49(3x2 + 2x)

(b) Again we use (2): y =
(

x − 1

x + 3

)1/3

= u1/3 where u = x − 1

x + 3
. The quotient rule gives

u′ = 1 · (x + 3) − (x − 1) · 1

(x + 3)2
= 4

(x + 3)2

and hence

y ′ = 1

3
u(1/3)−1 · u′ = 1

3

(
x − 1

x + 3

)−2/3

· 4

(x + 3)2

(c) Note first that y = √
x2 + 1 = (x2 + 1)1/2, so y = u1/2 where u = x2 + 1. Hence,

y ′ = 1

2
u(1/2)−1 · u′ = 1

2
(x2 + 1)−1/2 · 2x = x√

x2 + 1

The formulation of the chain rule might appear abstract and difficult. However, when we
interpret the derivatives involved in (1) as rates of change, the chain rule becomes rather
intuitive, as the next example from economics will indicate.

E X A M P L E 3 The demand x for a commodity depends on price p. Suppose that price p is not constant,
but depends on time t . Then x is a composite function of t , and according to the chain rule,

dx

dt
= dx

dp
· dp

dt
(∗)
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Suppose, for instance, that the demand for butter decreases by 5000 pounds if the price
goes up by $1 per pound. So dx/dp ≈ −5000. Suppose further that the price per pound
increases by $0.05 per month, so dp/dt ≈ 0.05. What is the decrease in demand in pounds
per month?

Solution: Because the price per pound increases by $0.05 per month, and the demand
decreases by 5000 pounds for every dollar increase in the price, the demand decreases by
approximately 5000·0.05 = 250 pounds per month. This means that dx/dt ≈ −250 (meas-
ured in pounds per month). Note how this argument confirms that (∗) holds approximately,
at least.

The next example uses the chain rule several times.

E X A M P L E 4 Find x ′(t) when x(t) = 5
(
1 + √

t3 + 1
)25

.

Solution: The initial step is easy. Let x(t) = 5u25, where u = 1 + √
t3 + 1, to obtain

x ′(t) = 5 · 25u24 du

dt
= 125u24 du

dt
(∗)

The new feature in this example is that we cannot write down du/dt at once. Finding du/dt

requires using the chain rule a second time. Let u = 1 +√
v = 1 + v1/2, where v = t3 + 1.

Then
du

dt
= 1

2v(1/2)−1 · dv

dt
= 1

2v−1/2 · 3t2 = 1
2 (t3 + 1)−1/2 · 3t2 (∗∗)

From (∗) and (∗∗), we get

x ′(t) = 125
(

1 +
√

t3 + 1
)24 · 1

2 (t3 + 1)−1/2 · 3t2

Suppose, as in the last example, that x is a function of u, u is a function of v, and v is in turn
a function of t . Then x is a composite function of t , and the chain rule can be used twice to
obtain

dx

dt
= dx

du
· du

dv
· dv

dt

This is precisely the formula used in the last example. Again the notation is suggestive
because the left-hand side is exactly what results if we “cancel” both du and dv on the
right-hand side.

An Alternative Formulation of the Chain Rule
Although Leibniz’s notation makes it very easy to remember the chain rule, it suffers from the
defect of not specifying where each derivative is evaluated. We remedy this by introducing
names for the functions involved. So let y = f (u) and u = g(x). Then y can be written as

y = f
(
g(x)

)
Here y is a composite function of x, as considered in Section 5.2, with g(x) as the kernel,
and f as the exterior function.
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If g is differentiable at x0 and f is differentiable at u0 = g(x0), then F(x) =
f

(
g(x)

)
is differentiable at x0, and

F ′(x0) = f ′(u0)g
′(x0) = f ′(g(x0)

)
g′(x0)

(3)

In words: to differentiate a composite function, first differentiate the exterior function w.r.t.
the kernel, then multiply by the derivative of the kernel.

E X A M P L E 5 Find the derivative of F(x) = f (g(x)) at x0 = −3 if f (u) = u3 and g(x) = 2 − x2.

Solution: In this case, f ′(u) = 3u2 and g′(x) = −2x. So according to (3), F ′(−3) =
f ′(g(−3)) g′(−3). Now g(−3) = 2−(−3)2 = 2−9 = −7; g′(−3) = 6; and f ′(g(−3)) =
f ′(−7) = 3(−7)2 = 3 · 49 = 147. So F ′(−3) = f ′(g(−3)) g′(−3) = 147 · 6 = 882.

Proof of (3): In simplified notation, with y = F(x) = f (u) and u = g(x), as above, it is tempting
to argue as follows: Since u = g(x) is continuous, �u = g(x) − g(x0) → 0 as x → x0, and so

F ′(x0) = lim
�x→0

�y

�x
= lim

�x→0

(
�y

�u
· �u

�x

)
= lim

�u→0

�y

�u
· lim

�x→0

�u

�x
= dy

du
· du

dx
= f ′(u0)g

′(x0)

There is a catch, however, because �u may be equal to 0 for values of x arbitrarily close to x0, and
then �y/�u will be undefined. To avoid division by zero, define functions ϕ and γ as follows:

ϕ(u) =
⎧⎨
⎩

f (u) − f (u0)

u − u0
if u �= u0

f ′(u0) if u = u0

, γ (x) =
⎧⎨
⎩

g(x) − g(x0)

x − x0
if x �= x0

g′(x0) if x = x0

Then limu→u0 ϕ(u) = ϕ(u0) and limx→x0 γ (x) = γ (x0). Moreover,

f (u) − f (u0) = ϕ(u)(u − u0) and g(x) − g(x0) = γ (x)(x − x0)

for all u in an interval around u0 and all x in an interval around x0. It follows that, for h close to 0,

F(x0 + h) − F(x0) = f (g(x0 + h)) − f (g(x0))

= ϕ(g(x0 + h)) · (g(x0 + h) − g(x0)) = ϕ(g(x0 + h)) · γ (x0 + h) · h
and so

F ′(x0) = lim
h→0

F(x0 + h) − F(x0)

h
= ϕ(g(x0))γ (x0) = f ′(g(x0))g

′(x0)

P R O B L E M S F O R S E C T I O N 6 . 8

1. Use the chain rule (1) to find dy/dx for the following:

(a) y = 5u4 where u = 1 + x2 (b) y = u − u6 where u = 1 + 1/x

2. Compute the following:

(a) dY/dt when Y = −3(V + 1)5 and V = 1
3 t3.

(b) dK/dt when K = ALa and L = bt + c (A, a, b, and c are positive constants).
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⊂SM⊃3. Find the derivatives of the following functions, where a, p, q, and b are constants:

(a) y = 1

(x2 + x + 1)5
(b) y =

√
x +

√
x + √

x (c) y = xa(px + q)b

4. If Y is a function of K , and K is a function of t , find the formula for the derivative of Y with
respect to t at t = t0.

5. If Y = F(K) and K = h(t), find the formula for dY/dt .

6. Compute dx/dp for the demand function x = b − √
ap − c , where a, b, and c are positive

constants, while x is the number of units demanded, and p is the price per unit, with p > c/a.

7. Find a formula for h′(x) when (i) h(x) = f (x2) (ii) h(x) = f (xng(x)).

8. Let s(t) be the distance in kilometres a car goes in t hours. Let B(s) be the number of litres of
fuel the car uses to go s kilometres. Provide an interpretation of the function b(t) = B (s(t)),
and find a formula for b′(t).

9. Suppose that C = 20q − 4q
(
25 − 1

2 x
)1/2

, where q is a constant and x < 50. Find dC/dx.

10. Differentiate each of the following in two different ways:

(a) y = (x4)5 = x20 (b) y = (1 − x)3 = 1 − 3x + 3x2 − x3

11. (a) Suppose you invest 1000 euros at p% interest per year. Then after 10 years you will have
K = g(p) euros. Give economic interpretations to: (i) g(5) ≈ 1629 (ii) g′(5) ≈ 155.

(b) To check the numbers in (a), find a formula for g(p), and then compute g(5) and g′(5).

12. If f is differentiable at x, find expressions for the derivatives of the following functions:

(a) x + f (x) (b)
[
f (x)

]2 − x (c)
[
f (x)

]4
(d) x2f (x) + [

f (x)
]3

(e) xf (x) (f)
√

f (x) (g)
x2

f (x)
(h)

[
f (x)

]2

x3

6.9 Higher-Order Derivatives
The derivative f ′ of a function f is often called the first derivative of f . If f ′ is also
differentiable, then we can differentiate f ′ in turn. The result (f ′)′ is called the second
derivative, written more concisely as f ′′. We use f ′′(x) to denote the second derivative
of f evaluated at the particular point x.

E X A M P L E 1 Find f ′(x) and f ′′(x) when f (x) = 2x5 − 3x3 + 2x.
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Solution: The rules for differentiating polynomials imply that f ′(x) = 10x4 − 9x2 + 2.
Then we differentiate each side of this equality to get f ′′(x) = 40x3 − 18x.

The different forms of notation for the second derivative are analogous to those for the first
derivative. For example, we write y ′′ = f ′′(x) in order to denote the second derivative
of y = f (x). The Leibniz notation for the second derivative is also used. In the notation
dy/dx or df (x)/dx for the first derivative, we interpreted the symbol d/dx as an operator
indicating that what follows is to be differentiated with respect to x. The second derivative
is obtained by using the operator d/dx twice: f ′′(x) = (d/dx)(d/dx)f (x). We usually
think of this as f ′′(x) = (d/dx)2f (x), and so write it as follows:

f ′′(x) = d2f (x)

dx2
= d2f (x)/dx2 or y ′′ = d2y

dx2
= d2y/dx2

Pay special attention to where the superscripts 2 are placed.
Of course, the notation for the second derivative must change if the variables have other

names.

E X A M P L E 2 (a) Find Y ′′ when Y = AKa is a function of K (K > 0), with A and a as constants.

(b) Find d2L/dt2 when L = t

t + 1
, and t ≥ 0.

Solution:
(a) Differentiating Y = AKa with respect to K gives Y ′ = AaKa−1. A second differen-

tiation with respect to K yields Y ′′ = Aa(a − 1)Ka−2.

(b) First, we use the quotient rule to find that

dL

dt
= d

dt

(
t

t + 1

)
= 1 · (t + 1) − t · 1

(t + 1)2
= (t + 1)−2

Then,
d2L

dt2
= −2(t + 1)−3 = −2

(t + 1)3

Convex and Concave Functions

Recall from Section 6.3 how the sign of the first derivative determines whether a function
is increasing or decreasing on an interval I . If f ′(x) ≥ 0 (f ′(x) ≤ 0) on I , then f is
increasing (decreasing) on I , and conversely. The second derivative f ′′(x) is the derivative
of f ′(x). Hence:

f ′′(x) ≥ 0 on I ⇐⇒ f ′ is increasing on I (1)

f ′′(x) ≤ 0 on I ⇐⇒ f ′ is decreasing on I (2)

The equivalence in (1) is illustrated in Fig. 1. The slope of the tangent, f ′(x), is increasing
as x increases. On the other hand, the slope of the tangent to the graph in Fig. 2 is decreasing
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as x increases. (To help visualize this, imagine sliding a ruler along the curve and keeping
it aligned with the tangent to the curve at each point. As the ruler moves along the curve
from left to right, the tangent rotates counterclockwise in Fig. 1, clockwise in Fig. 2.)

y � f (x)

y

x

y � g(x)

y

x

Figure 1 The slope of the tangent increases
as x increases. f ′(x) is increasing.

Figure 2 The slope of the tangent decreases
as x increases. g′(x) is decreasing.

Suppose that f is continuous in the interval I and twice differentiable in the interior of I .
Then we can introduce the following definitions:

f is convex on I ⇐⇒ f ′′(x) ≥ 0 for all x in I

f is concave on I ⇐⇒ f ′′(x) ≤ 0 for all x in I
(3)

These properties are illustrated in Fig. 3, which should be studied carefully. Whether a
function is concave or convex is crucial to many results in economic analysis, especially
the many that involve maximization or minimization problems. We note that often I is the
whole real line, in which case the interval is not mentioned explicitly.

Increasing,
convex

Increasing,
concave

Decreasing,
convex

Decreasing,
concave

y y y y

x x x x

Figure 3

E X A M P L E 3 Check the convexity/concavity of the following functions:

(a) f (x) = x2 − 2x + 2 and (b) f (x) = ax2 + bx + c

Solution:

(a) Here f ′(x) = 2x − 2 so f ′′(x) = 2. Because f ′′(x) > 0 for all x, f is convex.

(b) Here f ′(x) = 2ax + b, so f ′′(x) = 2a. If a = 0, then f is linear. In this case, the
function f meets both the definitions in (3), so it is both concave and convex. If a > 0,
then f ′′(x) > 0, so f is convex. If a < 0, then f ′′(x) < 0, so f is concave. The last
two cases are illustrated by the graphs in Fig. 4.6.1.
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We consider two typical examples of convex and concave functions.

1600 1700 1800 20001900

3

4

5

2

1

World pop. (billions)

year 50 100 150 200 250

60

40

20

N0

Y

N

Figure 4 World population Figure 5 Wheat production

Figure 4 shows a rough graph of the function P , for dates between 1500 and 2000, where

P(t) = world population (in billions) in year t

It appears from the figure that not only is P(t) increasing, but the rate of increase increases.
(Each year the increase becomes larger.) So, for the last five centuries, P(t) has been convex.

The graph in Fig. 5 shows the crop of wheat Y (N) when N pounds of fertilizer per acre
are used. The curve is based on fertilizer experiments in Iowa during 1952. The function
has a maximum at N = N0 ≈ 172. Increasing the amount of fertilizer beyond N0 will cause
wheat production to decline. Moreover, Y (N) is concave. If N < N0, increasing N by one
unit will increase Y (N) by less, the larger is N . On the other hand, if N > N0, increasing
N by one unit will decrease Y (N) by more, the larger is N .

Y � AKa

(0 � a � 1)

Y

K

Y � AKa

(a � 1)

Y

K

Figure 6 Concave production function Figure 7 Convex production function

E X A M P L E 4 Examine the concavity/convexity of the production function

Y = AKa (A > 0, a > 0)

defined for all K ≥ 0.
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Solution: From Example 2(a), Y ′′ = Aa(a − 1)Ka−2. If a ∈ (0, 1), then the coefficient
Aa(a − 1) < 0, so that Y ′′ < 0 for all K > 0. Hence, the function is concave. The graph
of Y = AKa for 0 < a < 1, is shown in Fig. 6. On the other hand, if a > 1, then Y ′′ > 0
and Y is a convex function of K , as shown in Fig. 7. Finally, if a = 1, then Y is linear, so
both concave and convex.

E X A M P L E 5 Suppose that the functions U and g are both increasing and concave, with U ′ ≥ 0,
U ′′ ≤ 0, g′ ≥ 0, and g′′ ≤ 0. Prove that the composite function f (x) = g

(
U(x)

)
is also

increasing and concave.

Solution: Using the chain rule yields

f ′(x) = g′(U(x)
) · U ′(x) (∗)

Because g′ and U ′ are both ≥ 0, so f ′(x) ≥ 0. Hence, f is increasing. (An increasing
transformation of an increasing function is increasing.)

In order to compute f ′′(x), we must differentiate the product of the two functions
g′(U(x)

)
and U ′(x). According to the chain rule, the derivative of g′(U(x)

)
is equal to

g′′(U(x)
) · U ′(x). Hence,

f ′′(x) = g′′(U(x)
) · (

U ′(x)
)2 + g′(U(x)

) · U ′′(x) (∗∗)

Because g′′ ≤ 0, g′ ≥ 0, and U ′′ ≤ 0, it follows that f ′′(x) ≤ 0. (An increasing concave
transformation of a concave function is concave.)

Nth-Order Derivatives

If y = f (x), the derivative of y ′′ = f ′′(x) is called the third derivative, customarily
denoted by y ′′′ = f ′′′(x). It is notationally cumbersome to continue using more and more
primes to indicate repeated differentiation, so the fourth derivative is usually denoted by
y(4) = f (4)(x). (We must put the number 4 in parentheses so that it will not get confused
with y4, the fourth power of y.) The same derivative can be expressed as d4y/dx4. In
general, let

y(n) = f (n)(x) or
dny

dxn
denote the nth derivative of f at x

The number n is called the order of the derivative. For example, f (6)(x0) denotes the sixth
derivative of f calculated at x0, found by differentiating six times.

E X A M P L E 6 Compute all the derivatives up to and including order 4 of

f (x) = 3x−1 + 6x3 − x2 (x �= 0)
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Solution: Repeated differentiation gives

f ′(x) = −3x−2 + 18x2 − 2x,

f ′′′(x) = −18x−4 + 36

f ′′(x) = 6x−3 + 36x − 2,

f (4)(x) = 72x−5

P R O B L E M S F O R S E C T I O N 6 . 9

1. Compute the second derivatives of:

(a) y = x5 − 3x4 + 2 (b) y = √
x (c) y = (1 + x2)10

2. Find d2y/dx2 when y = √
1 + x2 = (

1 + x2
)1/2

.

3. Compute:

(a) y ′′ for y = 3x3 + 2x − 1 (b) Y ′′′ for Y = 1 − 2x2 + 6x3

(c) d3z/dt3 for z = 120t − (1/3)t3 (d) f (4)(1) for f (z) = 100z−4

4. Find g′′(2) when g(t) = t2

t − 1
.

5. Find formulas for y ′′ and y ′′′ when y = f (x)g(x).

6. Find d2L/dt2 when L = 1/
√

2t − 1.

7. If u(y) denotes an individual’s utility of having income (or consumption) y, then

R = −yu′′(y)/u′(y)

is the coefficient of relative risk aversion. (RA = R/y is the degree of absolute risk aversion.)
Compute R for the following utility functions (where A1, A2, and ρ are positive constants with
ρ �= 1, and we assume that y > 0):

(a) u(y) = √
y (b) u(y) = A1 − A2y

−2 (c) u(y) = A1 + A2y
1−ρ/(1 − ρ)

8. Let U(x) = √
x and g(u) = u3. Then f (x) = g(U(x)) = x3/2, which is not a concave function.

Why does this not contradict the conclusion in Example 5?

9. The US defence secretary claimed in 1985 that Congress had reduced the defence budget.
Representative Gray pointed out that the budget had not been reduced; Congress had only
reduced the rate of increase. If P denotes the size of the defence budget, translate the statements
into statements about the signs of P ′ and P ′′.

10. Sentence in a newspaper: “The rate of increase of bank loans is increasing at an increasing rate”.
If L(t) denotes total bank loans at time t , represent the sentence by a mathematical statement
about the sign of an appropriate derivative of L.
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6.10 Exponential Functions
Exponential functions were introduced in Section 4.9. They were shown to be well suited in
describing certain economic phenomena such as growth and compound interest. In particular
we introduced the natural exponential function, f (x) = ex , where e ≈ 2.7. (Recall the
alternative notation, f (x) = exp(x).)

Now we explain why this particular exponential function deserves to be called “natural”.
Consider the Newton quotient of f (x) = ex , which is

f (x + h) − f (x)

h
= ex+h − ex

h
(∗)

If this fraction tends to a limit as h tends to 0, then f (x) = ex is differentiable and f ′(x) is
precisely equal to this limit.

To simplify the right-hand side of (∗), we make use of the rule ex+h = ex · eh to write
ex+h − ex as ex(eh − 1). So (∗) can be rewritten as

f (x + h) − f (x)

h
= ex · eh − 1

h

We now evaluate the limit of the right-hand side as h → 0. Note that ex is a constant when
we vary only h. As for (eh − 1)/h, in Example 6.5.1 we argued that this fraction tends to 1
as h tends to 0. (Although in that example the variable was x and not h.) It follows that

f (x) = ex �⇒ f ′(x) = ex (1)

Thus the natural exponential function f (x) = ex has the remarkable property that its
derivative is equal to the function itself. This is the main reason why the function appears
so often in mathematics and applications.

Another implication of (1) is that f ′′(x) = ex . Because ex > 0 for all x, both f ′(x)

and f ′′(x) are positive. Hence, both f and f ′ are strictly increasing. This confirms the
increasing convex shape indicated in Fig. 4.9.3.

Combining (1) with the other rules of differentiation, we can differentiate many expres-
sions involving the exponential function ex .

E X A M P L E 1 Find the first and second derivatives of (a) y = x3 + ex (b) y = x5ex (c) y = ex/x

Solution: (a) We find that y ′ = 3x2 + ex and y ′′ = 6x + ex .

(b) We have to use the product rule: y ′ = 5x4ex + x5ex = x4ex(5 + x). To compute y ′′,
we differentiate y ′ = 5x4ex + x5ex once more to obtain

y ′′ = 20x3ex + 5x4ex + 5x4ex + x5ex = x3ex(x2 + 10x + 20)

(c) The quotient rule yields

y = ex

x
�⇒ y ′ = exx − ex · 1

x2
= ex(x − 1)

x2

Differentiating y ′ = exx − ex

x2
once more w.r.t. x gives

y ′′ = (exx + ex − ex)x2 − (exx − ex)2x

(x2)2
= ex(x2 − 2x + 2)

x3
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Combining (1) with the chain rule allows some rather complicated functions to be differen-
tiated. First, note that y = eg(x) = eu �⇒ y ′ = eu · u′ = eg(x) · g′(x), so that

y = eg(x) �⇒ y ′ = eg(x)g′(x) (2)

E X A M P L E 2 Differentiate:

(a) y = e−x (b) y = xpeax (p and a are constants) (c) y =
√

e2x + x

Solution:

(a) Direct use of (2) gives y = e−x �⇒ y ′ = e−x · (−1) = −e−x . This derivative is
always negative, so the function is strictly decreasing. Furthermore, y ′′ = e−x > 0, so
the function is convex. This agrees with the graph shown in Fig. 4.9.3.

(b) The derivative of eax is aeax . Hence, using the product rule,

y ′ = pxp−1eax + xpaeax = xp−1eax(p + ax)

(c) Let y = √
e2x + x = √

u, with u = e2x + x. Then u′ = 2e2x + 1, where we used the
chain rule. Using the chain rule again, we obtain

y =
√

e2x + x = √
v �⇒ y ′ = 1

2
√

v
· v′ = 2e2x + 1

2
√

e2x + x

E X A M P L E 3 Find the intervals where the following functions are increasing:

(a) y = ex

x
(b) y = x4e−2x (c) y = xe−√

x

Solution:

(a) According to Example 1(c), y ′ = ex(x − 1)

x2
, so y ′ ≥ 0 when x ≥ 1. Thus y is

increasing in [1, ∞).

(b) According to Example 2(b), with p = 4 and a = −2, we have y ′ = x3e−2x(4 − 2x).
A sign diagram reveals that y is increasing in [0, 2].

(c) The function is only defined for x ≥ 0. Using the chain rule, for x > 0 the derivative
of e−√

x is −e−√
x/2

√
x, so by the product rule, the derivative of y = xe−√

x is

y ′ = 1 · e−√
x − xe−√

x

2
√

x
= e−√

x

(
1 − 1

2

√
x

)

where we have used the fact that x/
√

x = √
x. It follows that y is increasing when

x > 0 and 1 − 1
2

√
x ≥ 0. Because y = 0 when x = 0 and y > 0 when x > 0, it

follows that y is increasing in [0, 4].
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NOTE 1 A common error when differentiating exponential functions is to believe that the
derivative of ex is “xex−1”. This is due to confusing the exponential function with a power
function.

S U R V E Y O F T H E P R O P E R T I E S O F T H E N A T U R A L E X P O N E N T I A L F U N C T I O N

The natural exponential function

f (x) = exp(x) = ex (e = 2.71828 . . .)

is differentiable, strictly increasing and convex. In fact,

f (x) = ex �⇒ f ′(x) = f (x) = ex

The following properties hold for all exponents s and t :

(a) eset = es+t (b) es/et = es−t (c) (es)t = est

Moreover,

ex → 0 as x → −∞ , ex → ∞ as x → ∞

Differentiating Other Exponential Functions

So far we have considered only the derivative of ex , where e = 2.71828 . . . . How can we
differentiate y = ax , where a is any other positive number? According to definition (4.10.1),
we have a = eln a . So, using the general property (er )s = ers , we have the formula

ax = (
eln a

)x = e(ln a)x

This shows that in functions involving the expression ax , we can just as easily work with the
special exponential function ebx , where b is a constant equal to ln a. In particular, we can
differentiate ax by differentiating ex ln a . According to (2), with g(x) = (ln a)x, we have

y = ax ⇒ y ′ = ax ln a (3)

E X A M P L E 4 Find the derivatives of (a) f (x) = 10−x (b) g(x) = x23x

Solution:

(a) f (x) = 10−x = 10u where u = −x. Using (3) and the chain rule gives f ′(x) =
−10−x ln 10.

(b) We differentiate 23x by letting y = 23x = 2u, where u = 3x. By the chain rule,
y ′ = (2u ln 2)u′ = (23x ln 2) · 3 = 3 · 23x ln 2, and using the product rule we obtain

g′(x) = 1 · 23x + x · 3 · 23x ln 2 = 23x(1 + 3x ln 2)



Essential Math. for Econ. Analysis, 4th edn EME4_C06.TEX, 16 May 2012, 14:24 Page 197

S E C T I O N 6 . 1 1 / L O G A R I T H M I C F U N C T I O N S 197

P R O B L E M S F O R S E C T I O N 6 . 1 0

1. Find the first-order derivatives of:

(a) y = ex + x2 (b) y = 5ex − 3x3 + 8 (c) y = x

ex
(d) y = x + x2

ex + 1

(e) y = −x−5−ex (f) y = x3ex (g) y = exx−2 (h) y = (x + ex)2

2. Find the first-order derivatives w.r.t. t of the following functions (a, b, c, p, and q are constants).

(a) x = (a + bt + ct2)et (b) x = p + qt3

tet
(c) x = (at + bt2)2

et

3. Find the first and second-order derivatives of:

(a) y = e−3x (b) y = 2ex3
(c) y = e1/x (d) y = 5e2x2−3x+1

⊂SM⊃4. Find the intervals where the following functions are increasing:

(a) y = x3 + e2x (b) y = 5x2e−4x (c) y = x2e−x2

5. Find the intervals where the following functions are increasing:

(a) y = x2/e2x (b) y = ex − e3x (c) y = e2x

x + 2

6. Find:

(a)
d

dx

(
e(ex )

)
(b)

d

dt

(
et/2 + e−t/2

)
(c)

d

dt

(
1

et + e−t

)
(d)

d

dz

(
ez3 − 1

)1/3

7. Differentiate: (a) y = 5x (b) y = x2x (c) y = x22x2
(d) y = ex10x .

6.11 Logarithmic Functions
In Section 4.10 we introduced the natural logarithmic function, g(x) = ln x. It is defined
for all x > 0 and has the following graph (reproduced from Fig. 4.10.2):

�1

1

2

1 2 3 4

y

x

g (x) � ln x

Figure 1 The graph of the logarithmic function g(x) = ln x



Essential Math. for Econ. Analysis, 4th edn EME4_C06.TEX, 16 May 2012, 14:24 Page 198

198 C H A P T E R 6 / D I F F E R E N T I A T I O N

According to Section 5.3, the function g(x) = ln x has f (x) = ex as its inverse. If we
assume that g(x) = ln x has a derivative for all x > 0, we can easily find that derivative.
To do so, we differentiate w.r.t. x the equation defining g(x) = ln x, which is

eg(x) = x (∗)

Using (6.10.2), we get eg(x)g′(x) = 1. Since eg(x) = x, this implies xg′(x) = 1, and thus

g(x) = ln x �⇒ g′(x) = 1

x
(1)

Thus, the derivative of ln x at x is simply the number 1/x. For x > 0, we have g′(x) > 0,
so that g(x) is strictly increasing. Note moreover that g′′(x) = −1/x2, which is less than 0
for all x > 0, so that g(x) is concave. This confirms the shape of the graph in Fig. 1. In
fact, the growth of ln x is quite slow. For example, ln x does not attain the value 10 until
x > 22 026, because ln x = 10 gives x = e10 ≈ 22 026.5.

E X A M P L E 1 Compute y ′ and y ′′ when: (a) y = x3 + ln x (b) y = x2 ln x (c) y = ln x/x.

Solution:
(a) We find easily that y ′ = 3x2 + 1/x. Furthermore, y ′′ = 6x − 1/x2.

(b) The product rule gives

y ′ = 2x ln x + x2(1/x) = 2x ln x + x

Differentiating the last expression w.r.t. x gives y ′′ = 2 ln x+2x(1/x)+1 = 2 ln x+3.

(c) Here we use the quotient rule:

y′ = (1/x)x − (ln x) · 1

x2
= 1 − ln x

x2

Differentiating again yields

y ′′ = −(1/x)x2 − (1 − ln x)2x

(x2)2
= 2 ln x − 3

x3

Often, we need to consider composite functions involving natural logarithms. Because ln u

is defined only when u > 0, a composite function of the form y = ln h(x) will only be
defined for values of x satisfying h(x) > 0.

Combining the rule for differentiating ln x with the chain rule allows us to differentiate
many different types of function. Suppose, for instance, that y = ln h(x), where h(x)

is differentiable and positive. By the chain rule, y = ln u with u = h(x) implies that
y′ = (1/u)u′ = (

1/h(x)
)
h′(x), so:

y = ln h(x) �⇒ y′ = h′(x)

h(x)
(2)

NOTE 1 If N(t) is a function of t , then the derivative of its natural logarithm

d

dt
ln N(t) = 1

N(t)

dN(t)

dt
= Ṅ(t)

N(t)

is the relative rate of growth of N(t).
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E X A M P L E 2 Find the domains of the following functions and compute their derivatives:

(a) y = ln(1 − x) (b) y = ln(4 − x2) (c) y = ln

(
x − 1

x + 1

)
− 1

4
x

Solution:

(a) ln(1 − x) is defined if 1 − x > 0, that is if x < 1. To find its derivative, we use (2) with
h(x) = 1 − x. Then h′(x) = −1, so (2) gives

y ′ = −1

1 − x
= 1

x − 1

(b) ln(4 − x2) is defined if 4 − x2 > 0, that is if (2 − x)(2 + x) > 0. This is satisfied if
and only if −2 < x < 2. Formula (2) gives

y ′ = −2x

4 − x2
= 2x

x2 − 4

(c) We can write y = ln u− 1
4x, where u = (x −1)/(x +1). For the function to be defined,

we require that u > 0. A sign diagram shows that this is satisfied if x < −1 or x > 1.
Using (2), we obtain

y′ = u′

u
− 1

4
where u′ = 1 · (x + 1) − 1 · (x − 1)

(x + 1)2
= 2

(x + 1)2

So

y ′ = 2(x + 1)

(x + 1)2(x − 1)
− 1

4
= 9 − x2

4(x2 − 1)
= (3 − x)(3 + x)

4(x − 1)(x + 1)

E X A M P L E 3 Find the intervals where the following functions are increasing:

(a) y = x2 ln x (b) y = 4x − 5 ln(x2 + 1) (c) y = 3 ln(1 + x) + x − 1
2x2

Solution:

(a) The function is defined for x > 0, and

y ′ = 2x ln x + x2(1/x) = x(2 ln x + 1)

Hence, y ′ ≥ 0 when ln x ≥ −1/2, that is, when x ≥ e−1/2. Thus y is increasing in
[e−1/2, ∞).

(b) We find that

y ′ = 4 − 10x

x2 + 1
= 4(x − 2)

(
x − 1

2

)
x2 + 1

A sign diagram reveals that y is increasing in each of the intervals (−∞, 1
2 ] and [2, ∞).

(c) The function is defined for x > −1, and

y′ = 3

1 + x
+ 1 − x = (2 − x)(2 + x)

x + 1

A sign diagram reveals that y is increasing in (−1, 2].
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S U R V E Y O F T H E P R O P E R T I E S O F T H E N A T U R A L L O G A R I T H M

The natural logarithmic function

g(x) = ln x

is differentiable, strictly increasing and concave in (0, ∞). In fact,

g′(x) = 1/x, g′′(x) = −1/x2

By definition, eln x = x for all x > 0, and ln ex = x for all x. The following
properties hold for all x > 0, y > 0:

(a) ln(xy) = ln x + ln y (b) ln(x/y) = ln x − ln y (c) ln xp = p ln x

Moreover,

ln x → −∞ as x → 0 (from the right), ln x → ∞ as x → ∞

Logarithmic Differentiation

When differentiating an expression containing products, quotients, roots, powers, and com-
binations of these, it is often an advantage to use logarithmic differentiation. The method
is illustrated by two examples:

E X A M P L E 4 Find the derivative of y = xx defined for all x > 0.

Solution: The power rule of differentiation, y = xa ⇒ y ′ = axa−1, requires the
exponent a to be a constant, while the rule y = ax ⇒ y ′ = ax ln a requires that the base
a is constant. In the expression xx both the exponent and the base vary with x, so neither
of the two rules can be used.

Begin by taking the natural logarithm of each side, ln y = x ln x. Differentiating w.r.t.
x gives y ′/y = 1 · ln x + x(1/x) = ln x + 1. Multiplying by y = xx gives us the result:

y = xx �⇒ y ′ = xx(ln x + 1)

E X A M P L E 5 Find the derivative of y = [A(x)]α[B(x)]β [C(x)]γ , where α, β, and γ are constants and
A, B, and C are positive functions.

Solution: First, take the natural logarithm of each side to obtain

ln y = α ln(A(x)) + β ln(B(x)) + γ ln(C(x))

Differentiation with respect to x yields

y ′

y
= α

A′(x)

A(x)
+ β

B ′(x)

B(x)
+ γ

C ′(x)

C(x)
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Multiplying by y we have

y ′ =
[
α

A′(x)

A(x)
+ β

B ′(x)

B(x)
+ γ

C ′(x)

C(x)

]
[A(x)]α[B(x)]β [C(x)]γ

In Section 4.10 we showed (see equation (5)) that the logarithm of x in the system with base a is pro-
portional to ln x, with a proportionality factor 1/ ln a: loga x = 1

ln a
ln x. It follows immediately that

y = loga x ⇒ y ′ = 1

ln a

1

x
(3)

Approximating the Number e
If g(x) = ln x, then g′(x) = 1/x, and, in particular, g′(1) = 1. Using in turn the definition
of g′(1), the fact that ln 1 = 0, together with the rule ln xp = p ln x, we obtain

1 = g′(1) = lim
h→0

ln(1 + h) − ln 1

h
= lim

h→0

1

h
ln(1 + h) = lim

h→0
ln(1 + h)1/h

Because ln(1 + h)1/h tends to 1 as h tends to 0, it follows that (1 + h)1/h itself must tend
to e:

e = lim
h→0

(1 + h)1/h (4)

The following table has been computed using a pocket calculator, and it seems to confirm
that the decimal expansion we gave for e starts out correctly. (Of course, this by no means
proves that the limit exists.)

Table 1 Values of (1 + h)1/h when h gets smaller and smaller

h 1 1/2 1/10 1/1000 1/100 000 1/1 000 000

(1 + h)1/h 2 2.25 2.5937 . . . 2.7169 . . . 2.71825 . . . 2.718281828 . . .

From the table we can see that closer and closer approximations to e are obtained by choosing
h smaller and smaller. (A much better way to approximate ex , for general real x, is suggested
in Example 7.6.2.)

Power Functions
In Section 6.6 we claimed that, for all real numbers a,

f (x) = xa �⇒ f ′(x) = axa−1 (∗)

This important rule has only been established for certain special values of a, particularly
the rational numbers. Because x = eln x , we have xa = (eln x)a = ea ln x . Using the chain
rule, we obtain

d

dx
(xa) = d

dx
(ea ln x) = ea ln x · a

x
= xa a

x
= axa−1

This justifies using the same power rule even when a is an irrational number.
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P R O B L E M S F O R S E C T I O N 6 . 1 1

1. Compute the first- and second-order derivatives of:

(a) y = ln x + 3x − 2 (b) y = x2 − 2 ln x (c) y = x3 ln x (d) y = ln x

x

2. Find the derivative of:

(a) y = x3(ln x)2 (b) y = x2

ln x
(c) y = (ln x)10 (d) y = (ln x + 3x)2

⊂SM⊃3. Find the derivative of:

(a) ln(ln x) (b) ln
√

1 − x2 (c) ex ln x (d) ex3
ln x2

(e) ln(ex + 1) (f) ln(x2 + 3x − 1) (g) 2(ex − 1)−1 (h) e2x2−x

4. Determine the domains of the functions defined by:

(a) y = ln(x + 1) (b) y = ln

(
3x − 1

1 − x

)
(c) y = ln |x|

⊂SM⊃5. Determine the domains of the functions defined by:

(a) y = ln(x2 − 1) (b) y = ln(ln x) (c) y = 1

ln(ln x) − 1

⊂SM⊃6. Find the intervals where the following functions are increasing:

(a) y = ln(4 − x2) (b) y = x3 ln x (c) y = (1 − ln x)2

2x

7. Find the equation for the tangent to the graph of

(a) y = ln x at the points with x-coordinates (i) 1 (ii) 1
2 (iii) e

(b) y = xex at the points with x-coordinates (i) 0 (ii) 1 (iii) −2

8. Use logarithmic differentiation to find f ′(x)/f (x) when:

(a) f (x) =
(

x + 1

x − 1

)1/3

(b) f (x) = x2x (c) f (x) = √
x − 2 (x2 + 1)(x4 + 6)

⊂SM⊃9. Differentiate the following functions using logarithmic differentiation:

(a) y = (2x)x (b) y = x
√

x (c) y = (√
x

)x

10. Prove that if u and v are differentiable functions of x, and u > 0, then

y = uv ⇒ y ′ = uv
(
v′ ln u + vu′

u

)
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HARDER PROBLEM

⊂SM⊃11. If f (x) = ex − 1 − x, then f ′(x) = ex − 1 > 0 for all x > 0. The function f (x) is therefore
strictly increasing in the interval [0, ∞). Since f (0) = 0, it follows that f (x) > 0 for all x > 0,
and so ex > 1 + x for all x > 0. Use the same method to prove the following inequalities:

(a) ex > 1 + x + x2/2 for x > 0

(b) 1
2 x < ln(1 + x) < x for 0 < x < 1

(c) ln x < 2(
√

x − 1) for x > 1

R E V I E W P R O B L E M S F O R C H A P T E R 6

1. Let f (x) = x2 − x + 2. Show that [f (x + h) − f (x)]/h = 2x − 1 + h, and use this result to
find f ′(x).

2. Let f (x) = −2x3 + x2. Compute [f (x + h) − f (x)]/h, and find f ′(x).

3. Compute the first- and second-order derivatives of the following functions:

(a) y = 2x − 5 (b) y = 1

3
x9 (c) y = 1 − 1

10
x10 (d) y = 3x7 + 8

(e) y = x − 5

10
(f) y = x5 − x−5 (g) y = x4

4
+ x3

3
+ 52

2
(h) y = 1

x
+ 1

x3

4. Let C(Q) denote the cost of producing Q units per month of a commodity. What is the inter-
pretation of C ′(1000) = 25? Suppose the price obtained per unit is fixed at 30 and that the
current output per month is 1000. Is it profitable to increase production?

5. For each of the following functions, find the equation for the tangent to the graph at the specified
point:

(a) y = −3x2 at x = 1 (b) y = √
x − x2 at x = 4 (c) y = x2 − x3

x + 3
at x = 1

6. Let A(x) denote the dollar cost of building a house with a floor area of x square metres. What
is the interpretation of A′(100) = 250?

7. Differentiate the following functions:

(a) f (x) = x(x2 + 1) (b) g(w) = w−5 (c) h(y) = y(y − 1)(y + 1)

(d) G(t) = 2t + 1

t2 + 3
(e) ϕ(ξ) = 2ξ

ξ 2 + 2
(f) F(s) = s

s2 + s − 2

8. Find the derivatives: (a)
d

da
(a2t − t2) (b)

d

dt
(a2t − t2) (c)

d

dϕ

(
xϕ2 − √

ϕ
)

9. Use the chain rule to find dy/dx for the following:

(a) y = 10u2 and u = 5 − x2 (b) y = √
u and u = 1

x
− 1
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10. Compute the following:

(a) dZ/dt when Z = (u2 − 1)3 and u = t3.

(b) dK/dt when K = √
L and L = 1 + 1/t .

11. If a(t) and b(t) are positive-valued differentiable functions of t , and if A, α, and β are constants,
find expressions for ẋ/x where:

(a) x = (
a(t)

)2
b(t) (b) x = A

(
a(t)

)α(
b(t)

)β
(c) x = A

(
(a(t))α + (b(t))β

)α+β

12. If R = Sα , S = 1 + βKγ , and K = Atp + B, find an expression for dR/dt .

13. Find the derivatives of the following functions, where a, b, p, and q are constants:

(a) h(L) = (La + b)p (b) C(Q) = aQ + bQ2 (c) P(x) = (
ax1/q + b

)q

14. Find the first-order derivatives of:

(a) y = −7ex (b) y = e−3x2
(c) y = x2

ex
(d) y = ex ln(x2 + 2)

(e) y = e5x3
(f) y = 2 − x4e−x (g) y = (ex + x2)10 (h) y = ln (

√
x + 1)

⊂SM⊃15. Find the intervals where the following functions are increasing:

(a) y = (ln x)2 − 4 (b) y = ln(ex + e−x) (c) y = x − 3

2
ln(x2 + 2)

16. (a) Suppose π(Q) = QP(Q) − cQ, where P is a differentiable function and c is a constant.
Find an expression for dπ/dQ.

(b) Suppose π(L) = PF(L) − wL, where F is a differentiable function and P and w are
constants. Find an expression for dπ/dL.
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Although this may seem a paradox, all science is dominated by the idea of approximation.

—Bertrand Russell

Many economic models involve functions that are defined implicitly by one or more equa-

tions. In some simple but economically relevant cases, we begin this chapter by showing

how to compute derivatives of such functions, including how to differentiate the inverse. It is

very important for economists to master the technique of implicit differentiation.

Next we consider linear approximations and differentials, followed by a discussion of quad-

ratic and higher-order polynomial approximations. Section 7.6 studies Taylor’s formula, which

makes it possible to analyse the resulting error when a function is approximated by a polynomial.

A discussion of the important economic concept of elasticity follows in Section 7.7.

The word continuous is common even in everyday language. We use it, in particular, to

characterize changes that are gradual rather than sudden. This usage is closely related to the

idea of a continuous function. In Section 7.8 we discuss this concept and explain its close

relationship with the limit concept. Limits and continuity are key ideas in mathematics, and

also very important in the application of mathematics to economic problems. The preliminary

discussion of limits in Section 6.5 was necessarily very sketchy. In Section 7.9 we take a closer

look at this concept and extend it in several directions.

Next we present the intermediate value theorem, which makes precise the idea that a con-

tinuous function has a “connected” graph. This makes it possible to prove that certain equa-

tions have solutions. A brief discussion of Newton’s method for finding approximate solutions to

equations is given. A short section on infinite sequences follows. Finally, Section 7.12 presents

l’Hôpital’s rule for indeterminate forms, which is sometimes useful for evaluating limits.

7.1 Implicit Differentiation
We know how to differentiate functions given by explicit formulas like y = f (x). Now we
consider how to differentiate functions defined implicitly by an equation such as g(x, y) = c,
where c is a constant. We begin with a very simple case.



Essential Math. for Econ. Analysis, 4th edn EME4_C07.TEX, 16 May 2012, 14:24 Page 206

206 C H A P T E R 7 / D E R I V A T I V E S I N U S E

E X A M P L E 1 Consider the following equation in x and y,

xy = 5 (∗)

If x = 1, then y = 5. Also, x = 3 gives y = 5/3. And x = 5 gives y = 1. In general,
for each number x �= 0, there is a unique number y such that the pair (x, y) satisfies the
equation. We say that equation (∗) defines y implicitly as a function of x. The graph of
equation (∗) for x > 0 is shown in Fig. 1.

1 2 3 4 5

3

4

5

2

1

x y � 5

y

x

Figure 1 xy = 5, x > 0

Economists often need to know the slope of the tangent at an arbitrary point on such a
graph, i.e. to know the derivative of y as a function of x. The answer can be found by
implicit differentiation of equation (∗), which defines y as a function of x. If we denote this
function by f , then replacing y by f (x) gives

xf (x) = 5 for all x > 0 (∗∗)

Because the left and right sides of the equation are equal for all x > 0, the derivative of
the left-hand side w.r.t. x must be equal to the derivative of the right-hand side w.r.t. x. The
derivative of the constant 5 is 0. When we differentiate xf (x), we must use the product rule.
Therefore, by differentiating (∗∗) w.r.t. x, we obtain

1 · f (x) + xf ′(x) = 0

It follows that for x > 0,

f ′(x) = −f (x)

x

If x = 3, then f (3) = 5/3, and thus f ′(3) = −(5/3)/3 = −5/9, which agrees with Fig. 1.
Usually, we do not introduce a name like f for y as a function of x. Instead, we differ-

entiate (∗) directly w.r.t. x, recalling that y is a differentiable function of x, and so we write
y + xy ′ = 0. Solving for y ′ gives

y ′ = −y

x
(∗∗∗)

For this particular example, there is another way to find the answer. Solving equation (∗)

for y gives y = 5/x = 5x−1, and hence direct differentiation gives y ′ = 5(−1)x−2 =
−5/x2. Note that substituting 5/x for y in (∗∗∗) yields y ′ = −5/x2 again.
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E X A M P L E 2 The graph of
y3 + 3x2y = 13 (∗)

was studied in Example 5.4.2. It passes through the point (2, 1). Find the slope of the graph
at that point. (The graph is shown in Fig. 2.)

2

1

�2�3�4 �1 1 2 3 4

y

x

Figure 2 The graph of y3 + 3x2y = 13

Solution: Since there is no simple way of expressing y as an explicit function of x, we use
implicit differentiation. We think of replacing y with an unspecified function of x wherever
y occurs. Then y3 + 3x2y becomes a function of x which is equal to the constant 13 for
all x. So the derivative of y3 + 3x2y w.r.t. x must be equal to zero for all x. According to
the chain rule, the derivative of y3 w.r.t. x is equal to 3y2y ′. Using the product rule, the
derivative of 3x2y is equal to 6xy + 3x2y ′. Hence, differentiating (∗) gives

3y2y ′ + 6xy + 3x2y ′ = 0 (∗∗)

Solving this equation for y ′ yields

y ′ = −6xy

3x2 + 3y2
= −2xy

x2 + y2
(∗∗∗)

For x = 2, y = 1 we find y′ = −4/5, which agrees with Fig. 2.

Examples 1 and 2 illustrate the following general method.

T H E M E T H O D O F I M P L I C I T D I F F E R E N T I A T I O N

If two variables x and y are related by an equation, to find y ′:
(a) Differentiate each side of the equation w.r.t. x, considering y as a function

of x. (Usually, you will need the chain rule.)

(b) Solve the resulting equation for y ′.

The next section shows several economic examples. A particularly important application
of this method occurs in the next chapter where we consider what happens to the solution
of an optimization problem when parameters change.

E X A M P L E 3 The equation x2y3 + (y + 1)e−x = x + 2 defines y as a differentiable function of x in a
neighbourhood of (x, y) = (0, 1). Compute y ′ at this point.
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Solution: Implicit differentiation w.r.t. x gives

2xy3 + x23y2y ′ + y ′e−x + (y + 1)(−e−x) = 1

Inserting x = 0 and y = 1 yields y′ + 2(−1) = 1, implying that y ′ = 3.

E X A M P L E 4 Suppose y is defined implicitly as a function of x by the equation

g(xy2) = xy + 1 (∗)

where g is a given differentiable function of one variable. Find an expression for y ′.

Solution: We differentiate each side of the equation w.r.t. x, considering y as a function
of x. The derivative of g(xy2) w.r.t. x is g′(xy2)(y2 + x2yy ′). So differentiating (∗) yields
g′(xy2)(y2 + x2yy ′) = y + xy ′. Solving for y ′ gives us

y ′ = y(yg′(xy2) − 1)

x
(
1 − 2yg′(xy2)

)

The Second Derivative of Functions Defined Implicitly
The following examples suggest how to compute the second derivative of a function that is
defined implicitly by an equation.

E X A M P L E 5 Compute y ′′ when y is given implicitly as a function of x by

xy = 5

Solution: In Example 1 we found by implicit differentiation that y + xy ′ = 0. Differenti-
ating this equation implicitly w.r.t. x once more, while recognizing that both y and y ′ depend
on x, we obtain

y ′ + y ′ + xy ′′ = 0

Inserting the expression −y/x we already have for y ′ gives −2y/x + xy ′′ = 0. Solving for
y ′′ finally yields

y ′′ = 2y

x2

We see that if y > 0, then y ′′ > 0, which accords with Fig. 1 since the graph is convex.
Because y = 5/x, we also get y ′′ = 10/x3.

In this simple case, we can check the answer directly. Since y = 5x−1 and y ′ = −5x−2,
we have y ′′ = 10x−3.

In order to find y ′′ we can also use formula (∗∗∗) in Example 1 and differentiate the
fraction w.r.t. x, again taking into account that y depends on x:

y ′′ = −y ′x − y

x2
= − (−y/x)x − y

x2
= 2y

x2

E X A M P L E 6 For the function defined by the equation y3 + 3x2y = 13 in Example 2, find y ′′ at the
point (2, 1).
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Solution: The easiest approach is to differentiate equation (∗∗) in Example 2 w.r.t. x. The
derivative of 3y2y ′ w.r.t. x is (6yy ′)y ′ + 3y2y ′′ = 6y(y ′)2 + 3y2y ′′. The two other terms
are differentiated in the same way, and we obtain

6y(y ′)2 + 3y2y ′′ + 6y + 6xy ′ + 6xy ′ + 3x2y ′′ = 0

Inserting x = 2, y = 1, and y ′ = −4/5 (see Example 2), then solving the resulting
equation, gives y ′′ = 78/125. (An alternative method is to differentiate the fraction in
(∗∗∗) in Example 2 w.r.t. x.)

P R O B L E M S F O R S E C T I O N 7 . 1

1. Find y ′ by implicit differentiation if 3x2 + 2y = 5. Check by solving the equation for y and
then differentiating.

2. For the equation x2y = 1, find dy/dx and d2y/dx2 by implicit differentiation. Check by solving
the equation for y and then differentiating.

⊂SM⊃3. Find dy/dx and d2y/dx2 by implicit differentiation when (a) x −y +3xy = 2 (b) y5 = x6

4. A curve in the uv-plane is given by u2+uv−v3 = 0. Compute dv/du by implicit differentiation.
Find the point (u, v) on the curve where dv/du = 0 and u �= 0.

5. Suppose that y is a differentiable function of x that satisfies the equation

2x2 + 6xy + y2 = 18

Find y ′ and y ′′ at the point (x, y) = (1, 2).

6. For each of the following equations, answer the question: If y = f (x) is a differentiable function
that satisfies the equation, what is y ′? (a is a positive constant.)

(a) x2 + y2 = a2 (b)
√

x + √
y = √

a (c) x4 − y4 = x2y3 (d) exy − x2y = 1

7. (a) Find the slope of the tangent line to the curve

2xy − 3y2 = 9

at (x, y) = (6, 1).

(b) Compute also the second derivative at this point.

⊂SM⊃8. Suppose y is defined implicitly as a function of x by the following equations, where g is a given
differentiable function of one variable. Find an expression for y ′.

(a) xy = g(x) + y3 (b) g(x + y) = x2 + y2 (c) (xy + 1)2 = g(x2y)

9. Suppose F is a differentiable function of one variable with F(0) = 0 and F ′(0) �= −1. Find an
expression for y ′ at the point (x, y) = (1, 0) if y is defined implicitly as a differentiable function
of x by the equation

x3F(xy) + exy = x
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⊂SM⊃10. (a) The elegant curve shown in Figure 3 is known as a lemniscate. It is given by the equation

(x2 + y2)2 = a2(x2 − y2) (a is a positive constant)

Find the slope of the tangent to this curve at a point (x, y) where y �= 0.

(b) Determine those points on the curve where the tangent is parallel to the x-axis.

a�a

y

x

Figure 3 A lemniscate

7.2 Economic Examples
Few mathematical techniques are more important in economics than implicit differentiation.
This is because so many functions in economic models are defined implicitly by an equation
or a system of equations. Often the variables have other names than x and y, so one needs
to practise differentiating equations with other names for the variables.

E X A M P L E 1 In a standard macroeconomic model for determining national income in a closed econ-
omy, it is assumed that

(i) Y = C + I (ii) C = f (Y )

Here (ii) is the consumption function discussed in Example 4.5.2, whereas (i) states that the
national income Y is divided up between consumption C and investment I . Assume that
f ′(Y ), the marginal propensity to consume, exists and lies between 0 and 1.

(a) Suppose first that C = f (Y ) = 95.05 + 0.712 Y (see Example 4.5.2), and use equa-
tions (i) and (ii) to find Y in terms of I .

(b) Inserting the expression for C from (ii) into (i) gives Y = f (Y ) + I . Suppose that this
equation defines Y as a differentiable function of I . Find an expression for dY/dI .

(c) Assuming that f ′′(x) also exists, find Y ′′ = d2Y/dI 2.

Solution:

(a) In this case, we find that Y = 95.05 + 0.712 Y + I . Solving for Y yields

Y = (95.05 + I )/(1 − 0.712) ≈ 3.47 I + 330.03

In particular, dY/dI ≈ 3.47, so if I is increased by $1 billion, then the corresponding
increase in the national income is approximately 3.47 billion dollars.
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(b) Differentiating Y = f (Y ) + I w.r.t. I , and using the chain rule, we have

dY

dI
= f ′(Y )

dY

dI
+ 1 or

dY

dI

[
1 − f ′(Y )

] = 1 (∗)

Solving for dY/dI yields
dY

dI
= 1

1 − f ′(Y )
(∗∗)

For example, if f ′(Y ) = 1/2, then dY/dI = 2. If f ′(Y ) = 0.712, then dY/dI ≈ 3.47.
In general, we see that because of the assumption that f ′(Y ) lies between 0 and 1, so
1 − f ′(Y ) also lies between 0 and 1. Hence 1/

(
1 − f ′(Y )

)
is always greater than 1.

In this model, therefore, a $1 billion increase in investment will always lead to a more
than $1 billion increase in the national income. Also, the greater is f ′(Y ), the marginal
propensity to consume, the smaller is 1 − f ′(Y ), and so the greater is dY/dI .

(c) We differentiate the first equation in (∗) implicitly w.r.t. I . The derivative of f ′(Y )

w.r.t. I is f ′′(Y )(dY/dI). According to the product rule, the derivative of the product
f ′(Y )(dY/dI) w.r.t. I is f ′′(Y )(dY/dI)(dY/dI) + f ′(Y )(d2Y/dI 2). Hence,

d2Y

dI 2
= f ′′(Y )

(
dY

dI

)2

+ f ′(Y )
d2Y

dI 2

Since dY/dI = 1/(1 − f ′(Y )), easy algebra yields

d2Y

dI 2
= f ′′(Y )[

1 − f ′(Y )
]3

E X A M P L E 2 In the linear supply and demand model of Example 4.5.4, suppose that a tax of t per unit
is imposed on consumers’ purchases, thus raising the price they face from P to P + t . Then

D = a − b(P + t), S = α + βP (∗)

Here a, b, α, and β are positive constants. The equilibrium price is determined by equating
supply and demand, so that

a − b(P + t) = α + βP (∗∗)

(a) Equation (∗∗) implicitly defines the price P as a function of the unit tax t . Compute
dP/dt by implicit differentiation. What is its sign? What is the sign of d

dt
(P + t)?

Check the result by first solving equation (∗∗) for P and then finding dP/dt explicitly.

(b) Compute tax revenue T as a function of t . For what value of t does the quadratic
function T reach its maximum?

(c) Generalize the foregoing model by assuming that D = f (P + t) and S = g(P ), where
f and g are differentiable functions with f ′ < 0 and g′ > 0. The equilibrium condition

f (P + t) = g(P )

defines P implicitly as a differentiable function of t . Find an expression for dP/dt by
implicit differentiation. Illustrate geometrically.
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Solution:
(a) Differentiating (∗∗) w.r.t. t yields −b(dP/dt+1) = β dP/dt . Solving for dP/dt gives

dP

dt
= −b

b + β

We see that dP/dt is negative. Because P is the price received by the producer, this
price will go down if the tax rate t increases. But P +t is the price paid by the consumer.
Because

d

dt
(P + t) = dP

dt
+ 1 = −b

b + β
+ 1 = −b + b + β

b + β
= β

b + β

we see that 0 < d(P + t)/dt < 1. Thus, the consumer price increases, but by less than
the increase in the tax.

If we solve (∗∗) for P , we obtain

P = a − α − bt

b + β
= a − α

b + β
− b

b + β
t

This equation shows that the equilibrium producer price is a linear function of the tax
per unit, with slope −b/(b + β).

(b) The total tax revenue is T = St = (α + βP )t , where P is the equilibrium price. Thus,

T =
[
α + β

(
a − α

b + β
− b

b + β
t

)]
t = −bβ

b + β
t2 + aβ + αb

b + β
t

This quadratic function has its maximum at t = (αb + βa)/2bβ.

(c) Differentiating the equation f (P + t) = g(P ) w.r.t. t yields

f ′(P + t)

(
dP

dt
+ 1

)
= g′(P )

dP

dt
(∗)

Solving for dP/dt gives

dP

dt
= f ′(P + t)

g′(P ) − f ′(P + t)

Because f ′ < 0 and g′ > 0, we see that dP/dt is negative in this case as well.
Moreover,

d

dt
(P + t) = dP

dt
+ 1 = f ′(P + t)

g′(P ) − f ′(P + t)
+ 1 = g′(P )

g′(P ) − f ′(P + t)

which implies that 0 < d(P + t)/dt < 1.
Figure 1 has a graph which illustrates this answer. As usual in economics, we have

quantity on the horizontal axis, and price on the vertical axis. The demand function with
the tax is D = f (P + t). Its graph is obtained by shifting the graph of D = f (P ) —
or equivalently, the graph of the inverse demand curve P = f −1(Q) — down t units,
so it becomes P = f −1(Q) − t , or Q = f (P + t). The figure confirms that, when t

increases, the new equilibrium E′ corresponds to a decreased price P . Nevertheless,
P + t increases because the decrease in P is smaller than the increase in t .
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Q � g (P)

E�

E

Q � f (P)

Q � f (P � t)

P

Q

Figure 1 Shift in the demand curve

P R O B L E M S F O R S E C T I O N 7 . 2

1. According to Herman Wold, the demand Q for butter in Stockholm during the period 1925–
1937 was related to the price P by the equation Q · P 1/2 = 38. Find dQ/dP by implicit
differentiation. Check the answer by using a different method to compute the derivative.

2. (a) Consider a profit-maximizing firm producing a single commodity. If the firm gets a fixed
price P per unit sold, its profit from selling Q units is π(Q) = PQ − C(Q), where C(Q)

is the cost function. Assume that C ′(Q) > 0 and C ′′(Q) > 0. In Example 8.5.1, it will be
shown that Q = Q∗ > 0 maximizes profits provided

P = C ′(Q∗) (∗)

Thus, at the optimum, marginal cost must equal the price per unit. By implicit differentiation
of (∗) w.r.t. P , find an expression for dQ∗/dP .

(b) Comment on the sign of dQ∗/dP .

3. Consider the equation
AP −αr−β = S

where A, α, β, and S are positive constants. Take natural logarithms of both sides and find
dP/dr by implicit differentiation. Determine its sign. (Economic interpretation: There is a
constant supply S of a commodity whose demand is a decreasing function of its price P and
the interest rate r . Problem: How does the equilibrium price react to an increase in the interest
rate?)

⊂SM⊃4. (a) A standard macroeconomic model for income determination in an open economy is

(i) Y = C + I + X̄ − M (ii) C = f (Y ) (iii) M = g(Y )

where 0 < f ′(Y ) < 1. Here X̄ is an exogenous constant that denotes exports, whereas
M denotes the volume of imports. The function g in (iii) is called an import function. By
inserting (ii) and (iii) into (i), we obtain an equation that defines Y as a function of exogenous
investment I . Find an expression for dY/dI by implicit differentiation. What is the likely
sign of g′(Y )? Discuss the sign of dY/dI .

(b) Find an expression for d2Y/dI 2.

5. Find an expression for d2P/dt2 in Example 2(c) by differentiating (∗) w.r.t. t .
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6. In Example 2 we studied a model of supply and demand where a tax is imposed on the consumers.
Consider what happens if the producers have to pay a fraction t (0 < t < 1) of the sales price
P they receive for each unit that they sell, so that the equilibrium condition is

f (P ) = g(P − tP ) (∗)

We assume that f ′ < 0 and g′ > 0.

(a) Differentiate (∗) w.r.t. t and find an expression for dP/dt .

(b) Find the sign of dP/dt and give an economic interpretation.

7.3 Differentiating the Inverse
Section 5.3 dealt with inverse functions. As explained there, if f is a one-to-one function
defined on an interval I , it has an inverse function g defined on the range f (I) of f . What
is the relationship between the derivatives of f and g?

E X A M P L E 1 Provided that a �= 0, the two linear functions f (x) = ax + b and g(x) = (x − b)/a

are inverses of each other. (Verify this.) The graphs are straight lines which are symmetric
about the line y = x. The slopes are respectively a and 1/a. Look back at Fig. 5.3.3 and
notice that this result is confirmed, since the slope of f is 4 and the slope of g is 1/4.

In general, if f and g are inverses of each other, then

g
(
f (x)

) = x for all x in I (1)

By implicit differentiation, provided that both f and g are differentiable, we can easily find
the relationship between the derivatives of f and g. Indeed, differentiating (1) w.r.t. x gives
g′(f (x)

)
f ′(x) = 1, so that if f ′(x) �= 0, then

g′(f (x)
) = 1

f ′(x)
(2)

It follows from (2) that f ′ and g′ have the same sign. If f is strictly increasing (decreasing),
then g is strictly increasing (decreasing), and vice versa.

The most important facts about inverse functions are summed up in this theorem:

T H E O R E M 7 . 3 . 1 ( I N V E R S E F U N C T I O N S )

If f is differentiable and strictly increasing (or strictly decreasing) in an interval I ,
then f has an inverse function g, which is strictly increasing (strictly decreasing)
in the interval f (I). If x0 is an interior point of I and f ′(x0) �= 0, then g is
differentiable at y0 = f (x0) and

g′(y0) = 1

f ′(x0)
(y0 = f (x0)) (3)
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NOTE 1 Formula (3) is used as follows to find the derivative of g at a point y0. First find,
if possible, the point x0 in I at which f (x0) = y0. Thereafter, compute f ′(x), and then find
f ′(x0). If f ′(x0) �= 0, then g has a derivative at y0 given by g′(y0) = 1/f ′(x0).

The geometric interpretation of formula (3) is shown in Fig. 1, where f and g are inverses of
each other. Let the slope of the tangent at P be a = f ′(x0). At the point Q, the x-coordinate
is f (x0), and the slope of the tangent at that point is g′(f (x0)). This number is equal to 1/a.
(In the figure, a ≈ 1/3, and 1/a ≈ 3.)

(x0 , f (x0))

( f (x0) , x0)

y

P

x

g

f

Q

Figure 1 If the slope at P is a, then the slope at Q is 1/a.

E X A M P L E 2 Suppose the function f is defined for all x by the following formula

f (x) = x5 + 3x3 + 6x − 3

Show that f has an inverse function g. Use formula (3) to find g′(7). (Note that f (1) = 7.)

Solution: Differentiating f (x) yields f ′(x) = 5x4 + 9x2 + 6. Clearly, f ′(x) > 0 for all
x, so f is strictly increasing and consequently it is one-to-one. It therefore has an inverse
function g. To find g′(7), we use formula (3) with x0 = 1 and y0 = 7. Since f ′(1) = 20,
we obtain g′(7) = 1/f ′(1) = 1/20. Note that we have found g′(7) exactly even though it
is impossible to find any algebraic formula for the inverse function g.

E X A M P L E 3 Suppose that f and g are twice differentiable functions which are inverses of each other.
By differentiating (2) w.r.t. x, find an expression for g′′(f (x)

)
where f ′(x) �= 0. Do f ′′

and g′′ have the same, or opposite signs?

Solution: Differentiating (2) w.r.t. x yields g′′(f (x)
)
f ′(x) = (−1)

(
f ′(x)

)−2
f ′′(x). It

follows that if f ′(x) �= 0, then

g′′(f (x)
) = − f ′′(x)(

f ′(x)
)3 (4)

If f ′ > 0, then f ′′(x) and g′′(f (x)
)

have opposite signs, but they have the same sign if
f ′ < 0. (In particular, if f is increasing and concave, the inverse g is increasing and convex
as in Fig. 1.)
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NOTE 2 It is common to present the formula in (3) in the deceptively simple way:

dx

dy
= 1

dy/dx
(5)

as if dx and dy can be manipulated like ordinary numbers. Formula (4) shows that similar use
of the differential notation for second derivatives fails drastically. The “formula d2x/dy2 =
1/(dy2/d2x)”, for instance, makes no sense at all.

E X A M P L E 4 Suppose that, instead of the linear demand function of Example 4.5.4, one has the log-
linear function ln Q = a − b ln P .

(a) Express Q as a function of P , and show that dQ/dP = −bQ/P .

(b) Express P as a function of Q, and find dP/dQ.

(c) Check that your answer satisfies (5).

Solution: (a) Taking exponentials gives Q = ea−b ln P = ea(eln P )−b = eaP −b, so
dQ/dP = −beaP −b−1 = −bQ/P . (b) Solving Q = eaP −b for P gives P = ea/bQ−1/b,
so dP/dQ = (−1/b)ea/bQ−1−1/b. (c) dP/dQ = (−1/b)P/Q = 1/(dQ/dP ).

Comments: (i) P = ea/bQ−1/b is the inverse demand function, which is also log-linear.
(ii) El QP = −b is the (constant) price elasticity of demand. (iii) El PQ = −1/b is the
(constant) elasticity of inverse demand.

P R O B L E M S F O R S E C T I O N 7 . 3

1. The function defined for all x by f (x) = e2x−2 has an inverse g. Use formula (3) to find g′(1).
Check your result by finding a formula for g.

2. (a) The function f is defined for |x| ≤ 2 by the formula f (x) = 1
3 x3

√
4 − x2. Find the

intervals where f increases, and the intervals where f decreases, then sketch its graph.

(b) Explain why f has an inverse g on [0,
√

3 ], and find g′( 1
3

√
3 ). (Hint: f (1) = 1

3

√
3.)

3. (a) Let f be defined by

f (x) = ln(2 + ex−3) for all x

Show that f is strictly increasing and find the range of f .

(b) Find an expression for the inverse function g of f . Where is g defined?

(c) Verify that f ′(3) = 1/g′(f (3)).

4. According to Problem 5.3.2, the demand for sugar in the USA in the period 1915–1929, as a
function of the price P , was given by D = 157.8/P 0.3. Find dP/dD by using (5).

⊂SM⊃5. Use (5) to find dx/dy when:

(a) y = e−x−5 (b) y = ln(e−x + 3) (c) xy3 − x3y = 2x
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7.4 Linear Approximations
Much of modern economic analysis relies on numerical calculations, nearly always only
approximate. Often, therefore, rather than work with a complicated function, we approxi-
mate it by one that is much simpler. Since linear functions are especially simple, it seems
natural to try using a “linear approximation” first.

Consider a function f (x) that is differentiable at x = a. Suppose we approximate the
graph of f by its tangent line at (a, f (a)), as shown in Fig. 1. This tangent line is the graph
of the function y = p(x) = f (a) + f ′(a)(x − a) (see 6.2.2). Algebraically, therefore:

The linear approximation to f about x = a is

f (x) ≈ f (a) + f ′(a)(x − a) (x close to a)
(1)

y � f (x)

y

xa

Figure 1 Approximation of a function by its tangent

Note that both f (x) and its linear approximation p(x) have the same value and the same
derivative at x = a.1

E X A M P L E 1 Find the linear approximation to f (x) = 3
√

x about x = 1.

Solution: We have f (x) = 3
√

x = x1/3, so f (1) = 1, and f ′(x) = 1
3x−2/3, so f ′(1) = 1

3 .
Inserting these values into formula (1) when a = 1 yields

3
√

x ≈ f (1) + f ′(1)(x − 1) = 1 + 1
3 (x − 1) (x close to 1)

For example, 3
√

1.03 ≈ 1+ 1
3 (1.03−1) = 1.01. The correct value to 4 decimals is 1.0099.

E X A M P L E 2 Use (1) to show that ln(1 + x) ≈ x for x close to 0.

Solution: With f (x) = ln(1 + x), we get f (0) = 0 and f ′(x) = 1/(1 + x), so f ′(0) = 1.
Then (1) yields ln(1 + x) ≈ x.

1 One can prove that if f is differentiable, then f (x) − f (a) = f ′(a)(x − a) + ε(x − a) where
ε → 0 as x → a. (If x − a is very small, then ε is very small, and ε(x − a) is “very very small”.)
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E X A M P L E 3 (Rule of 70) If an amount K earns yearly interest p%, the doubling time is t∗ =
ln 2/ ln(1 + p/100). (See Example 4.10.2.) If we use the approximations ln 2 ≈ 0.7 and
ln(1 + x) ≈ x, then

t∗ = ln 2

ln(1 + p/100)
≈ 0.7

p/100
= 70

p

This yields the “rule of 70” according to which, if the interest rate is p%, then the doubling
time is approximately 70 divided by p. For instance, if p = 3.5, then t∗ is 20, which is
close to the exact value t∗ = ln 2/ ln 1.035 ≈ 20.1.

E X A M P L E 4 Use (1) to find an approximate value for (1.001)50.

Solution: We put f (x) = x50. Then f (1) = 1 and f ′(x) = 50x49, implying that f ′(1) =
50 · 149 = 50. Hence, by formula (1), with x = 1.001 and a = 1,

(1.001)50 ≈ 1 + 50 · 0.001 = 1.05

(Using a calculator, we find (1.001)50 ≈ 1.0512.)

The Differential of a Function
Consider a differentiable function f (x), and let dx denote an arbitrary change in the variable
x. In this notation, “dx” is not a product ofd andx. Rather, dx is a single symbol representing
the change in the value of x. The expression f ′(x) dx is called the differential of y = f (x),
and it is denoted by dy (or df ), so that

dy = f ′(x) dx (2)

Note that dy is proportional to dx, with f ′(x) as the factor of proportionality.
Now, if x changes by dx, then the corresponding change in y = f (x) is

�y = f (x + dx) − f (x) (3)

In the approximation (1), suppose we replace x by x + dx and a by x. The result is
f (x + dx) ≈ f (x) + f ′(x) dx. Using the definitions of dy and �y in (2) and (3) above,
we get �y ≈ dy = f ′(x) dx.

y � f (x)

x � dx

dx

dy

Δ y

x

y

x

P

Q

R

Figure 2 A geometric representation of the differential
dy and �y = f (x + dx) − f (x)
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The differential dy is not the actual increment in y as x is changed to x+dx, but rather the
change in y that would occur if y continued to change at the fixed rate f ′(x) as x changes to
x + dx. Fig. 2 illustrates the difference between �y and dy. Consider, first, the movement
from P to Q along the curve y = f (x): as x changes by dx, the actual change in the
vertical height of the point is �y. Suppose instead that we are only allowed to move along
the tangent to the graph at P . Thus, as we move from P to R along the tangent, the change
in height that corresponds to dx is dy. As in Fig. 2, the approximation �y ≈ dy is usually
better if dx is smaller in absolute value. This is because the length |RQ| = |�y −dy| of the
line segment RQ, representing the difference between �y and dy, tends to 0 as dx tends
to 0. In fact, |RQ| becomes small so fast that the ratio |RQ|/dx tends to 0 as dx → 0.

Rules for Differentials
The notation (d/dx)(·) calls for the expression in parentheses to be differentiated with
respect to x. For example, (d/dx)(x3) = 3x2. In the same way, we let d(·) denote the
differential of whatever is inside the parentheses.

E X A M P L E 5 Compute the following differentials:

(a) d
(
Axa + B

)
(A, B, and a are constants)

(b) d
(
f (K)

)
(f is a differentiable function of K)

Solution:

(a) Putting f (x) = Axa + B, we get f ′(x) = Aaxa−1, so d
(
Axa + B

)= Aaxa−1 dx.

(b) d (f (K)) = f ′(K) dK .

All the usual rules for differentiation can be expressed in terms of differentials. If f and g

are two differentiable functions of x, then the following rules hold.

R U L E S F O R D I F F E R E N T I A L S

d(af + bg) = a df + b dg (a and b are constants)

d(fg) = g df + f dg

d

(
f

g

)
= g df − f dg

g2
(g �= 0)

(4)

Here is a proof of the second of these formulas (the others are proved in the same way):

d(fg) = (fg)′ dx = (f ′g + fg′) dx = gf ′ dx + fg′ dx = g df + f dg

Suppose that y = f (x) and that x = g(t) is a function of t . Then y = h(t) = f
(
g(t)

)
is

a function of t . The differential of y = h(t) is dy = h′(t) dt . According to the chain rule,
h′(t) = f ′ (g(t)) g′(t), so that dy = f ′(g(t)

)
g′(t) dt . Because x = g(t), the differential of

x is equal to dx = g′(t) dt , and therefore, dy = f ′(x) dx.
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This shows that if y = f (x), then the differential of y is equal to dy = f ′(x) dx, whether
x depends on another variable or not.

Economists often use differentials in their models. A typical example follows.

E X A M P L E 6 Consider again the model in Example 7.2.1:

(i) Y = C + I (ii) C = f (Y )

Find the differential dY expressed in terms of dI . If employment N = g(Y ) is also a
function of Y , find the differential dN expressed in terms of dI .

Solution: Taking differentials in (i) and (ii), we obtain

(iii) dY = dC + dI (iv) dC = f ′(Y ) dY

Substituting dC from (iv) into (iii) and solving for dY yields

dY = 1

1 − f ′(Y )
dI

which is the same formula found previously. From N = g(Y ), we get dN = g′(Y ) dY , so

dN = g′(Y )

1 − f ′(Y )
dI

Economists usually claim that g′(Y ) > 0 (employment increases as national income in-
creases) and f ′(Y ), the marginal propensity to consume, is between 0 and 1. From the for-
mula for dN , these claims imply that if investment increases, then employment increases.

P R O B L E M S F O R S E C T I O N 7 . 4

1. Prove that √
1 + x ≈ 1 + 1

2 x

for x close to 0, and illustrate this approximation by drawing the graphs of y = 1 + 1
2 x and

y = √
1 + x in the same coordinate system.

2. Use (1) to find the linear approximation to f (x) = (5x + 3)−2 about x = 0.

⊂SM⊃3. Find the linear approximations to the following functions about x = 0:

(a) f (x) = (1 + x)−1 (b) f (x) = (1 + x)5 (c) f (x) = (1 − x)1/4

4. Find the linear approximation to F(K) = AKα about K = 1.

5. Find the following differentials (where p, q, and r are constants):

(a) d(10x3) (b) d(5x3 − 5x2 + 5x + 5) (c) d(1/x3) (d) d(ln x)

(e) d(xp + xq) (f) d(xpxq) (g) d(px + q)r (h) d(epx + eqx)
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6. (a) Prove that (1 + x)m ≈ 1 + mx for x close to 0. Use this to find approximations to the
following numbers:

(b) (i) 3
√

1.1 = (
1 + 1

10

)1/3
(ii) 5

√
33 = 2

(
1 + 1

32

)1/5
(iii) 3

√
9 = 3

√
8 + 1 (iv) (0.98)25

7. Compute �y = f (x + dx) − f (x) and the differential dy = f ′(x) dx for the following:

(a) f (x) = x2 + 2x − 3 when x = 2 and: (i) dx = 1/10; (ii) dx = 1/100

(b) f (x) = 1/x when x = 3 and: (i) dx = −1/10; (ii) dx = −1/100

(c) f (x) = √
x when x = 4 and: (i) dx = 1/20; (ii) dx = 1/100

⊂SM⊃8. (a) The equation

3xexy2 − 2y = 3x2 + y2

defines y as a differentiable function of x about the point (x, y) = (1, 0). Find the slope of
the graph at this point by implicit differentiation.

(b) What is the linear approximation to y about x = 1?

9. (a) A circle with radius r has area A(r) = πr2. Then A′(r) = 2πr , the circumference of the
circle. Explain geometrically the approximation A(r + dr) − A(r) ≈ 2πr dr .

(b) Explain geometrically the approximation V (r + dr) − V (r) ≈ 4πr2 dr , where V (r) =
4
3 πr3 is the volume and V ′(r) = 4πr2 is the surface area of a sphere with radius r .

10. If an amount K is charged to a credit card on which interest is p% per year, then unless some
payments are made beforehand, after t years the balance will have grown to Kt = K(1+p/100)t

(even without any penalty charges). Using the approximation ln(1 +p/100) ≈ p/100 (derived
in Example 2), prove that ln Kt ≈ ln K + pt/100. Find the percentage interest rate p at which
the balance doubles after t years.

11. Find the linear approximation to the following function about the point μ = 0:

g(μ) = A(1 + μ)a/(1+b) − 1 (A, a, and b are positive constants)

7.5 Polynomial Approximations
The previous section discussed approximations of functions of one variable by linear func-
tions. In particular, Example 7.4.1 established the approximation

3
√

x ≈ 1 + 1
3 (x − 1) (x close to 1)

In this case, at x = 1, the functions y = 3
√

x and y = 1 + 1
3 (x − 1) both have the same

value 1, and the same derivative 1/3.
Approximation by linear functions may well be insufficiently accurate. So it is natural

to try quadratic approximations, or approximations by polynomials of a higher order.
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Quadratic Approximations

We begin by showing how a twice differentiable function y = f (x) can be approximated
near x = a by a quadratic polynomial

f (x) ≈ p(x) = A + B(x − a) + C(x − a)2

With a fixed, there are three coefficients A, B, and C to determine. We use three conditions
to do so. Specifically, at x = a, we arrange that f (x) and p(x) = A+B(x−a)+C(x−a)2

should have: (i) the same value; (ii) the same derivative; and (iii) the same second derivative.
In symbols, we require f (a) = p(a), f ′(a) = p′(a), and f ′′(a) = p′′(a). Now p′(x) =
B + 2C(x − a) and p′′(x) = 2C, so, after inserting x = a into our expressions for p(x),
p′(x), and p′′(x), it follows that A = p(a), B = p′(a), and C = 1

2p′′(a). This justifies the
following:

The quadratic approximation to f (x) about x = a is

f (x) ≈ f (a) + f ′(a)(x − a) + 1
2f ′′(a)(x − a)2 (x close to a)

(1)

Note that, compared with (7.4.1), we have simply added one extra term. For a = 0, in
particular, we obtain the following:

f (x) ≈ f (0) + f ′(0)x + 1
2f ′′(0)x2 (x close to 0) (2)

E X A M P L E 1 Find the quadratic approximation to f (x) = 3
√

x about x = 1.

Solution: Here f ′(x) = 1
3x−2/3 and f ′′(x) = 1

3

(− 2
3

)
x−5/3. It follows that f ′(1) = 1

3 and
f ′′(1) = − 2

9 . Because f (1) = 1, using (1) yields

3
√

x ≈ 1 + 1
3 (x − 1) − 1

9 (x − 1)2 (x close to 1)

For example, 3
√

1.03 ≈ 1+ 1
3 ·0.03− 1

9 (0.03)2 = 1+0.01−0.0001 = 1.0099. This is correct
to 4 decimals, and so it is better than the linear approximation derived in Example 7.4.1.

E X A M P L E 2 Find the quadratic approximation to y = y(x) about x = 0 when y is defined implicitly
as a function of x near (x, y) = (0, 1) by xy3 + 1 = y.

Solution: Implicit differentiation w.r.t. x yields

y3 + 3xy2y ′ = y ′ (∗)

Substituting x = 0 and y = 1 into (∗) gives y ′ = 1. Differentiating (∗) w.r.t. x now yields

3y2y ′ + (3y2 + 6xyy ′)y ′ + 3xy2y ′′ = y ′′
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Substituting x = 0, y = 1, and y ′ = 1, we obtain y ′′ = 6. Hence, according to (2),

y(x) ≈ y(0) + y ′(0)x + 1
2y ′′(0)x2 = 1 + x + 3x2

Higher-Order Approximations

So far, we have considered linear and quadratic approximations. For functions with third-
and higher-order derivatives, we can find even better approximations near one point by using
polynomials of a higher degree. Suppose we want to approximate a function f (x) over an
interval centred at x = a with an nth-degree polynomial of the form

p(x) = A0 + A1(x − a) + A2(x − a)2 + A3(x − a)3 + · · · + An(x − a)n (3)

Because p(x) has n + 1 coefficients, we can impose the following n + 1 conditions on this
polynomial:

f (a) = p(a), f ′(a) = p′(a), . . . , f (n)(a) = p(n)(a)

These conditions require that p(x) and its first n derivatives agree with the value of f (x)

and its first n derivatives at x = a. Let us see what these conditions become when n = 3.
In this case,

p(x) = A0 + A1(x − a) + A2(x − a)2 + A3(x − a)3

and we find that
p′(x) = A1 + 2A2(x − a) + 3A3(x − a)2

p′′(x) = 2A2 + 2 · 3A3(x − a)

p′′′(x) = 2 · 3A3

Thus, when x = a, we have p(a) = A0, p′(a) = 1! A1, p′′(a) = 2! A2, p′′′(a) = 3! A3.
This implies the following approximation:

f (x) ≈ f (a) + 1

1!
f ′(a)(x − a) + 1

2!
f ′′(a)(x − a)2 + 1

3!
f ′′′(a)(x − a)3

Thus, we have added an extra term to the quadratic approximation (1).
The general case follows the same pattern, and we obtain the following approximation

to f (x) by an nth-degree polynomial:

Approximation to f (x) about x = a:

f (x) ≈ f (a) + f ′(a)

1!
(x − a) + f ′′(a)

2!
(x − a)2 + · · · + f (n)(a)

n!
(x − a)n

(4)

The polynomial on the right-hand side of (4) is called the nth-order Taylor polynomial (or
Taylor approximation) for f about x = a.
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The function f and its nth-order Taylor polynomial have such a high degree of contact
at x = a that it is reasonable to expect the approximation in (4) to be good over some
(possibly small) interval centred about x = a. The next section analyses the error that results
from using such polynomial approximations. In the case when f is itself a polynomial whose
degree does not exceed n, the formula becomes exact, without any approximation error at
any point.

E X A M P L E 3 Find the third-order Taylor approximation of f (x) = √
1 + x about x = 0.

Solution: We write f (x) = √
1 + x = (1 + x)1/2. Then

f ′(x) = 1
2 (1 + x)−1/2

f ′′(x) = 1
2

(− 1
2

)
(1 + x)−3/2

f ′′′(x) = 1
2

(− 1
2

)(− 3
2

)
(1 + x)−5/2

Putting x = 0 gives f (0) = 1, f ′(0) = 1/2, f ′′(0) = (1/2)(−1/2) = −1/4, and finally
f ′′′(0) = (1/2)(−1/2)(−3/2) = 3/8. Hence, by (4) for the case n = 3, we have

f (x) ≈ 1 + 1

1!

1

2
x + 1

2!

(
−1

4

)
x2 + 1

3!

3

8
x3 = 1 + 1

2
x − 1

8
x2 + 1

16
x3

E X A M P L E 4 Apply the approximation (4) to f (x) = ex about x = 0.

Solution: This case is particularly simple, because all derivatives of f are equal to ex , and
thus f (k)(0) = 1 for all k = 1, 2, . . . , n. Hence (4) yields

ex ≈ 1 + x

1!
+ x2

2!
+ · · · + xn

n!
(5)

which is an important result.

P R O B L E M S F O R S E C T I O N 7 . 5

1. Find quadratic approximations to each of the following functions about the specified point:

(a) f (x) = (1 + x)5, x = 0 (b) F(K) = AKα, K = 1

(c) f (ε) = (
1 + 3

2 ε + 1
2 ε2

)1/2
, ε = 0 (d) H(x) = (1 − x)−1, x = 0

⊂SM⊃2. Find the fifth-order Taylor polynomial of f (x) = ln(1 + x) about x = 0.

⊂SM⊃3. Find the Taylor polynomial of order 2 about x = 0 for f (x) = 5
(
ln(1 + x) − √

1 + x
)
.

4. A study of attitudes to risk is based on the following approximation to a consumer’s utility
function. Explain how to derive this approximation.

U(y + M − s) ≈ U(y) + U ′(y)(M − s) + 1
2 U ′′(y)(M − s)2
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5. Find the quadratic approximation for y about (x, y) = (0, 1) when y is defined implicitly as a
function of x by the equation 1 + x3y + x = y1/2.

6. Let the function x(t) be given by the conditions x(0) = 1 and

ẋ(t) = tx(t) + 2
[
x(t)

]2

Determine the second-order Taylor polynomial for x(t) about t = 0.

7. Establish the approximation eσ
√

t/n ≈ 1 + σ
√

t/n + σ 2t/2n.

8. Establish the approximation
(

1 + p

100

)n ≈ 1 + n
p

100
+ n(n − 1)

2

( p

100

)2
.

9. The function h is defined for all x > 0 by

h(x) = xp − xq

xp + xq
(p > q > 0)

Find the first-order Taylor polynomial about x = 1 for h(x).

7.6 Taylor’s Formula
The previous section presented polynomial approximations. In particular, the nth-order
Taylor polynomial approximation of f (x) about x = 0 is

f (x) ≈ f (0) + 1

1!
f ′(0)x + 1

2!
f ′′(0)x2 + · · · + 1

n!
f (n)(0)xn (∗)

Any approximation like (∗) is of limited use unless something is known about the error it
implies. Taylor’s formula remedies this deficiency. This formula is often used by economists,
and is regarded as one of the main results in mathematical analysis.

Consider the approximation in (∗). Except at x = 0, function f (x) and the Taylor
polynomial on the RHS of (∗) are usually different. The difference between the two will
depend on x as well as on n, and is called the remainder after n terms. We denote it by
Rn+1(x). Hence, by definition,

f (x) = f (0) + 1

1!
f ′(0)x + · · · + 1

n!
f (n)(0)xn + Rn+1(x) (1)

The following theorem gives an important explicit formula for the remainder.2 (The proof
will be given in Note 8.4.3.)

2 The English mathematician Brook Taylor had already found polynomial approximations of the
general form (∗) in 1715. Lagrange proved (2) approximately 50 years later.
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L A G R A N G E ’ S F O R M O F T H E R E M A I N D E R

Suppose f is n + 1 times differentiable in an interval including 0 and x. Then
the remainder Rn+1(x) given in (1) can be written as

Rn+1(x) = 1

(n + 1)!
f (n+1)(c)xn+1

for some number c between 0 and x.

(2)

Using this formula for Rn+1(x) in (1), we obtain

T A Y L O R ’ S F O R M U L A

f (x) = f (0) + 1

1!
f ′(0)x + · · · + 1

n!
f (n)(0)xn + 1

(n + 1)!
f (n+1)(c)xn+1 (3)

Note that the remainder resembles the preceding terms in the sum. The only difference is
that in the formula for the remainder, f (n+1) is evaluated at a point c, where c is some
unspecified number between 0 and x, whereas in all the previous terms, the derivatives are
evaluated at 0. The number c is not fixed because it depends, in general, on x as well as
on n.

If we put n = 1 in formula (3), we obtain

f (x) = f (0) + f ′(0)x + 1
2f ′′(c)x2 for some c between 0 and x (4)

This formula tells us that 1
2f ′′(c)x2 is the error that results if we replace f (x) with its linear

approximation about x = 0.
How do we use the remainder formula? It suggests an upper limit for the error that results

if we replace f with its nth Taylor polynomial. Suppose, for instance, that for all x in an
interval I , the absolute value of f (n+1)(x) is at most M . Then we can conclude that in this
interval

|Rn+1(x)| ≤ M

(n + 1)!
|x|n+1 (5)

Note that if n is a large number and if x is close to 0, then |Rn+1(x)| is small for two reasons:
first, if n is large, the number (n + 1)! in the denominator in (5) is large; second, if |x| is
less than 1, then |x|n+1 is also small when n is large.

E X A M P L E 1 Use formula (4) to approximate the function

f (x) = √
25 + x = (25 + x)1/2

Then use it to estimate both
√

25.01 and the absolute value of the remainder.
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Solution: To apply formula (4), we differentiate to obtain

f ′(x) = 1

2
(25 + x)−1/2, f ′′(x) = 1

2

(
−1

2

)
(25 + x)−3/2

It follows that f (0) = 5, whereas f ′(0) = 1/10 and f ′′(c) = −(1/4)(25 + c)−3/2. So by
(4), for some c between 0 and x, one has

√
25 + x = 5 + 1

10
x + 1

2

(
−1

4

)
(25 + c)−3/2x2 = 5 + 1

10
x − 1

8
(25 + c)−3/2x2 (∗)

In order to estimate
√

25.01, we write 25.01 = 25 + 0.01 and use (∗). If x = 0.01, then c

lies between 0 and 0.01, so 25 + c > 25. Then (25 + c)−3/2 < (25)−3/2 = 1/125, so the
absolute value of the remainder is

|R2(0.01)| =
∣∣∣∣−1

8
(25 + c)−3/2

(
1

100

)2∣∣∣∣ ≤ 1

80 000
· 1

125
= 10−7

We conclude that
√

25.01 ≈ 5 + 1/10 · 1/100 = 5.001, with an error less than 10−7.

E X A M P L E 2 Find Taylor’s formula for f (x) = ex , and estimate the error term for n = 3 and x = 0.1.

Solution: From Example 4 in the previous section, it follows that there exists a number c

between 0 and x such that

ex = 1 + x

1!
+ x2

2!
+ · · · + xn

n!
+ xn+1

(n + 1)!
ec (6)

One can prove that for each fixed number x the remainder term in (6) approaches 0 as n

approaches infinity. Using (6) one can therefore find the value of ex for any x to an arbitrary
degree of accuracy. However, if |x| is large, a large number of terms have to be used in order
to obtain a good degree of accuracy, because the remainder approaches 0 very slowly as n

approaches infinity.
For n = 3 and x = 0.1, we obtain for some c in the interval (0, 0.1),

e0.1 = 1 + 1

10
+ 1

200
+ 1

6000
+ (0.1)4

24
ec (∗)

For c < 0.1, we have ec < e0.1. We claim that e0.1 < 1.2. To prove this note that (1.2)10 ≈
6.2 > e, so e < (1.2)10 and thus ec < e0.1 < ((1.2)10)0.1 = 1.2, implying that

∣∣∣∣R4

(
1

10

)∣∣∣∣ = (0.1)4

24
ec <

1

240 000
1.2 = 0.000 005 = 5 · 10−6

The error that results from dropping the remainder from (∗) is therefore less than 5 ·10−6.
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NOTE 1 Suppose we consider the Taylor formula on an interval about x = a instead of
x = 0. The first n + 1 terms on the right-hand side of (3) become replaced by those of
(7.5.4), and the new remainder is

Rn+1(x) = 1

(n + 1)!
f (n+1)(c)(x − a)n+1 (c is between x and a) (7)

It is easy to show that (7) follows from (1) and (2) by considering the function g defined by
g(t) = f (a + t) when t is close to 0.

P R O B L E M S F O R S E C T I O N 7 . 6

1. Write Taylor’s formula (3) with n = 2 for f (x) = ln(1 + x).

2. Use the approximation (1 + x)m ≈ 1 + mx + 1
2 m(m − 1)x2 to find values of

(a)
3√

25 (b) 5
√

33

(Hint: Note that 3
√

25 = 3(1 − 2/27)1/3.) Check these approximations by using a calculator.

3. Show that 3
√

9 = 2 (1 + 1/8)1/3. Use formula (3) (with n = 2) to compute 3
√

9 to the third
decimal.

⊂SM⊃4. Let g(x) = 3
√

1 + x.

(a) Find the Taylor polynomial of g(x) of order 2 about the origin.

(b) For x ≥ 0 show that |R3(x)| ≤ 5x3/81.

(c) Find 3
√

1003 to 7 significant digits.

7.7 Why Economists Use Elasticities
Economists often study how demand for a certain commodity such as coffee reacts to price
changes. We can ask by how many units such as kilograms the quantity demanded will
change per dollar increase in price. In this way, we obtain a concrete number, measured
in units of the commodity per unit of money. There are, however, several unsatisfactory
aspects to this way of measuring the sensitivity of demand to price changes. For instance,
a $1 increase in the price of a kilo of coffee may be considerable, whereas a $1 increase
in the price of a car is insignificant.

This problem arises because the sensitivity of demand to price changes is being measured
in the same arbitrary units as those used to measure both quantity demanded and price. The
difficulties are eliminated if we use relative changes instead. We ask by what percentage
the quantity demanded changes when the price increases by 1%. The number we obtain in
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this way will be independent of the units in which both quantities and prices are measured.
This number is called the price elasticity of demand, measured at a given price.

In 1960, the price elasticity of butter in a certain country was estimated to be −1. This
means that an increase of 1% in the price would lead to a decrease of 1% in the demand,
if all the other factors that influence the demand remained constant. The price elasticity
for potatoes was estimated to be −0.2. What is the interpretation? Why do you think the
absolute value of this elasticity is so much less than that for butter?

Assume now that the demand for a commodity can be described by the function

x = D(p)

of the price p. When the price changes from p to p + �p, the quantity demanded, x, also
changes. The absolute change in x is �x = D(p + �p) − D(p), and the relative (or
proportional) change is

�x

x
= D(p + �p) − D(p)

D(p)

The ratio between the relative change in the quantity demanded and the relative change in
the price is

�x

x

/
�p

p
= p

x

�x

�p
= p

D(p)

D(p + �p) − D(p)

�p
(∗)

When �p = p/100 so that p increases by 1%, then (∗) becomes (�x/x) · 100, which is
the percentage change in the quantity demanded. We call the proportion in (∗) the average
elasticity of x in the interval [p, p + �p]. Observe that the number defined in (∗) depends
both on the price change �p and on the price p, but is unit-free. Thus, it makes no difference
whether the quantity is measured in tons, kilograms, or pounds, or whether the price is
measured in dollars, pounds, or euros.

We would like to define the elasticity of D at p so that it does not depend on the size of
the increase in p. We can do this if D is a differentiable function of p. For then it is natural
to define the elasticity of D w.r.t. p as the limit of the ratio in (∗) as �p tends to 0. Because
the Newton quotient [D(p +�p)−D(p)]/�p tends to D′(p) as �p tends to 0, we obtain:

The elasticity of D(p) with respect to p is
p

D(p)

dD(p)

dp

Usually, we get a good approximation to the elasticity by letting �p/p = 1/100 = 1% and
computing p �x/(x �p).

The General Definition of Elasticity

The above definition of elasticity concerned a function determining quantity demanded
as a function of price. Economists, however, also consider income elasticities of demand,
when demand is regarded as a function of income. They also consider elasticities of supply,
elasticities of substitution, and several other kinds of elasticity. It is therefore helpful to see
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how elasticity can be defined for a general differentiable function. If f is differentiable at x

and f (x) �= 0, we define the elasticity of f w.r.t. x as

Elx f (x) = x

f (x)
f ′(x) (elasticity of f w.r.t. x) (1)

E X A M P L E 1 Find the elasticity of f (x) = Axb (A and b are constants, with A �= 0).

Solution: In this case, f ′(x) = Abxb−1. Hence, Elx Axb = (x/Axb)Abxb−1 = b, so

f (x) = Axb �⇒ Elx f (x) = b (2)

The elasticity of the power function Axb w.r.t. x is simply the exponent b. So this function
has constant elasticity. In fact, it is the only type of function which has constant elasticity.
This is shown in Problem 9.9.6.

E X A M P L E 2 Assume that the quantity demanded of a particular commodity is given by

D(p) = 8000p−1.5

Compute the elasticity of D(p) and find the exact percentage change in quantity demanded
when the price increases by 1% from p = 4.

Solution: Using (2) we find that Elp D(p) = −1.5, so that an increase in the price of 1%
causes quantity demanded to decrease by about 1.5%.

In this case we can compute the decrease in demand exactly. When the price is 4, the
quantity demanded is D(4) = 8000 · 4−1.5 = 1000. If the price p = 4 is increased by 1%,
the new price will be 4 + 4/100 = 4.04, so that the change in demand is

D(4.04) − D(4) = 8000 · 4.04−1.5 − 1000 = −14.81

The percentage change in demand from D(4) is −(14.81/1000) · 100 = −1.481%.

E X A M P L E 3 Let D(P ) denote the demand function for a product. By selling D(P ) units at price P ,
the producer earns revenue R(P ) given by R(P ) = PD(P ). The elasticity of R(P ) w.r.t.
P is

ElP R(P ) = P

PD(P )

d

dP
[PD(P )] = 1

D(P )
[D(P ) + PD′(P )] = 1 + ElP D(P )

Observe that if ElP D(P ) = −1, then ElP R(P ) = 0. Thus, when the price elasticity of the
demand at a point is equal to −1, a small price change will have (almost) no influence on
the revenue. More generally, the marginal revenue dR/dP generated by a price change is
positive if the price elasticity of demand is greater than −1, and negative if the elasticity is
less than −1.
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NOTE 1

• If |Elx f (x)| > 1, then f is elastic at x.

• If |Elx f (x)| = 1, then f is unit elastic at x.

• If |Elx f (x)| < 1, then f is inelastic at x.

• If |Elx f (x)| = 0, then f is perfectly inelastic at x.

• If |Elx f (x)| = ∞, then f is perfectly elastic at x.

NOTE 2 If y = f (x) has an inverse function x = g(y), then Theorem 7.3.1 implies that

Ely(g(y)) = y

g(y)
g′(y) = f (x)

x

1

f ′(x)
= 1

Elx f (x)
(3)

A formula that corresponds to (7.3.5) is

Ely x = 1

Elx y
(4)

There are some rules for elasticities of sums, products, quotients, and composite functions
that are occasionally useful. You might like to derive these rules by solving Problem 9.

Elasticities as Logarithmic Derivatives

Suppose that two variables x and y are related by the equation

y = Axb (x, y, and A are positive) (5)

as in Example 1. Taking the natural logarithm of each side of (5) while applying the rules
for logarithms, we find that (5) is equivalent to the equation

ln y = ln A + b ln x (6)

From (6), we see that ln y is a linear function of ln x, and so we say that (6) is a log-linear
relation between x and y. The transformation from (5) to (6) is often seen in economic
models, sometimes using logarithms to a base other than e.

For the function defined by (5), we know from Example 1 that Elx y = b. So from (6)
we see that Elxy is equal to the (double) logarithmic derivative d ln y/d ln x, which is the
constant slope of this log-linear relationship.

This example illustrates the general rule that elasticities are equal to such logarithmic
derivatives. In fact, whenever x and y are both positive variables, with y a differentiable
function of x, a proof based on repeatedly applying the chain rule shows that

Elx y = x

y

dy

dx
= d ln y

d ln x
(7)
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P R O B L E M S F O R S E C T I O N 7 . 7

1. Find the elasticities of the functions given by the following formulas:

(a) 3x−3 (b) −100x100 (c)
√

x (d) A/x
√

x (A constant)

2. A study in transport economics uses the relation T = 0.4K1.06, where K is expenditure on
building roads, and T is a measure of traffic volume. Find the elasticity of T w.r.t. K . In this
model, if expenditure increases by 1%, by what percentage (approximately) does traffic volume
increase?

3. (a) A study of Norway’s State Railways revealed that, for rides up to 60 km, the price elasticity
of the volume of passenger demand was approximately −0.4. According to this study, what
is the consequence of a 10% increase in fares?

(b) The corresponding elasticity for journeys over 300 km was calculated to be approximately
−0.9. Can you think of a reason why this elasticity is larger in absolute value than the
previous one ?

4. Use definition (1) to find Elxy for the following (a and p are constants):

(a) y = eax (b) y = ln x (c) y = xpeax (d) y = xp ln x

5. Prove that Elx(f (x))p = p Elxf (x) (p is a constant).

6. The demand D for apples in the US as a function of income r for the period 1927 to 1941 was
estimated as D = Ar1.23, where A is a constant. Find and interpret the elasticity of D w.r.t. r .
(This elasticity is called the income elasticity of demand, or the Engel elasticity.)

7. Voorhees and colleagues studied the transportation systems in 37 American cities and estimated
the average travel time to work, m (in minutes), as a function of the number of inhabitants, N .
They found that m = e−0.02N0.19. Write the relation in log-linear form. What is the value of m

when N = 480 000?

8. Show that

Elx
(
Af (x)

) = Elx f (x) (multiplicative constants vanish)

Elx
(
A + f (x)

) = f (x) Elx f (x)

A + f (x)
(additive constants remain)

HARDER PROBLEMS

⊂SM⊃9. Prove that if f and g are positive-valued differentiable functions of x and A is a constant, then
the following rules hold (where we write, for instance, Elxf instead of Elxf (x)).

(a) ElxA = 0 (b) Elx(fg) = Elxf + Elxg

(c) Elx

(
f

g

)
= Elxf − Elxg (d) Elx(f + g) = f Elxf + g Elxg

f + g

(e) Elx(f − g) = f Elxf − g Elxg

f − g
(f) Elx f

(
g(x)

) = Elu f (u)Elxu (u = g(x))
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10. Use the rules of Problem 9 to evaluate the following:

(a) Elx(−10x−5) (b) Elx(x + x2) (c) Elx(x
3 + 1)10

(d) Elx(Elx5x2) (e) Elx(1 + x2) (f) Elx

(
x − 1

x5 + 1

)

7.8 Continuity
Roughly speaking, a function y = f (x) is continuous if small changes in the independent
variable x lead to small changes in the function value y. Geometrically, a function is con-
tinuous on an interval if its graph is connected—that is, it has no breaks. An example is
indicated in Fig. 1.

a

y � f (x)
P

y

x a

y � f (x)y

x

Figure 1 A continuous function Figure 2 A discontinuous function

It is often said that a function is continuous if its graph can be drawn without lifting one’s
pencil off the paper. On the other hand, if the graph makes one or more jumps, we say that
f is discontinuous. Thus, the function whose graph is shown in Fig. 2 is discontinuous at
x = a, but continuous at all other points of its domain. The graph indicates that f (x) < 0
for all x < a, but f (x) > 0 for all x ≥ a, so there is a jump at x = a.

Why are we interested in distinguishing between continuous and discontinuous func-
tions? One important reason is that we must usually work with numerical approximations.
For instance, if a function f is given by some formula and we wish to compute f (

√
2), we

usually take it for granted that we can compute f (1.4142) and obtain a good approximation
to f (

√
2). In fact, this implicitly assumes that f is continuous. Then, because 1.4142 is

close to
√

2, the value f (1.4142) must be close to f (
√

2).
In applications of mathematics to natural sciences and economics, a function will often

represent how some phenomenon changes over time. Continuity of the function will then
reflect continuity of the phenomenon, in the sense of gradual rather than sudden changes.
For example, a person’s body temperature is a function of time which changes from one
value to another only after passing through all the intermediate values.

On the other hand, the market price of Brent crude oil is actually a discontinuous function
of time when examined closely enough. One reason is that the price (measured in dollars
or some other currency) must always be a rational number. A second, more interesting,
reason for occasional large jumps in the price is the sudden arrival of news or a rumour that
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significantly affects either the demand or supply function—for example, a sudden change
in the relevant tax policy of a major oil-exporting country.

The concept of continuity just discussed must obviously be made more precise before we
can use it in mathematical arguments. We need a definition of continuity not based solely
on geometric intuition.

Continuity in Terms of Limits

As discussed above, a function y = f (x) is continuous at x = a if small changes in x lead
to small changes in f (x). Stated differently, if x is close to a, then f (x) must be close to
f (a). This motivates the following definition:

f is continuous at x = a if lim
x→a

f (x) = f (a) (1)

Hence, we see that in order for f to be continuous at x = a, the following three conditions
must all be fulfilled:

(i) The function f must be defined at x = a

(ii) The limit of f (x) as x tends to a must exist

(iii) This limit must be exactly equal to f (a)

Unless all three of these conditions are satisfied, we say that f is discontinuous at a.
Figure 3 below indicates two important different types of discontinuity that can occur.

At x = a, the function is discontinuous because f (x) clearly has no limit as x tends to a.
Hence, condition (ii) is not satisfied. This is an “irremovable” discontinuity. On the other
hand, the limit of f (x) as x tends to b exists and is equal to A. Because A �= f (b), however,
condition (iii) is not satisfied, so f is discontinuous at b. This is a “removable” discontinuity
that would disappear if the function were redefined at x = b to make f (b) equal to A.

a b

y � f (x)f (a)

f (b)

A

y

x

Figure 3 f has two points of discontinuity. x = a is an
irremovable and x = b is a removable discontinuity point for f

Properties of Continuous Functions

Mathematicians have discovered many important results that are true only for continuous
functions. It is therefore important to be able to determine whether or not a given function is
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continuous. The rules for limits given in Section 6.5 make it is easy to establish continuity
of many types of function.

First, note that limx→a c = c and limx→a x = a at each point a. Hence, the two functions

f (x) = c and f (x) = x are continuous everywhere (2)

This is as it should be, because the graphs of these functions are straight lines.
Next, definition (1) and the limit rules in (6.5.2) immediately imply parts (a)–(c) of the

following:

R E S U L T S O N C O N T I N U O U S F U N C T I O N S

If f and g are continuous at a, then

(a) f + g and f − g are continuous at a

(b) fg and f/g (if g(a) �= 0) are continuous at a

(c) [f (x)]r is continuous at a if [f (a)]r is defined (r any real number)

(d) If f is continuous and has an inverse on the interval I , then its inverse f −1

is continuous on f (I).

(3)

For instance, to prove the first part of (b), if both f and g are continuous at a, then f (x) →
f (a) and g(x) → g(a) as x → a. But then, according to rules for limits, f (x)g(x) →
f (a)g(a) as x → a, which means precisely that fg is continuous at x = a. The result in
part (d) is a little trickier to prove, but it is easy to believe because the graphs of f and its
inverse f −1 are symmetric about the line y = x.

By combining (2) and (3), it follows that functions like h(x) = x + 8 and k(x) =
3x3 + x + 8 are continuous. In general, because a polynomial is a sum of continuous
functions, it is continuous everywhere. Moreover, a rational function

R(x) = P(x)/Q(x) (P(x) and Q(x) are polynomials)

is continuous at all x where Q(x) �= 0.
Consider a composite function f (g(x)) where f and g are assumed to be continuous. If

x is close to a, then continuity of g at a implies that g(x) is close to g(a). In turn, f (g(x))

becomes close to f (g(a)) because f is continuous at g(a), and thus f (g(x)) is continuous
at a. In short, composites of continuous functions are continuous: If g is continuous at
x = a, and f is continuous at g(a), then f

(
g(x)

)
is continuous at x = a. In general:

Any function that can be constructed from continuous functions by combining
one or more operations of addition, subtraction, multiplication, division (except
by zero), and composition, is continuous at all points where it is defined.

(4)
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By using the results just discussed, a mere glance at the formula defining a function will
usually suffice to determine the points at which it is continuous.

E X A M P L E 1 Determine at which values of x the functions f and g are continuous:

(a) f (x) = x4 + 3x2 − 1

(x − 1)(x + 2)
(b) g(x) = (x2 + 2)

(
x3 + 1

x

)4

+ 1√
x + 1

Solution:
(a) This is a rational function that is continuous at all x, except where the denominator

(x − 1)(x + 2) vanishes. Hence, f is continuous at all x different from 1 and −2.

(b) This function is defined when x �= 0 and x + 1 > 0. Hence, g is continuous in the
domain (−1, 0) ∪ (0, ∞).

Knowing where a function is continuous simplifies the computation of many limits. If f is
continuous at x = a, then the limit of f (x) as x tends to a is found simply by evaluating
f (a). For instance, since the function f (x) = x2 + 5x we studied in Example 6.5.3(a) is a
continuous function of x,

lim
x→−2

(x2 + 5x) = f (−2) = (−2)2 + 5(−2) = 4 − 10 = −6

Of course, simply finding f (−2) like this is much easier than using the rules for limits.
Compound functions, such as Examples 5.4.3 and 5.4.4, are defined “piecewise” by

different formulas which apply to disjoint intervals. Such functions are frequently discon-
tinuous at the junction points. As another example, the amount of postage you pay for a
letter is a discontinuous function of the weight. (As long as we use preprinted stamps, it
would be extremely inconvenient to have the “postage function” be even approximately
continuous.) On the other hand, given any tax schedule that looks like the one in Example
5.4.4, the tax you pay as a function of your net income is (essentially) a continuous function
(although many people seem to believe that it is not).

P R O B L E M S F O R S E C T I O N 7 . 8

1. Which of the following functions are likely to be continuous functions of time?

(a) The price in the Zurich gold market of an ounce of gold.

(b) The height of a growing child.

(c) The height of an aeroplane above sea level.

(d) The distance travelled by a car.

2. Let f and g be defined for all x by

f (x) =
{

x2 − 1, for x ≤ 0
−x2, for x > 0

and g(x) =
{

3x − 2, for x ≤ 2
−x + 6, for x > 2

Draw a graph of each function. Is f continuous at x = 0? Is g continuous at x = 2?
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⊂SM⊃3. Determine the values of x at which each of the functions defined by the following formulas is
continuous:

(a) x5 + 4x (b)
x

1 − x
(c)

1√
2 − x

(d)
x

x2 + 1
(e)

x8 − 3x2 + 1

x2 + 2x − 2
(f)

1√
x

+ x7

(x + 2)3/2

4. Draw the graph of y as a function of x if y depends on x as indicated in Fig. 4—that is, y is
the height of the aeroplane above the point on the ground vertically below. Is y a continuous
function of x?

Figure 4

5. For what value of a is the following function continuous for all x?

f (x) =
{

ax − 1, for x ≤ 1
3x2 + 1, for x > 1

6. Sketch the graph of a function f that is one-to-one on an interval, but neither strictly increasing
nor strictly decreasing. (Hint: f cannot be continuous.)

7.9 More on Limits
Section 6.5 gave a preliminary discussion of limits. We now supplement this with some
additional concepts and results, still keeping the discussion at an intuitive level. The reason
for this gradual approach is that it is important and quite easy to acquire a working knowledge
of limits. Experience suggests, however, that the precise definition is rather difficult to
understand, as are proofs based on this definition.

Suppose f is defined for all x close to a, but not necessarily at a. According to Section 6.5,
as x tends to a, the function f (x) has A as its limit provided that the number f (x) can be
made as close to A as one pleases by making x sufficiently close to (but not equal to) a.
Then we say that the limit exists. Now consider a case in which the limit does not exist.

E X A M P L E 1 Examine lim
x→−2

1

(x + 2)2
using a pocket calculator.
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Solution: Choosing x-values close to −2, we obtain the values in Table 1.

Table 1 Values of 1/(x + 2)2 when x is close to −2

x −1.8 −1.9 −1.99 −1.999 −2.0 −2.001 −2.01 −2.1 −2.2

1

(x + 2)2
25 100 10000 1000000 ∗ 1000000 10000 100 25

∗not defined

As x gets closer and closer to −2, we see that the value of the fraction becomes larger and
larger. By extending the values in the table, we see, for example, that for x = −2.0001
and x = −1.9999, the value of the fraction is 100 million. Figure 1 shows the graph of
f (x) = 1/(x + 2)2. The line x = −2 is called a vertical asymptote for the graph of f .

We can obviously make the fraction as large as we like by choosing x sufficiently close
to −2, so it does not tend to any limit as x tends to −2. Instead, we say that it tends to
infinity, and write

1

(x + 2)2
→ ∞ as x → −2

�2�3�4�5 �1 1

3

4

5

2

1

y

x

f (x) �
1

(x � 2)2

a

y � f (x)

y

x

B

A

Figure 1 f (x) → ∞ as x → −2 Figure 2 lim
x→a

f (x) does not exist

(Note that ∞ is NOT a number, so ∞ is not a limit.)

One-Sided Limits
The function whose graph is shown in Fig. 2 also fails to have a limit as x tends to a.
However, it seems from the figure that if x tends to a with values less than a, then f (x)

tends to the number B. We say, therefore, that the limit of f (x) as x tends to a from below
is B, and we write

lim
x→a−

f (x) = B or f (x) → B as x → a−

Analogously, also referring to Fig. 2, we say that the limit of f (x) as x tends to a from above
is A, and we write

lim
x→a+

f (x) = A or f (x) → A as x → a+
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We call these one-sided limits, the first from below and the second from above. They can
also be called the left limit and right limit, respectively.

A necessary and sufficient condition for the (ordinary) limit to exist is that the two
one-sided limits of f at a exist and are equal:

lim
x→a

f (x) = A ⇐⇒
[

lim
x→a−

f (x) = A and lim
x→a+

f (x) = A

]
(1)

It should now also be clear what is meant by

f (x) → ±∞ as x → a− and f (x) → ±∞ as x → a+

E X A M P L E 2 Figure 3 shows the graph of a function f defined on [0, 9]. Use the figure to check that
the following limits seem correct:

lim
x→2

f (x) = 3, lim
x→4−

f (x) = 1/2, lim
x→4+

f (x) = 3, “ lim
x→6

f (x) = −∞”

1 2 3 4 5 6 7 8 9

3

4

5

2

1

y � f (x)

y

x

Figure 3

E X A M P L E 3 Explain the following limits:

1√
2 − x

→ ∞ as x → 2−,
−1√
x − 2

→ −∞ as x → 2+

Solution: If x is slightly smaller than 2, then 2 − x is small and positive. Hence,
√

2 − x

is close to 0, and 1/
√

2 − x is a large positive number. For example, 1/
√

2 − 1.9999 =
1/

√
0.0001 = 100. As x tends to 2−, so 1/

√
2 − x tends to ∞.

The other limit is similar, because if x is slightly larger than 2, then
√

x − 2 is positive
and close to 0, and −1/

√
x − 2 is a large negative number.

One-Sided Continuity
The introduction of one-sided limits allows us to define one-sided continuity. Suppose f

is defined on the half-open interval (c, a]. If f (x) tends to f (a) as x tends to a−, we say
that f is left continuous at a. Similarly, if f is defined on [a, d), we say that f is right
continuous at a if f (x) tends to f (a) as x tends to a+. Because of (1), we see that a function
f is continuous at a if and only if f is both left and right continuous at a.
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E X A M P L E 4 Figure 3 shows that f is right continuous at x = 4 since limx→4+ f (x) exists and is
equal to f (4) = 3. At x = 2, limx→2− f (x) = limx→2+ f (x) = 3, but f (2) = 2, so f is
neither right nor left continuous at x = 2.

If a function f is defined on a closed bounded interval [a, b], we usually say that f is
continuous in [a, b] if it is continuous at each point of the open interval (a, b), and is in
addition right continuous at a and left continuous at b. It should be obvious how to define
continuity on half-open intervals. The continuity of a function at all points of an interval
(including one-sided continuity at the end points) is often a minimum requirement we impose
when speaking about “well-behaved” functions.

Limits at Infinity

We can also use the language of limits to describe the behaviour of a function as its argument
becomes infinitely large through positive or negative values. Let f be defined for arbitrarily
large positive numbers x. We say that f (x) has the limit A as x tends to infinity if f (x) can
be made arbitrarily close to A by making x sufficiently large. We write

lim
x→∞ f (x) = A or f (x) → A as x → ∞

In the same way,

lim
x→−∞ f (x) = B or f (x) → B as x → −∞

indicates that f (x) can be made arbitrarily close to B by making x a sufficiently large
negative number. The two limits are illustrated in Fig. 4. The horizontal line y = A is a
(horizontal) asymptote for the graph of f as x tends to ∞, whereas y = B is a (horizontal)
asymptote for the graph as x tends to −∞.

y

x

A

B

Figure 4 y = A and y = B are horizontal asymptotes

E X A M P L E 5 Examine the following functions as x → ∞ and as x → −∞:

(a) f (x) = 3x2 + x − 1

x2 + 1
(b) g(x) = 1 − x5

x4 + x + 1



Essential Math. for Econ. Analysis, 4th edn EME4_C07.TEX, 16 May 2012, 14:24 Page 241

S E C T I O N 7 . 9 / M O R E O N L I M I T S 241

Solution:

(a) A rough argument is as follows: If x is a large negative or a large positive number, then
the term 3x2 “dominates” in the numerator, whereas x2 dominates in the denominator.
Thus, if |x| is a large number, f (x) behaves like the fraction 3x2/x2 = 3. We conclude
that f (x) tends to 3 as |x| tends to ∞.

More formally, away from x = 0 we can divide each term in the numerator and the
denominator by the highest power of x, which is x2, to obtain

f (x) = 3x2 + x − 1

x2 + 1
= 3 + (1/x) − (1/x2)

1 + (1/x2)

If x is large in absolute value, then both 1/x and 1/x2 are close to 0. Thus, f (x) is
arbitrarily close to 3 if |x| is sufficiently large, and f (x) → 3 both as x → −∞ and
x → ∞.

(b) A first rough argument is that if |x| is a large number, then g(x) behaves like the fraction
−x5/x4 = −x. Therefore, g(x) → −∞ as x → ∞, whereas g(x) → ∞ as x → −∞.
More formally,

g(x) = 1 − x5

x4 + x + 1
= (1/x4) − x

1 + (1/x3) + 1/x4

You should now finish the argument yourself along the lines given in part (a).

Warnings

We have extended the original definition of a limit in several different directions. For these
extended limit concepts, the previous rules for finite limits set out in Section 6.5 still apply.
For example, all those rules remain valid if we consider left-hand limits or right-hand limits.
Also, if we replace x → a by x → ∞ or x → −∞, then again the corresponding limit
properties hold. Provided at least one of the two limits A and B is nonzero, the four rules
in (6.5.2) remain valid if at most one of A and B is infinite.

When f (x) and g(x) both tend to ∞ as x tends to a, however, much more care is needed.
Because f (x) and g(x) can each be made arbitrarily large if x is sufficiently close to a, both
f (x) + g(x) and f (x)g(x) can also be made arbitrarily large. But, in general, we cannot
say what are the limits of f (x) − g(x) and f (x)/g(x). The limits of these expressions
will depend on how “fast” f (x) and g(x), respectively, tend to ∞ as x tends to a. Briefly
formulated:

f (x) → ∞ and g(x) → ∞ as x → a ⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f (x) + g(x) → ∞ as x → a

f (x)g(x) → ∞ as x → a

f (x) − g(x) → ? as x → a

f (x)/g(x) → ? as x → a

The two question marks mean that we cannot determine the limits of f (x) − g(x) and
f (x)/g(x) without more information about f and g. We do not even know if these limits
exist or not. The following example illustrates some of the possibilities.
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E X A M P L E 6 Let f (x) = 1/x2 and g(x) = 1/x4. As x → 0, so f (x) → ∞ and g(x) → ∞. Examine
the limits as x → 0 of the following expressions:

f (x) − g(x), g(x) − f (x),
f (x)

g(x)
,

g(x)

f (x)

Solution: f (x) − g(x) = (x2 − 1)/x4. As x → 0, the numerator tends to −1 and the
denominator to 0. The fraction therefore tends to −∞. For the other three limits we have:

g(x) − f (x) = 1 − x2

x4
→ ∞,

f (x)

g(x)
= x2 → 0,

g(x)

f (x)
= 1

x2
→ ∞

These examples serve to illustrate that infinite limits require extreme care. Let us consider
some other tricky examples. Suppose we study the product f (x)g(x) of two functions,
where g(x) tends to 0 as x tends to a. Will the product f (x)g(x) also tend to 0 as x tends
to a? Not necessarily. If f (x) tends to a limit A, then we know that f (x)g(x) tends to
A · 0 = 0. On the other hand, if f (x) tends to ±∞, then it is easy to construct examples
in which the product f (x)g(x) does not tend to 0 at all. (You should try to construct some
examples of your own before turning to Problem 3.)

Continuity and Differentiability
Consider the function f graphed in Fig. 5.

a

f

y

x

Figure 5 f is continuous, but not
differentiable at x = a

At point (a, f (a)) the graph does not have a (unique) tangent. Thus f has no derivative at
x = a, but f is continuous at x = a. So a function can be continuous at a point without
being differentiable at that point. (For a standard example, see the graph of f (x) = |x|
shown in Fig. 4.3.10 which is continuous everywhere, but not differentiable at x = 0.)

On the other hand, it is easy to see that differentiability implies continuity:

If f is differentiable at x = a, then f is continuous at x = a (2)

Proof: The function f is continuous at x = a provided f (a + h) − f (a) tends to 0 as h → 0.
Now, for h �= 0,

f (a + h) − f (a) = f (a + h) − f (a)

h
· h (∗)

If f is differentiable at x = a, the Newton quotient [f (a + h) − f (a)]/h tends to the number f ′(a)

as h → 0. So the right-hand side of (∗) tends to f ′(a) · 0 = 0 as h → 0. Thus, f is continuous at
x = a.
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Suppose that f is some function whose Newton quotient [f (a + h) − f (a)]/h tends to a
limit as h tends to 0 through positive values. Then the limit is called the right derivative of
f at a. The left derivative of f at a is defined similarly, and we use the notation

f ′(a+) = lim
h→0+

f (a + h) − f (a)

h
, f ′(a−) = lim

h→0−
f (a + h) − f (a)

h
(3)

if the one-sided limits exist. If f is continuous at a and has left and right derivatives satisfying
f ′(a+) �= f ′(a−), then the graph of f is said to have a kink at (a, f (a)).

E X A M P L E 7 (US Federal income tax (2004) for single persons) This income tax function was dis-
cussed in Example 5.4.4. Figure 5.4.8 gives the graph of the tax function. If t (x) denotes the
tax paid at income x, its graph has corners at x = 7150, at x = 29 050, and at x = 70 350.
We see, for instance, that t ′(29 050−) = 0.15 because the tax is 15 cents on the last dollar
earned before reaching 29 050. Also, t ′(29 050+) = 0.25 because the tax is 25 cents on the
first dollar earned above 29 050. Because t ′(29 050−) �= t ′(29 050+), the tax function t is
not differentiable at x = 29 050. Check that t ′(70 350+) = 0.28.

A Rigorous Definition of Limits

Our preliminary definition of the limit concept in Section 6.5 was as follows:

limx→a f (x) = A means that we can make f (x) as close to A as we want, for all x

sufficiently close to (but not equal to) a.

The closeness, or, more generally, the distance, between two numbers can be measured by the absolute
value of the difference between them. Using absolute values, the definition can be reformulated in
this way:

limx→a f (x) = A means that we can make |f (x) − A| as small as we want for all
x �= a with |x − a| sufficiently small.

Towards the end of the 19th century some of the world’s best mathematicians at the time gradually
realized that this definition can be made precise in the following way:

We say that f (x) has limit (or tends to) A as x tends to a, and write limx→a f (x) = A, if
for each number ε > 0 there exists a number δ > 0 such that |f (x) − A| < ε for every
x with 0 < |x − a| < δ.

(4)

This is the definition on which all mathematically rigorous work on limits is based. It is illustrated
in Fig. 6. The definition implies that the graph of f must remain within the rectangular box PQRS,
for all x �= a in (a − δ, a + δ).

It should be regarded as a part of your general mathematical education to have seen this ε-δ
definition of the limit concept. However, in this book we rely only on an intuitive understanding of
limits.
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A � ε

A � ε

a � δ a � δ

a

A

y � f (x)

y

x

S R

P Q

x

y � f (x)

f (x) � (ax � b)

y

x

y � ax � b

Figure 6 Illustration of definition (4) Figure 7 y = ax + b is an asymp-
tote as x → ∞ for the graph of f

P R O B L E M S F O R S E C T I O N 7 . 9

⊂SM⊃1. Evaluate the following limits:

(a) lim
x→0+(x2 + 3x − 4) (b) lim

x→0−
x + |x|

x
(c) lim

x→0+
x + |x|

x

(d) lim
x→0+

−1√
x

(e) lim
x→3+

x

x − 3
(f) lim

x→3−
x

x − 3

2. Evaluate: (a) lim
x→∞

x − 3

x2 + 1
(b) lim

x→−∞

√
2 + 3x

x − 1
(c) lim

x→∞
(ax − b)2

(a − x)(b − x)

3. Let f1(x) = x, f2(x) = x, f3(x) = x2, and f4(x) = 1/x. Determine lim
x→∞ fi(x) for i = 1, 2,

3, 4, and discuss whether the rules for limits in Section 6.5 apply to the limits as x → ∞.

(a) f1(x) + f2(x) (b) f1(x) − f2(x) (c) f1(x) − f3(x) (d) f1(x)/f2(x)

(e) f1(x)/f3(x) (f) f1(x)f2(x) (g) f1(x)f4(x) (h) f3(x)f4(x)

⊂SM⊃4. The nonvertical line y = ax + b is said to be an asymptote as x → ∞ (or x → −∞) to the
curve y = f (x) if

f (x) − (ax + b) → 0 as x → ∞ (or x → −∞)

This condition means that the vertical distance between the point (x, f (x)) on the curve and the
point (x, ax + b) on the line tends to 0 as x → ±∞. (See Fig. 7.)

Suppose f (x) = P(x)/Q(x) is a rational function where the degree of the polynomial
P(x) is one greater than that of the polynomial Q(x). In this case f (x) will have an asymptote
that can be found by performing the polynomial division P(x) ÷ Q(x) to obtain a polynomial
of degree 1, plus a remainder term that tends to 0 as x → ±∞. (See Section 4.7.) Use this
method to find asymptotes for the graph of each of the following functions of x:

(a)
x2

x + 1
(b)

2x3 − 3x2 + 3x − 6

x2 + 1
(c)

3x2 + 2x

x − 1
(d)

5x4 − 3x2 + 1

x3 − 1
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5. Consider the cost function defined for x ≥ 0 by

C(x) = A
x(x + b)

x + c
+ d

Here A, b, c, and d are positive constants. Find the asymptotes.

6. Graph the function f defined by f (x) = 0 for x ≤ 0, and f (x) = x for x > 0. Compute
f ′(0+) and f ′(0−).

⊂SM⊃7. Consider the function f defined by the formula

f (x) = 3x

−x2 + 4x − 1

Compute f ′(x) and use a sign diagram to determine where the function increases. (The function
is not defined for x = 2 ± √

3.)

7.10 Intermediate Value Theorem. Newton’s Method
An important reason for introducing the concept of a continuous function was to make
precise the idea of a function whose graph is connected—that is, it lacks any breaks. The
following result, which can be proved by using the ε-δ definition of limit, expresses this
property in mathematical language.

T H E O R E M 7 . 1 0 . 1 ( T H E I N T E R M E D I A T E V A L U E T H E O R E M )

Let f be a function continuous in the closed interval [a, b].

(i) If f (a) and f (b) have different signs, then there is at least one c in (a, b)

such that f (c) = 0.

(ii) If f (a) �= f (b), then for every intermediate value y in the open interval
between f (a) and f (b) there is at least one c in (a, b) such that f (c) = y.

The conclusion in part (ii) follows from applying part (i) to the function g(x) = f (x) − y.
You should draw a figure to help convince yourself that a function for which there is no such
c must have at least one discontinuity.

Theorem 7.10.1 is important in assuring the existence of solutions to some equations
that cannot be solved explicitly.

E X A M P L E 1 Prove that the following equation has at least one solution c between 0 and 1:

x6 + 3x2 − 2x − 1 = 0
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Solution: The polynomial

f (x) = x6 + 3x2 − 2x − 1

is continuous for all x—in particular for x in [0, 1]. Moreover, f (0) = −1 and f (1) = 1.
According to Theorem 7.10.1, there exists at least one number c in (0, 1) such that f (c) = 0.

Sometimes we need to prove that certain equations have unique solutions. Consider the
following example.

E X A M P L E 2 Prove that the equation
2x − 5e−x(1 + x2) = 0

has a unique solution, which lies in the interval (0, 2).

Solution: Define g(x) = 2x − 5e−x(1 + x2). Then g(0) = −5 and g(2) = 4 − 25/e2.
In fact g(2) > 0 because e > 5/2. According to the intermediate value theorem, therefore,
the continuous function g must have at least one zero in (0, 2). Moreover, note that

g′(x) = 2 + 5e−x(1 + x2) − 10xe−x = 2 + 5e−x(1 − 2x + x2) = 2 + 5e−x(x − 1)2

But then g′(x) > 0 for all x, so g is strictly increasing. It follows that g can have only one
zero.

Newton’s Method
The intermediate value theorem can often be used to show that an equation f (x) = 0 has a
solution in a given interval, but it gives no additional information about the location of the
zero. In this subsection we shall explain a method which usually leads to a good approximate
solution in an efficient way. The method was first suggested by Newton and it has an easy
geometric explanation.

Consider the graph of the function y = f (x) shown in Fig. 1. It has a zero at x = a, but
this zero is not known. To find it, start with an initial estimate, x0, of a. (It is an advantage to
start with x0 not too far from a, if possible.) In order to improve the estimate, construct the
tangent line to the graph at the point (x0, f (x0)), and find the point x1 at which the tangent
crosses the x-axis, as shown in Fig. 1.

x0 x1

a

y � f (x)

y

x

Figure 1 Illustration of Newton’s method
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Usually x1 is a significantly better estimate of a than x0. After having found x1, repeat the
procedure by constructing the tangent line to the curve at the point (x1, f (x1)). Denote by
x2 the point where this new tangent line crosses the x-axis. Repeating this procedure, we
obtain a sequence of points which usually converges very quickly to a.

It is easy to find formulas for x1, x2, . . . . The slope of the tangent at x0 is f ′(x0).
According to the point–slope formula, the equation for the tangent line through the point
(x0, f (x0)) with slope f ′(x0) is given by

y − f (x0) = f ′(x0)(x − x0)

At the point where this tangent line crosses the x-axis, we have y = 0 and x = x1. Hence
−f (x0) = f ′(x0)(x1 − x0). Solving this equation for x1, we get

x1 = x0 − f (x0)

f ′(x0)

Similarly, given x1, the formula for x2 is

x2 = x1 − f (x1)

f ′(x1)

In general, one has the following formula for the (n + 1)th approximation xn+1, expressed
in terms of the nth approximation xn:

N E W T O N ’ S M E T H O D

As long as f ′(xn) �= 0, Newton’s method generates the sequence of points given
by the formula

xn+1 = xn − f (xn)

f ′(xn)
, n = 0, 1, . . .

Usually, the sequence {xn} converges quickly to a zero of f .

(1)

E X A M P L E 3 Find an approximate value for the zero of

f (x) = x6 + 3x2 − 2x − 1

in the interval [0, 1], using Newton’s method once (see Example 1).

Solution: Choose x0 = 1. Then f (x0) = f (1) = 1. Because f ′(x) = 6x5 + 6x − 2, we
have f ′(1) = 10. Hence, equation (1) for n = 0 yields

x1 = 1 − f (1)

f ′(1)
= 1 − 1

10
= 9

10
= 0.9
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E X A M P L E 4 Use Newton’s method twice to find an approximate value for 15
√

2.

Solution: We need an equation of the form f (x) = 0 which has x = 15
√

2 = 21/15 as a
root. The equation x15 = 2 has this root, so we let f (x) = x15 − 2. Choose x0 = 1. Then
f (x0) = f (1) = −1, and because f ′(x) = 15x14, we have f ′(1) = 15. Thus, for n = 0,
(1) gives

x1 = 1 − f (1)

f ′(1)
= 1 − −1

15
= 16

15
≈ 1.0667

Moreover,

x2 = x1 − f (x1)

f ′(x1)
= 16

15
− f (16/15)

f ′(16/15)
= 16

15
− (16/15)15 − 2

15(16/15)14
≈ 1.04729412

This is actually correct to 8 decimal places.3

NOTE 1 In most cases Newton’s method is very efficient, but it can happen that the sequence
{xn} defined in (1) does not converge. Figure 2 shows an example where x1 is a much worse
approximation to a than x0 was. Of course, the formula (1) breaks down if f ′(xn) = 0.
Usually, Newton’s method fails only if the absolute value of f ′(xn) becomes too small, for
some n.

x0x1 a

y

x

f

Figure 2

How Fast Does Newton’s Method Converge (If it Does)?

T H E O R E M 7 . 1 0 . 2 ( C O N V E R G E N C E O F N E W T O N ’ S M E T H O D )

Suppose in (1) that f is twice differentiable with f (x∗) = 0 and f ′(x∗) �= 0. Suppose
too there exist both K > 0 and δ > 0 with Kδ < 1 such that

|f (x)f ′′(x)|
f ′(x)2

≤ K|x − x∗|

for all x in the open interval I = (x∗ − δ, x∗ + δ). Then, provided that the sequence {xn}
in (1) starts at an x0 in I , it will converge to x∗, with an error ‖xn − x∗‖ that satisfies
|xn − x∗| ≤ (δK)2n

/K .

3 A frequently used rule of thumb says that, to obtain an approximation that is correct to n decimal
places, use Newton’s method until it gives the same n decimal places twice in a row.
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P R O B L E M S F O R S E C T I O N 7 . 1 0

1. Show that each of the following equations has at least one root in the given interval.

(a) x7 − 5x5 + x3 − 1 = 0 in (−1, 1) (b) x3 + 3x − 8 = 0 in (1, 3)

(c)
√

x2 + 1 = 3x in (0, 1) (d) ex−1 = 2x in (0, 1)

2. Explain why anybody taller than 1 metre was once exactly 1 metre tall.

3. Find a better approximation to 3
√

17 ≈ 2.5 by using Newton’s method once.

⊂SM⊃4. The equation x4 + 3x3 − 3x2 − 8x + 3 = 0 has an integer root. Find it. The three additional
roots are close to −1.9, 0.4, and 1.5. Find better approximations by using Newton’s method
once for each root that is not an integer.

5. The equation (2x)x = 15 has a solution which is approximately an integer. Find a better
approximation by using Newton’s method once.

6. In Fig. 1, f (x0) > 0 and f ′(x0) < 0. Moreover, x1 is to the right of x0. Verify that this agrees
with the formula (1) for n = 0. Check the other combinations of signs for f (x0) and f ′(x0) to
see both geometrically and analytically on which side of x0 the point x1 lies.

7.11 Infinite Sequences
We often encounter functions like those in Newton’s method which associate a number s(n)

to each natural number n. Such a function is called an infinite sequence, or just a sequence.
Its terms s(1), s(2), s(3),. . . , s(n),. . . are usually denoted by using subscripts: s1, s2, s3,
. . . , sn, . . . . We use the notation {sn}∞n=1, or simply {sn}, for an arbitrary infinite sequence.
For example, if s(n) = 1/n, n = 1, 2, 3, . . ., then the terms of the sequence are

1,
1

2
,

1

3
,

1

4
, . . . ,

1

n
, . . .

If we choose n large enough, the terms of this sequence can be made as small as we like.
We say that the sequence converges to 0. In general, we introduce the following definition:

A sequence {sn} is said to converge to a number s if sn can be made arbitrarily close to
s by choosing n sufficiently large. We write

lim
n→∞ sn = s or sn → s as n → ∞

This definition is just a special case of the previous definition that f (x) → A as x → ∞.
All the ordinary limit rules in Section 6.5 apply to limits of sequences.

A sequence that does not converge to any real number is said to diverge. Explain why
the two sequences {

2n
}∞
n=0 and

{
(−1)n

}∞
n=1
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both diverge. Occasionally, as in the first of these sequences, the starting index is not 1, but
another integer, here 0.

E X A M P L E 1 For n ≥ 3 let An be the area of a regular n-gon (i.e. a polygon with n equal sides and n

equal angles) inscribed in a circle with radius 1. For n = 3, A3 is the area of a triangle; for
n = 4, A4 is the area of a square; for n = 5, A5 is the area of a pentagon; and so on (see
Fig. 1).

A3 A4 A5

Figure 1

The area An increases with n, but is always less than π , the area of a circle with radius 1.
It seems intuitively evident that we can make the difference between An and π as small as
we wish provided that n becomes sufficiently large, so that

An → π as n → ∞

In this example, A1 and A2 have no meaning, so the sequence starts with A3.

E X A M P L E 2 In Section 6.11 we argued that limh→0(1 + h)1/h is e = 2.718 . . . . If we let h = 1/n,
where the natural number n → ∞ as h → 0, we obtain the following important limit:

e = lim
n→∞(1 + 1/n)n (1)

Irrational Numbers as Limits of Sequences
The sequence {An} in Example 1 converges to the irrational number π = 3.14159265 . . . .
Another sequence that converges to π starts this way: s1 = 3.1, s2 = 3.14, s3 = 3.141,
s4 = 3.1415, etc. Each new number is obtained by including an additional digit in the
decimal expansion for π . For this sequence, sn → π as n → ∞.

Consider an arbitrary irrational number r . Just as for π , the decimal expansion of r will
define one particular sequence rn of rational numbers that converges to r .

Section 1.5 defined the power ax when x is rational, and Section 4.8 suggested how to
define ax when x is irrational, by considering the special case of 5π .

Let r be an arbitrary irrational number. Then there exists a sequence rn of rational
numbers such that rn → r as n → ∞. The power arn is well-defined for all n. Since rn

converges to r , it is reasonable to define ar as the limit of arn as n approaches infinity:

ar = lim
n→∞arn (∗)
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Actually, there are infinitely many sequences {rn} of rational numbers that converge to any
given irrational number r . Nevertheless, one can show that the limit in (∗) exists and is
independent of which sequence we choose.

P R O B L E M S F O R S E C T I O N 7 . 1 1

1. Let αn = 3 − n

2n − 1
and βn = n2 + 2n − 1

3n2 − 2
, n = 1, 2, . . .. Find the following limits:

(a) lim
n→∞ αn (b) lim

n→∞ βn (c) lim
n→∞(3αn + 4βn)

(d) lim
n→∞ αnβn (e) lim

n→∞ αn/βn (f) lim
n→∞

√
βn − αn

2. Examine the convergence of the sequences whose general terms are as follows:

(a) sn = 5 − 2

n
(b) sn = n2 − 1

n
(c) sn = 3n√

2n2 − 1

3. Prove that ex = lim
n→∞(1 + x/n)n for x > 0. (The same limit is valid also for x < 0.)

7.12 L’Hôpital’s Rule

We often need to examine the limit as x tends to a of a quotient in which both numerator
and denominator tend to 0. Then we write

lim
x→a

f (x)

g(x)
= “0

0

”

We call such a limit an indeterminate form of type 0/0. Here a may be replaced by a+,
a−, ∞, or −∞. The words “indeterminate form” indicate that the limit (or one-sided limit)
cannot be found without further examination.

We start with the simple case of an indeterminate form f (x)/g(x) where f and g are
differentiable and f (a) = g(a) = 0. When x �= a and g(x) �= g(a), then some routine
algebra allow us to express

f (x)

g(x)
= [f (x) − f (a)]/(x − a)

[g(x) − g(a)]/(x − a)

as the ratio of two Newton quotients. Letting x → a, we see that provided g′(a) �= 0, the
fraction on the right-hand side tends to f ′(a)/g′(a). This gives the following result:
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L ’ H Ô P I T A L ’ S R U L E ( S I M P L E V E R S I O N )

If f (a) = g(a) = 0 and g′(a) �= 0, then

lim
x→a

f (x)

g(x)
= f ′(a)

g′(a)

(1)

According to (1), we can find the limit of an indeterminate form of type “0/0” by differen-
tiating the numerator and the denominator separately.

E X A M P L E 1 Use (1) to confirm the limit found in Example 6.5.1—namely,

lim
x→0

f (x)

g(x)
= lim

x→0

ex − 1

x
= 1

Solution: In this case f (0) = e0 − 1 = 0 and g(0) = 0. Moreover, f ′(x) = ex and
g′(x) = 1. Thus from (1)

lim
x→0

ex − 1

x
= f ′(0)

g′(0)
= 1

1
= 1

E X A M P L E 2 Compute lim
λ→0

xλ − yλ

λ
(x > 0, y > 0).

Solution: In this limit x and y are kept fixed. Define f (λ) = xλ −yλ and g(λ) = λ. Then,
f (0) = g(0) = 0. Using the rule (ax)′ = ax ln a, we obtain f ′(λ) = xλ ln x − yλ ln y, so
that f ′(0) = ln x − ln y. Moreover, g′(λ) = 1, so g′(0) = 1. Using l’Hôpital’s rule,

lim
λ→0

xλ − yλ

λ
= ln x − ln y = ln

x

y

In particular, if y = 1, then

lim
λ→0

xλ − 1

λ
= ln x (2)

which is a useful result.

Suppose we have a “0/0” form as in (1), but that f ′(a)/g′(a) is also of the type “0/0”.
Because g′(a) = 0, the argument for (1) breaks down. What do we do then? The answer is
to differentiate once more both numerator and denominator separately. If we still obtain an
expression of the type “0/0”, we go on differentiating numerator and denominator repeatedly
until the limit is determined (if possible). Here is an example from statistics.

E X A M P L E 3 Find lim
x→0

ext − 1 − xt

x2
.
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Solution: The numerator and denominator are both 0 at x = 0. Applying l’Hôpital’s rule
twice, we have

lim
x→0

ext − 1 − xt

x2
= “0

0

” = lim
x→0

text − t

2x
= “0

0

” = lim
x→0

t2ext

2
= 1

2
t2

NOTE 1 Here are some important warnings concerning the most common errors in applying
l’Hôpital’s rule:

1. Check that you really do have an indeterminate form; otherwise, the method usually
gives an erroneous result (see Problem 4).

2. Do not differentiate f/g as a fraction, but compute f ′/g′ instead.

The method explained here and used to solve Example 3 is built on the following theorem.
Note that the requirements on f and g are weaker than might have appeared from the
examples presented so far. For instance, f and g need not even be differentiable at x = a.
Thus the theorem actually gives a more general version of l’Hôpital’s rule.

T H E O R E M 7 . 1 2 . 1 ( L ’ H Ô P I T A L ’ S R U L E F O R ‘ ‘ 0 / 0 ’ ’ F O R M S )

Suppose that f and g are differentiable in an interval (α, β) that contains a,
except possibly at a, and suppose that f (x) and g(x) both tend to 0 as x tends to
a. If g′(x) �= 0 for all x �= a in (α, β), and if limx→a f ′(x)/g′(x) = L, then

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)
= L

This is true whether L is finite, ∞, or −∞.

Extensions of L’Hôpital’s Rule

L’Hôpital’s rule can be extended to some other cases. For instance, a can be an endpoint
of the interval (α, β). Thus, x → a can be replaced by x → a+ or x → a−. Also it is
easy to see that a may be replaced by ∞ or −∞ (see Problem 6). The rule also applies to
other indeterminate forms such as “±∞/ ± ∞”, although the proof is more complicated
(see Problem 7). Here is an example:

lim
x→∞

ln x

x
= “∞

∞
” = lim

x→∞
1/x

1
= 0 (3)

Indeed, a variety of other indeterminate forms can sometimes be transformed into expres-
sions of the type we have already mentioned by means of algebraic manipulations or sub-
stitutions.

E X A M P L E 4 Find L = lim
x→∞

( 5
√

x5 − x4 − x
)
.
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Solution: We reduce this “∞ − ∞” case to a “0/0” case by some algebraic manipulation.
Note first that for x �= 0,

5
√

x5 − x4 − x = [
x5(1 − 1/x)

]1/5 − x = x(1 − 1/x)1/5 − x

Thus,

lim
x→∞(

5
√

x5 − x4 − x) = lim
x→∞

(1 − 1/x)1/5 − 1

1/x
= “0

0

”

Using l’Hôpital’s rule, we have

L = lim
x→∞

(1/5) (1 − 1/x)−4/5 (
1/x2

)
−1/x2

= lim
x→∞

[
−1

5

(
1 − 1

x

)−4/5]
= −1

5

E X A M P L E 5 Consider the CES (“constant elasticity of substitution”) function

F(K, L) = A
(
aK−
 + (1 − a)L−


)−1/

(∗)

where A > 0, K > 0, L > 0, a ∈ (0, 1), and 
 �= 0. (Functions of two variables are
studied systematically in Chapter 11.) Keeping A, K , L, and a fixed, apply l’Hôpital’s
rule to z = ln[F(K, L)/A] as 
 → 0 in order to show that F(K, L) converges to the
Cobb–Douglas function AKaL1−a .

Solution: We get

z = ln
(
aK−
 + (1 − a)L−


)−1/
 = − ln
(
aK−
 + (1 − a)L−


)/

 → “0/0” as 
 → 0

Because (d/d
)K−
 = −K−
 ln K and (d/d
)L−
 = −L−
 ln L, applying l’Hôpital’s
rule gives

lim

→0

z = lim

→0

(
aK−
 ln K + (1 − a)L−
 ln L

aK−
 + (1 − a)L−


)/
1

= a ln K + (1 − a) ln L = ln KaL1−a

Hence ez → KaL1−a , and the conclusion follows.

An Important Limit

If a is an arbitrary number greater than 1, then ax → ∞ as x → ∞. For example,
(1.0001)x → ∞ as x → ∞. Furthermore, if p is an arbitrary positive number, then
xp → ∞ as x → ∞. If we compare (1.0001)x and x1000, it is clear that the former increases
quite slowly at first, whereas the latter increases very quickly. Nevertheless, (1.0001)x

eventually “overwhelms” x1000. In general,

lim
x→∞

xp

ax
= 0 (a > 1, p is a fixed positive number) (4)
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For example x2/ex and x10/(1.1)x will both tend to 0 as x tends to ∞. This result is actually
quite remarkable. It can be expressed briefly by saying that, for an arbitrary base a > 1,
the exponential function ax increases faster than any power xp of x. Even more succinctly:
“Exponentials overwhelm powers.” (If p ≤ 0, the limit is obviously 0.)

To prove (4), we consider the logarithm of the left-hand side, which is

ln
xp

ax
= p ln x − x ln a = x

(
p

ln x

x
− ln a

)
(∗)

Now, as x → ∞, we have ln x/x → 0 because of (3). So the term in parentheses in (∗)
converges to − ln a, which is negative because a > 1. It follows that ln(xp/ax) → −∞,
and so xp/ax = exp[ln(xp/ax)] → 0 because ez → 0 as z → −∞.

P R O B L E M S F O R S E C T I O N 7 . 1 2

1. Use l’Hôpital’s rule to find:

(a) lim
x→3

3x2 − 27

x − 3
(b) lim

x→0

ex − 1 − x − 1
2 x2

3x3
(c) lim

x→0

e−3x − e−2x + x

x2

2. Find the limits: (a) lim
x→a

x2 − a2

x − a
(b) lim

x→0

2
√

1 + x − 2 − x

2
√

1 + x + x2 − 2 − x

⊂SM⊃3. Use l’Hôpital’s rule to find the following limits:

(a) lim
x→1

x − 1

x2 − 1
(b) lim

x→−2

x3 + 3x2 − 4

x3 + 5x2 + 8x + 4
(c) lim

x→2

x4 − 4x3 + 6x2 − 8x + 8

x3 − 3x2 + 4

(d) lim
x→1

ln x − x + 1

(x − 1)2
(e) lim

x→1

1

x − 1
ln

(
7x + 1

4x + 4

)
(f) lim

x→1

xx − x

1 − x + ln x

4. Find the following limits:

(a) lim
x→∞

ln x√
x

(b) lim
x→0+ x ln x (c) lim

x→0+(xe1/x − x)

5. Find the error in the following:

lim
x→1

x2 + 3x − 4

2x2 − 2x
= lim

x→1

2x + 3

4x − 2
= lim

x→1

2

4
= 1

2

What is the correct value of the first limit?

6. With β > 0 and γ > 0, find lim
v→0+

1 − (1 + vβ)−γ

v
. (Consider first the case β = 1.)

HARDER PROBLEMS

7. Suppose that f and g are both differentiable for all large x and that f (x) and g(x) both tend to
0 as x → ∞. If in addition, limx→∞ g′(x) �= 0, show that

lim
x→∞

f (x)

g(x)
= “0

0

” = lim
x→∞

f ′(x)

g′(x)

by introducing x = 1/t in the first fraction and then using l’Hôpital’s rule as t → 0+.
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⊂SM⊃8. Suppose that limx→a f (x)/g(x) = “ ± ∞/ ± ∞ ” = L �= 0. By applying l’Hôpital’s rule to
the equivalent limit, limx→a

[
1/g(x)

]
/
[
1/f (x)

] = “0/0”, show that L = limx→a[f ′(x)/g′(x)]
provided this limit exists. (Ignore cases where f ′(x) or g′(x) tends to 0 as x tends to a.)

R E V I E W P R O B L E M S F O R C H A P T E R 7

1. For each of the following equations, find dy/dx and d2y/dx2 by implicit differentiation:

(a) 5x + y = 10 (b) xy3 = 125 (c) e2y = x3

Check by solving each equation for y as a function of x, then differentiating.

2. Compute y ′ when y is defined implicitly by the equation y5 − xy2 = 24. Is y ′ ever 0?

3. The graph of the equation x3 + y3 = 3xy passes through the point (3/2, 3/2). Find the slope
of the tangent line to the curve at this point. (This equation has a nice graph which is called
Descartes’s folium. See the figure in the answer to this problem.)

4. (a) Find the slope of the tangent to the curve x2y + 3y3 = 7 at (x, y) = (2, 1).

(b) Prove that y ′′ = −210/133 at (2, 1).

5. If K1/3L1/3 = 24, compute dL/dK by implicit differentiation.

6. The equation
ln y + y = 1 − 2 ln x − 0.2(ln x)2

defines y as a function of x for x > 0, y > 0. Compute y ′ and show that y ′ = 0 for x = e−5.

7. Consider the following macroeconomic model

(i) Y = C + I (ii) C = f (Y − T ) (iii) T = α + βY

where Y is national income, C is consumption, T denotes taxes, and α and β are constants.
Assume that f ′ ∈ (0, 1) and β ∈ (0, 1).

(a) From equations (i)–(iii) derive the equation Y = f ((1 − β)Y − α) + I .

(b) Differentiate the equation in (a) implicitly w.r.t. I and find an expression for dY/dI .

(c) Examine the sign of dY/dI .

8. (a) Find y ′ when y is given implicitly by the equation

x2 − xy + 2y2 = 7

(b) Find the points where the graph has horizontal tangent and the points where it has vertical
tangent. Do your results accord with Fig. A which shows the graph of the equation?
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y
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y
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1

2

3

x−5 −4 −3 −2 −1 1 2 3 4

x2y − 3y3 = 2x

Figure A Figure B

9. (a) The graph of the equation x2y − 3y3 = 2x passes through the point (x, y) = (−1, 1). Find
the slope of the graph at this point.

(b) Find the points at which the curve has vertical tangent. Show that no point on the curve
has a horizontal tangent. (You may want to check that your answers are consistent with the
graph of the equation given in Fig. B.)

⊂SM⊃10. (a) Determine the domain and the range of the function f defined by the formula

f (x) = 1

2
ln

1 + x

1 − x

(b) Prove that f has an inverse g, and find a formula for the inverse. Note that f ( 1
2 ) = 1

2 ln 3.
Find g′( 1

2 ln 3) in two different ways.

11. (a) Let f (x) be defined for all x > 0 by

f (x) = (ln x)3 − 2(ln x)2 + ln x

Compute f (e2) and find the zeros of f (x).

(b) Prove that f (x) defined on [e, ∞) has an inverse function h and determine h′(2).

⊂SM⊃12. Find the quadratic approximations to the following functions about x = 0:

(a) f (x) = ln(2x + 4) (b) g(x) = (1 + x)−1/2 (c) h(x) = xe2x

13. Find the differentials:

(a) d(
√

1 + x2) (b) d(4πr2) (c) d(100K4 + 200) (d) d(ln(1 − x3))

14. Compute the differential of f (x) = √
1 + x3. What is the approximate change in f (x) when x

changes from x = 2 to x = 2 + dx, where dx = 0.2?

⊂SM⊃15. Use formula (7.6.6) with n = 5 to find an approximate value of
√

e. Show that the answer is
correct to three decimal places. (Hint: For 0 < c < 1/2, ec < e1/2 < 2.)

16. Find the quadratic approximation to y = y(x) about (x, y) = (0, 1) when y is defined implicitly
as a function of x by the equation y + ln y = 1 + x.
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17. Determine the values of x at which each of the functions defined by the following formulas is
continuous:

(a) ex + e1/x (b)

√
x + 1/x

x2 + 2x + 2
(c)

1√
x + 2

+ 1√
2 − x

18. Let f be a given differentiable function of one variable. Suppose that each of the following
equations defines y implicitly as a function of x. Find an expression for y ′ in each case.

(a) x = f (y2) (b) xy2 = f (x) − y3 (c) f (2x + y) = x + y2

19. The respective demands for margarine (marg) and for meals away from home (mah) in the
UK during the period 1920–1937, as functions of personal income r , were estimated to be
Dmarg = Ar−0.165 and Dmah = Br2.39, for suitable constants A and B. Find and interpret the
(Engel) elasticities of Dmarg and Dmah w.r.t. r .

20. Find the elasticities of the functions given by the following formulas:

(a) 50x5 (b) 3
√

x (c) x3 + x5 (d)
x − 1

x + 1

21. The equation x3 − x − 5 = 0 has a root close to 2. Find an approximation by using Newton’s
method once, with x0 = 2.

22. Prove that f (x) = e
√

x − 3 has a unique zero in the interval [1, 4]. Find an approximate value
for this zero by using Newton’s method once, with x0 = 1.

⊂SM⊃23. Evaluate the limits:

(a) lim
x→3−(x2 − 3x + 2) (b) lim

x→−2+
x2 − 3x + 14

x + 2
(c) lim

x→−1

3 − √
x + 17

x + 1

(d) lim
x→0

(2 − x)ex − x − 2

x3
(e) lim

x→3

(
1

x − 3
− 5

x2 − x − 6

)
(f) lim

x→4

x − 4

2x2 − 32

(g) lim
x→2

x2 − 3x + 2

x − 2
(h) lim

x→−1

4 − √
x + 17

2x + 2
(i) lim

x→∞
(ln x)2

3x2

⊂SM⊃24. Examine the following limit for different values of the constants a, b, c, and d, assuming that b

and d are positive:

lim
x→0

√
ax + b − √

cx + d

x

25. Evaluate lim
x→0

ax − bx

eax − ebx
(a �= b, a and b positive)

26. The equation x21 − 11x + 10 = 0 has a root at x = 1, and another root in the interval (0, 1).
Starting from x0 = 0.9, use Newton’s method as many times as necessary to find the latter root
to 3 decimal places.
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8
S I N G L E - V A R I A B L E
O P T I M I Z A T I O N

If you want literal realism,

look at the world around you;

if you want understanding,

look at theories.

—R. Dorfman (1964)

Finding the best way to do a specific task involves what is called an optimization problem.

Examples abound in almost all areas of human activity. A manager seeks those combinations

of inputs (such as capital and labour) that maximize profit or minimize cost. A doctor might

want to know when is the best time of day to inject a drug, so as to avoid the concentration

in the bloodstream becoming dangerously high. A farmer might want to know what amount

of fertilizer per square yard will maximize profits. An oil company may wish to find the optimal

rate of extraction from one of its wells.

Studying an optimization problem of this sort systematically requires a mathematical model.

Constructing one is usually not easy, and only in simple cases will the model lead to the problem

of maximizing or minimizing a function of a single variable—the main topic of this chapter.

In general, no mathematical methods are more important in economics than those designed

to solve optimization problems. Though economic optimization problems usually involve several

variables, the examples of quadratic optimization in Section 4.6 indicate how useful economic

insights can be gained even from simple one-variable optimization.

8.1 Introduction
Those points in the domain of a function where it reaches its largest and its smallest values
are usually referred to as maximum and minimum points. If we do not need to bother about
the distinction between maxima and minima, we call them extreme points. Thus, if f (x)

has domain D, then

c ∈ D is a maximum point for f ⇐⇒ f (x) ≤ f (c) for all x ∈ D (1)

d ∈ D is a minimum point for f ⇐⇒ f (x) ≥ f (d) for all x ∈ D (2)
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In (1), we call f (c) the maximum value, and in (2), we call f (d) the minimum value. If
the value of f at c is strictly larger than at any other point in D, then c is a strict maximum
point. Similarly, d is a strict minimum point if f (x) > f (d) for all x ∈ D, x �= d.
As collective names, we use the terms optimal points and values, or extreme points and
values.

If f is any function with domain D, then the function −f is defined in D by (−f )(x) =
−f (x). Note that f (x) ≤ f (c) for all x in D if and only if −f (x) ≥ −f (c) for all x in D.
Thus, c maximizes f in D if and only if c minimizes −f in D. This simple observation,
which is illustrated in Fig. 1, can be used to convert maximization problems to minimization
problems and vice versa.

f (x)

�f (x)

y

xc

Figure 1 The point c is a maximum point for
f (x) and a minimum point for −f (x)

Sometimes we can find the maximum and minimum points of a function simply by
studying the formula that defines it.

E X A M P L E 1 Find possible maximum and minimum points for:

(a) f (x) = 3 − (x − 2)2 (b) g(x) = √
x − 5 − 100, x ≥ 5

Solution:

(a) Because (x − 2)2 ≥ 0 for all x, it follows that f (x) ≤ 3 for all x. But f (x) = 3
when (x − 2)2 = 0 at x = 2. Therefore, x = 2 is a maximum point for f . Because
f (x) → −∞ as x → ∞, the function f has no minimum.

(b) Since
√

x − 5 is ≥ 0 for all x ≥ 5, it follows that f (x) ≥ −100 for all x ≥ 5. Since
f (5) = −100, we conclude that x = 5 is a minimum point. Since f (x) → ∞ as
x → ∞, the function f has no maximum.

Rarely can we find extreme points as simply as in the example. The main task of this chapter
is to explain how to locate possible extreme points in more complicated cases. An essential
observation is a result which you have already observed: If f is a differentiable function
that has a maximum or minimum at an interior point c of its domain, then the tangent line to
its graph must be horizontal (parallel to the x-axis) at that point. Hence, f ′(c) = 0. Points
c at which f ′(c) = 0 are called stationary (or critical) points for f . Precisely formulated,
one has the following theorem:
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T H E O R E M 8 . 1 . 1 N E C E S S A R Y F I R S T - O R D E R C O N D I T I O N

Suppose that a function f is differentiable in an interval I and that c is an interior
point of I . For x = c to be a maximum or minimum point for f in I , a necessary
condition is that it is a stationary point for f —i.e. that x = c satisfies the equation

f ′(x) = 0 (first-order condition)

Proof: Suppose that f has a maximum at c (the proof in the case when c is a minimum point is
similar). If the absolute value of h is sufficiently small, then c + h ∈ I because c is an interior point
of I . Because c is a maximum point, f (c + h) − f (c) ≤ 0. If h is sufficiently small and positive,
the Newton quotient [f (c + h) − f (c)]/h ≤ 0. The limit of this quotient as h → 0+ is therefore
≤ 0 as well. But because f ′(c) exists, this limit is equal to f ′(c), so f ′(c) ≤ 0. For negative values
of h, on the other hand, we get [f (c + h) − f (c)]/h ≥ 0. The limit of this expression as h → 0− is
therefore ≥ 0. So f ′(c) ≥ 0. We have now proved that f ′(c) ≤ 0 and f ′(c) ≥ 0, so f ′(c) = 0.

Before starting to explore systematically other properties of maxima and minima, we provide
some geometric examples. They will indicate for us the role played by the stationary points
of a function in the theory of optimization.

Figure 2 shows the graph of a function f defined in an interval [a, b] having two stationary
points, c and d . At c, there is a maximum; at d, there is a minimum.

y

xa d c b

y

xa d b x0 x1 x2

y

xa b

Figure 2 Figure 3 Figure 4

In Fig. 3, the function has no stationary points. There is a maximum at the end point b and
a minimum at d. At d, the function is not differentiable. At b, the derivative (the left-hand
derivative) is not 0.

Theorem 8.1.1 implies that f ′(x) = 0 is a necessary condition for a differentiable
function f to have a maximum or minimum at an interior point x in its domain. The
condition is far from sufficient. This is indicated in Fig. 4 where f has three stationary
points, x0, x1, and x2. At the end point a there is a minimum, whereas f does not have any
maximum value because it approaches ∞ as x tends to b. At the stationary point x0 the
function f has a “local maximum”, in the sense that its value at that point is higher than
at all neighbouring points. Similarly, at x1 it has a local “minimum”, whereas at x2 there
is a stationary point that is neither a local maximum nor a local minimum. In fact, x2 is a
special case of an inflection point.
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In many economic problems the only possible maximum and minimum points will occur
where the function is indeed stationary, as shown in Fig. 2. Nevertheless, Figs. 3 and 4
illustrate situations that can occur, also in economic problems.

Actually, all three figures represent important possibilities that can occur in single-
variable optimization problems. Because the theory is so important in economics, we must
not simply rely on vague geometric insights. Instead, we must develop a firmer analytical
foundation by formulating precise mathematical results.

P R O B L E M S F O R S E C T I O N 8 . 1

1. Use non-calculus arguments similar to those in Example 1 in order to find the maximum or
minimum points for the following functions:

(a) f (x) = 8

3x2 + 4
(b) g(x) = 5(x + 2)4 − 3 (c) h(x) = 1

1 + x4
, x ∈ [−1, 1]

2. Use non-calculus arguments similar to those in Example 1 in order to find the maximum or
minimum points for the following functions:

(a) F(x) = −2

2 + x2
(b) G(x) = 2 − √

1 − x (c) H(x) = 100 − e−x2

8.2 Simple Tests for Extreme Points
In many cases we can find maximum or minimum values for a function just by studying
the sign of its first derivative. Suppose f (x) is differentiable in an interval I and that it
has only one stationary point, x = c. Suppose f ′(x) ≥ 0 for all x in I such that x ≤ c,
whereas f ′(x) ≤ 0 for all x in I such that x ≥ c. Then f (x) is increasing to the left of c

and decreasing to the right of c. It follows that f (x) ≤ f (c) for all x ≤ c, and f (c) ≥ f (x)

for all x ≥ c. Hence, x = c is a maximum point for f in I , as illustrated in Fig. 1.

y � f (x)

c

I

y

x

y � f (x)

I

d

y

x

Figure 1 x = c is a maximum point Figure 2 x = d is a minimum point

With obvious modifications, a similar result holds for minimum points, as illustrated in
Fig. 2. Briefly stated:1

1 Many books in mathematics for economists instruct students always to check so-called second-
order conditions, even when this first-derivative test is much easier to use.
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T H E O R E M 8 . 2 . 1 ( F I R S T - D E R I V A T I V E T E S T F O R M A X I M U M / M I N I M U M )

If f ′(x) ≥ 0 for x ≤ c and f ′(x) ≤ 0 for x ≥ c, then x = c is a maximum point
for f .

If f ′(x) ≤ 0 for x ≤ c and f ′(x) ≥ 0 for x ≥ c, then x = c is a minimum point
for f .

E X A M P L E 1 Measured in milligrams per litre, the concentration of a drug in the bloodstream t hours
after injection is given by the formula

c(t) = t

t2 + 4
, t ≥ 0

Find the time of maximum concentration.

Solution: Differentiating with respect to t yields

c′(t) = 1 · (t2 + 4) − t · 2t

(t2 + 4)2
= 4 − t2

(t2 + 4)2
= (2 + t)(2 − t)

(t2 + 4)2

For t ≥ 0, the term 2 − t alone determines the algebraic sign of the fraction, because the
other terms are positive. In fact, if t ≤ 2, then c′(t) ≥ 0, whereas if t ≥ 2, then c′(t) ≤ 0. We
conclude that t = 2 maximizes c(t). Thus, the concentration of the drug is highest 2 hours
after injection. Because c(2) = 0.25, the maximum concentration is 0.25 milligrams.

E X A M P L E 2 Consider the function f defined for all x by

f (x) = e2x − 5ex + 4 = (ex − 1)(ex − 4)

(a) Find the zeros of f (x) and compute f ′(x).

(b) Find the intervals where f increases and decreases, and determine possible extreme
points and values.

(c) Examine limx→−∞ f (x). Sketch the graph of f .

Solution:

(a) f (x) = (ex − 1)(ex − 4) = 0 when ex = 1 and when ex = 4. Hence f (x) = 0 for
x = 0 and for x = ln 4. By differentiating the first expression for f (x), we obtain
f ′(x) = 2e2x − 5ex.

(b) f ′(x) = 2e2x − 5ex = ex(2ex − 5). Thus f ′(x) = 0 for ex = 5/2 = 2.5, that is,
x = ln 2.5. Furthermore, f ′(x) ≤ 0 for x ≤ ln 2.5, and f ′(x) ≥ 0 for x ≥ ln 2.5. So
f (x) is decreasing in the interval (−∞, ln 2.5] and increasing in [ln 2.5, ∞). Hence
f (x) has a minimum at x = ln 2.5, and f (ln 2.5) = (2.5 − 1)(2.5 − 4) = −2.25.
Since f (x) → ∞ as x → ∞, f (x) has no maximum.
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(c) When x → −∞, then ex tends to 0, and f (x) tends to 4. The graph is drawn in Fig. 3.
(y = 4 is an asymptote as x → −∞.)

�2�3�4 �1 1

3

4

2

1

�1

�2

y

x

3

2

1

�1 1 2

y

x

Figure 3 f (x) = e2x − 5ex + 4 Figure 4 f (x) = ex−1 − x

Extreme Points for Concave and Convex Functions
Recall the definitions of concave and convex functions in Section 6.9. Suppose that f is
concave, with f ′′(x) ≤ 0 for all x in an interval I . Then f ′(x) is decreasing in I . If f ′(c) = 0
at an interior point c of I , then f ′(x) must be ≥ 0 to the left of c, while f ′(x) ≤ 0 to the
right of c. This implies that the function itself is increasing to the left of c and decreasing
to the right of c. We conclude that x = c is a maximum point for f in I . We obviously get
a corresponding result for a minimum of a convex function.

T H E O R E M 8 . 2 . 2 ( M A X I M U M / M I N I M U M F O R C O N C A V E / C O N V E X F U N C T I O N S )

Suppose f is a concave (convex) function in an interval I . If c is a stationary
point for f in the interior of I , then c is a maximum (minimum) point for f in I .

E X A M P L E 3 Consider the function f defined for all x by f (x) = ex−1 − x. Show that f is convex
and find its minimum point. Sketch the graph.

Solution: f ′(x) = ex−1 − 1 and f ′′(x) = ex−1 > 0, so f is convex. Note that f ′(x) =
ex−1 − 1 = 0 for x = 1. From Theorem 8.2.2 it follows that x = 1 minimizes f . See Fig. 4
for the graph.

P R O B L E M S F O R S E C T I O N 8 . 2

1. Let y denote the weekly average quantity of pork produced in Chicago during 1948 (in millions
of pounds) and let x be the total weekly work effort (in thousands of hours). Nichols estimated
the relation

y = −2.05 + 1.06x − 0.04x2

Determine the value of x that maximizes y by studying the sign variation of y ′.
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⊂SM⊃2. Find the derivative of the function h defined for all x by the formula h(x) = 8x

3x2 + 4
.

Note that h(x) → 0 as x → ±∞. Use the sign variation of h′(x) to find the extreme points
of h(x).

3. The height of a flowering plant after t months is given by

h(t) = √
t − 1

2 t, t ∈ [0, 3]

At what time is the plant at its tallest?

4. Show that

f (x) = 2x2

x4 + 1
⇒ f ′(x) = 4x(1 + x2)(1 + x)(1 − x)

(x4 + 1)2

and find the maximum value of f on [0, ∞).

5. Find possible extreme points for g(x) = x3 ln x, x ∈ (0, ∞).

6. Find possible extreme points for f (x) = e3x − 6ex , x ∈ (−∞, ∞).

7. Find the maximum of y = x2e−x on [0, 4].

⊂SM⊃8. Use Theorem 8.2.2 to find the values of x that maximize/minimize the functions given by the
following formulas:

(a) y = ex + e−2x (b) y = 9 − (x − a)2 − 2(x − b)2 (c) y = ln x − 5x, x > 0

9. Consider n numbers a1, a2, . . . , an. Find the number x̄ which gives the best approximation to
these numbers, in the sense of minimizing

d(x) = (x − a1)
2 + (x − a2)

2 + · · · + (x − an)
2

HARDER PROBLEM

⊂SM⊃10. After the North Sea flood catastrophe in 1953, the Dutch government initiated a project to
determine the optimal height of the dykes. One of the models involved finding the value of x

minimizing
f (x) = I0 + kx + Ae−αx (x ≥ 0)

Here x denotes the extra height in metres that should be added to the dykes, I0 + kx is the con-
struction cost, and Ae−αx is an estimate of the expected loss caused by flooding. The parameters
I0, k, A, and α are all positive constants.

(a) Suppose that Aα > k and find x0 > 0 that minimizes f (x).

(b) The constant A is defined as A = p0V (1 + 100/δ), where p0 is the probability that the
dykes will be flooded if they are not rebuilt, V is an estimate of the cost of flood damage, and

δ is an interest rate. Show that x0 = 1

α
ln

[
αp0V

k

(
1 + 100

δ

)]
. Examine what happens to

x0 when one of the variables p0, V , δ, or k increases. Comment on the reasonableness of
the results.2

2 The problem is discussed in D. van Dantzig, “Economic Decision Problems for Flood Prevention”.
Econometrica, 24 (1956): 276–287.
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8.3 Economic Examples
This section presents some interesting examples of economic optimization problems.

E X A M P L E 1 Suppose Y (N) bushels of wheat are harvested per acre of land when N pounds of fertilizer
per acre are used. If P is the dollar price per bushel of wheat and q is the dollar price per
pound of fertilizer, then profits in dollars per acre are

π(N) = PY(N) − qN, N ≥ 0

Suppose there exists N∗ such that π ′(N) ≥ 0 for N ≤ N∗, whereas π ′(N) ≤ 0 for N ≥ N∗.
Then N∗ maximizes profits, and π ′(N∗) = 0. That is, PY ′(N∗) − q = 0, so

PY ′(N∗) = q (∗)

Let us give an economic interpretation of this condition. Suppose N∗ units of fertilizer are
used and we contemplate increasing N∗ by one unit. What do we gain? If N∗ increases by
one unit, then Y (N∗ +1)−Y (N∗) more bushels are produced. Now Y (N∗ +1)−Y (N∗) ≈
Y ′(N∗). For each of these bushels, we get P dollars, so

by increasing N∗ by one unit, we gain ≈ PY ′(N∗) dollars

On the other hand,

by increasing N∗ by one unit, we lose q dollars

because this is the cost of one unit of fertilizer. Hence, we can interpret (∗) as follows: In
order to maximize profits, you should increase the amount of fertilizer to the level N∗ at
which an additional pound of fertilizer equates the changes in your gains and losses from
the extra pound.

(a) In an (unrealistic) example Y (N) = √
N , P = 10, and q = 0.5. Find the amount of

fertilizer which maximizes profits in this case.

(b) An agricultural study in Iowa estimated the yield function Y (N) for the year 1952 as

Y (N) = −13.62 + 0.984N − 0.05N1.5

If the price of wheat is $1.40 per bushel and the price of fertilizer is $0.18 per pound,
find the amount of fertilizer that maximizes profits.

Solution:

(a) The profit function is

π(N) = PY(N) − qN = 10N1/2 − 0.5N, N ≥ 0

Then π ′(N) = 10(1/2)N−1/2 − 0.5 = 5N−1/2 − 0.5. We see that π ′(N∗) = 0 when
(N∗)−1/2 = 0.1, hence N∗ = 100. Moreover, it follows that π ′(N) ≥ 0 when N ≤ 100
and π ′(N) ≤ 0 when N ≥ 100. We conclude that N∗ = 100 maximizes profits. See Fig. 1.
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(b) In this case

π(N) = 1.4(−13.62 + 0.984N − 0.05N1.5) − 0.18N

= −19.068 + 1.1976N − 0.07N1.5

so that
π ′(N) = 1.1976 − 0.07 · 1.5N0.5 = 1.1976 − 0.105

√
N

Hence π ′(N∗) = 0 when 0.105
√

N∗ = 1.1976. This implies that

√
N∗ = 1.1976/0.105 ≈ 11.4 or N∗ ≈ (11.4)2 ≈ 130

By studying the expression for π ′(N), we see that π ′(N) is positive to the left of N∗ and
negative to the right of N∗. Hence, N∗ ≈ 130 maximizes profits. The graph of π(N) is
shown in Fig. 2.

π (N)

60

40

20

100 200 300 400 N
�20

40

20

100 200

π (N)

NN*

Figure 1 π(N) = 10N1/2 − 0.5N Figure 2 Profit function in Example 1(b)

E X A M P L E 2 (a) The total cost of producing Q units of a commodity is

C(Q) = 2Q2 + 10Q + 32, Q > 0

Find the value of Q which minimizes A(Q) = C(Q)/Q = 2Q + 10 + 32/Q, the
average cost.

(b) The total cost of producing Q units of a commodity is

C(Q) = aQ2 + bQ + c, Q > 0

where a, b, and c are positive constants. Show that the average cost function

A(Q) = C(Q)/Q = aQ + b + c/Q

has a minimum at Q∗ = √
c/a. In the same coordinate system, draw the graphs of the

average cost, the marginal cost, and the straight line P = aQ + b.

Solution:

(a) We find that A′(Q) = 2 − 32/Q2 and A′′(Q) = 64/Q3. Since A′′(Q) > 0 for all
Q > 0, A is convex, and since A′(Q) = 0 for Q = 4, this is a minimum point.
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(b) We find that A′(Q) = a − c/Q2 and A′′(Q) = 2c/Q3. Since A′′(Q) > 0 for all
Q > 0, A is convex, and since A′(Q) = 0 for Q∗ = √

c/a, this is a minimum
point. The graphs are drawn in Fig. 3. (We see that at the minimum point Q∗, marginal
cost is equal to average cost. This is no coincidence because it is true in general that
A′(Q) = 0 if and only if C ′(Q) = A(Q). (See Example 6.7.6.) The minimum average
cost is A(Q∗) = a

√
c/a + b + c/

√
c/a = √

ac + b + √
ac = 2

√
ac + b.)

b

P � aQ � b
(asymptote)

C (Q)
Q

P

QQ* � �c�a

2�ac � b

C�(Q) �  2aQ � b

Figure 3

The following example is typical of how economists use implicit differentiation in con-
nection with optimization problems.

E X A M P L E 3 A monopolist is faced with the demand function P(Q) denoting the price when output
is Q. The monopolist has a constant average cost k per unit produced.

(a) Find the profit function π(Q), and prove that the first-order condition for maximal profit
at Q∗ > 0 is

P(Q∗) + Q∗P ′(Q∗) = k (∗)

(b) By implicitly differentiating (∗), find how the monopolist’s choice of optimal production
is affected by changes in k.

(c) How does the optimal profit react to a change in k?

Solution: (a) The profit function is π(Q) = QP(Q) − kQ, and π ′(Q) = P(Q) +
QP ′(Q) − k. In order for Q∗ > 0 to maximize π(Q), one must have π ′(Q∗) = 0, i.e.
P(Q∗) + Q∗P ′(Q∗) = k.

(b) Assuming that equation (∗) defines Q∗ as a differentiable function of k, we obtain

P ′(Q∗)
dQ∗

dk
+ dQ∗

dk
P ′(Q∗) + Q∗P ′′(Q∗)

dQ∗

dk
= 1

Solving for dQ∗/dk gives

dQ∗

dk
= 1

Q∗P ′′(Q∗) + 2P ′(Q∗)
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(c) Because π(Q∗) = Q∗P(Q∗) − kQ∗, differentiating w.r.t. k gives

dπ(Q∗)
dk

= dQ∗

dk
P (Q∗) + Q∗P ′(Q∗)

dQ∗

dk
− Q∗ − k

dQ∗

dk

But the three terms containing dQ∗/dk all cancel because of the first-order condi-
tion (∗). So dπ∗/dk = −Q∗. Thus, if the cost increases by one unit, the optimal profit
will decrease by (approximately) Q∗, the optimal output level.

P R O B L E M S F O R S E C T I O N 8 . 3

1. (a) A firm produces Q = 2
√

L units of a commodity when L units of labour are employed. If
the price obtained per unit is 160 euros, and the price per unit of labour is 40 euros, what
value of L maximizes profits π(L)?

(b) A firm produces Q = f (L) units of a commodity when L units of labour are employed.
Assume that f ′(L) > 0 and f ′′(L) < 0. If the price obtained per unit is 1 and price per
unit of labour is w, what is the first-order condition for maximizing profits at L = L∗?

(c) By implicitly differentiating the first-order condition in (b) w.r.t. w, find how L∗ changes
when w changes.

⊂SM⊃2. (a) Suppose in Example 3 that P(Q) = a − Q, and assume that 0 < k < a. Find the profit-
maximizing output Q∗ and the associated monopoly profit π(Q∗).

(b) How does the monopoly profit react to changes in k? Find dπ(Q∗)/dk.

(c) The government argues that the monopoly produces too little. It wants to induce the mon-
opolist to produce Q̂ = a − k units by granting a subsidy s per unit output. Calculate the
subsidy s required to reach the target.

3. A square tin plate whose edges are 18 cm long is to be made into an open square box of depth
x cm by cutting out equally sized squares of width x in each corner and then folding over the
edges. Draw a figure, and show that the volume of the box is

V (x) = x(18 − 2x)2 = 4x3 − 72x2 + 324x, x ∈ [0, 9]

Also find the maximum point of V in [0, 9].

4. In an economic model, the proportion of families whose income is no more than x, and who
have a home computer, is given by

p(x) = a + k(1 − e−cx) (a, k, and c are positive constants)

Determine p′(x) and p′′(x). Does p(x) have a maximum? Sketch the graph of p.

5. The tax T a person pays on gross income W is given by T = a(bW + c)p + kW , where a, b,
c, and k are positive constants, and p > 1. Then the average tax rate is

T (W) = T

W
= a

(bW + c)p

W
+ k

Find the value of W that minimizes the average tax rate.
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8.4 The Extreme Value Theorem
The main theorems used so far in this chapter to locate extreme points require the function
to be steadily increasing on one side of the point and steadily decreasing on the other side.
Many functions with a derivative whose sign varies in a more complicated way may still
have a maximum or minimum. This section shows how to locate possible extreme points
for an important class of such functions.

Examples such as those illustrated in Figs. 2–4 of Section 8.1 show how not all functions
have extreme points. The following theorem gives important sufficient conditions for their
existence.

T H E O R E M 8 . 4 . 1 ( E X T R E M E V A L U E T H E O R E M )

Suppose that f is a continuous function over a closed and bounded interval [a, b].
Then there exist a point d in [a, b] where f has a minimum, and a point c in [a, b]
where f has a maximum, so that

f (d) ≤ f (x) ≤ f (c) for all x in [a, b]

NOTE 1 One of the most common misunderstandings of the extreme value theorem is illustrated
by the following statement from a student’s exam paper: “The function is continuous, but since
it is not defined on a closed, bounded interval, the extreme value theorem shows that there is no
maximum.” The misunderstanding here is that, although the conditions of the theorem are sufficient,
they certainly are not necessary for the existence of an extreme point. In Problem 9, you are asked to
study a function defined in an interval that is neither closed nor bounded, and moreover the function
is not even continuous. Even so, it has both a maximum and a minimum.

The proof of the extreme value theorem is surprisingly difficult. Yet the result is not hard to
believe. Imagine, for example, a cyclist going for a ride along some mountain roads. Since
roads avoid going over cliffs, the height of the road above sea level is a continuous function
of the distance travelled, as illustrated in Fig. 1. As that figure also shows, the trip must take
the cyclist over some highest point P , as well as through a lowest point Q. (These points
could also be at the start or finish of the ride.)

x

y
P

Q

Figure 1

Searching for Maxima/Minima
Suppose we know that a function f has a maximum and/or a minimum in some bounded
interval I . The optimum must occur either at an interior point of I , or else at one of the end
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points. If it occurs at an interior point (inside the interval I ) and if f is differentiable, then
the derivative f ′ is zero at that point. In addition, there is the possibility that the optimum
occurs at a point where f is not differentiable. Hence, every extreme point must belong to
one of the following three different sets:

(a) Interior points in I where f ′(x) = 0

(b) End points of I (if included in I )

(c) Interior points in I where f ′ does not exist

Points satisfying any one of these three conditions will be called candidate extreme points.
Whether they are actual extreme points depends on a careful comparison of function values,
as explained below.

A typical example showing that a minimum can occur at a point of type (c) is shown in
Fig. 8.1.3. However, most functions that economists study are differentiable everywhere.
The following recipe, therefore, covers most problems of interest.

Problem: Find the maximum and minimum values of a differentiable function
f defined on a closed, bounded interval [a, b].

Solution:

(I) Find all stationary points of f in (a, b)—that is, find all points x in (a, b)

that satisfy the equation f ′(x) = 0.

(II) Evaluate f at the end points a and b of the interval and also at all stationary
points.

(III) The largest function value found in (II) is the maximum value, and the
smallest function value is the minimum value of f in [a, b].

(1)

A differentiable function is continuous, so the extreme value theorem assures us that max-
imum and minimum points do exist. Following the procedure just given, we can, in principle,
find these extreme points.

E X A M P L E 1 Find the maximum and minimum values for

f (x) = 3x2 − 6x + 5, x ∈ [0, 3]

Solution: The function is differentiable everywhere, and f ′(x) = 6x − 6 = 6(x − 1).
Hence x = 1 is the only stationary point. The candidate extreme points are the end points
0 and 3, as well as x = 1. We calculate the value of f at these three points. The results are
f (0) = 5, f (3) = 14, and f (1) = 2. We conclude that the maximum value is 14, obtained
at x = 3, and the minimum value is 2 at x = 1.
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E X A M P L E 2 Find the maximum and minimum values of

f (x) = 1
4x4 − 5

6x3 + 1
2x2 − 1, x ∈ [−1, 3]

Solution: The function is differentiable everywhere, and

f ′(x) = x3 − 5
2x2 + x = x

(
x2 − 5

2x + 1
)

Solving the quadratic equation x2 − 5
2x + 1 = 0, we get the roots x = 1/2 and x = 2.

Thus f ′(x) = 0 for x = 0, 1/2, and 2. These three points, together with the two end points
−1 and 3 of the interval [−1, 3], constitute the five candidate extreme points. We find that
f (−1) = 7/12, f (0) = −1, f (1/2) = −185/192, f (2) = −5/3, and f (3) = 5/4. Thus
the maximum value of f is 5/4 at x = 3. The minimum value is −5/3 at x = 2.

Note that it is unnecessary to study the sign variation of f ′(x) or to use other tests such as
second-order conditions in order to verify that we have found the maximum and minimum
values.

In the two previous examples we had no trouble in finding the solutions to the equation
f ′(x) = 0. However, in some cases, finding all the solutions to f ′(x) = 0 might constitute
a formidable or even insuperable problem. For instance,

f (x) = x26 − 32x23 − 11x5 − 2x3 − x + 28, x ∈ [−1, 5]

is a continuous function, so it does have a maximum and a minimum in [−1, 5]. Yet it is
impossible to find any exact solution to the equation f ′(x) = 0.

Difficulties of this kind are often encountered in practical optimization problems. In fact,
only in very special cases can the equation f ′(x) = 0 be solved exactly. Fortunately, there
are standard numerical methods for use on a computer that in most cases will find points
arbitrarily close to the actual solutions of such equations—see, for example, Newton’s
method discussed in Section 7.10.

The Mean Value Theorem

This optional section deals with the mean value theorem, which is a principal tool for the precise
demonstration of results in calculus.

Consider a function f defined on an interval [a, b], and suppose that the graph of f is connected
and lacks corners, as illustrated in Fig. 2. Because the graph of f joins A to B by a connected curve
having a tangent at each point, it is geometrically plausible that for at least one value of x between
a and b, the tangent to the graph at x should be parallel to the line AB. In Fig. 2, x∗ appears to be
such a value of x. The line AB has slope [f (b) − f (a)]/(b − a). So the condition for the tangent
line at (x∗, f (x∗)) to be parallel to the line AB is that f ′(x∗) = [f (b) − f (a)]/(b − a). In fact, x∗
can be chosen so that the vertical distance between the graph of f and AB is as large as possible.
The proof that follows is based on this fact.
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y � f (x)

b � a

f (b) � f (a)

y

xa

A

B

bx*

Figure 2

T H E O R E M 8 . 4 . 2 ( T H E M E A N V A L U E T H E O R E M )

If f is continuous in the closed bounded interval [a, b], and differentiable in the open
interval (a, b), then there exists at least one interior point x∗ in (a, b) such that

f ′(x∗) = f (b) − f (a)

b − a

(2)

Proof: According to the point–point formula, the straight line through A and B in Fig. 2 has the
equation

y − f (a) = f (b) − f (a)

b − a
(x − a)

The function

g(x) = f (x) − f (a) − f (b) − f (a)

b − a
(x − a)

therefore measures the vertical distance between the graph of f and the line AB. Note that

g′(x) = f ′(x) − f (b) − f (a)

b − a
(∗)

Obviously, g(a) = g(b) = 0. The function g(x) inherits from f the properties of being continuous
in [a, b] and differentiable in (a, b). By the extreme value theorem, g(x) has a maximum and a
minimum over [a, b]. Because g(a) = g(b), at least one of these extreme points x∗ must lie in
(a, b). Theorem 8.1.1 tells us that g′(x∗) = 0, and the conclusion follows from (∗).

E X A M P L E 3 Test the mean value theorem on f (x) = x3 − x in [0, 2].

Solution: We find that [f (2) − f (0)]/(2 − 0) = 3 and f ′(x) = 3x2 − 1. The equation f ′(x) = 3
has two solutions, x = ±2

√
3/3. Because the positive root x∗ = 2

√
3/3 ∈ (0, 2), we have

f ′(x∗) = f (2) − f (0)

2 − 0

Thus, the mean value theorem is confirmed in this case.
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NOTE 2 (Increasing and decreasing functions) Over any interval I , if f (x2) ≥ f (x1) whenever
x2 > x1, then in Section 6.3 we called the function f increasing in I . Using the definition of the
derivative, we see easily that if f (x) is increasing and differentiable, then f ′(x) ≥ 0. The mean
value theorem can be used to make this precise and to prove the converse. Let f be a function which
is continuous in the interval I and differentiable in the interior of I (that is, at points other than the
end points). Suppose f ′(x) ≥ 0 for all x in the interior of I . Let x2 > x1 be two arbitrary numbers
in I . According to the mean value theorem, there exists a number x∗ in (x1, x2) such that

f (x2) − f (x1) = f ′(x∗)(x2 − x1) (∗)

Because x2 > x1 and f ′(x∗) ≥ 0, it follows that f (x2) ≥ f (x1), so f (x) is increasing. This
proves (6.3.1). The equivalence in (6.3.2) can be proved by considering the condition for −f to be
increasing. Finally, (6.3.3) involves both f and −f being increasing. Alternatively it follows easily
by using equation (∗).

NOTE 3 (Proof of Lagrange’s remainder formula (7.6.2)) We start by proving that the formula
is correct for n = 1. This means that we want to prove formula (7.6.4). For x �= 0, define the function
S(x) implicitly by the equation

f (x) = f (0) + f ′(0)x + 1
2 S(x)x2 (∗)

If we can prove that there exists a number c between 0 and x such that S(x) = f ′′(c), then (7.6.4) is
established. Keep x fixed and define the function g for all t between 0 and x by

g(t) = f (x) − [f (t) + f ′(t)(x − t) + 1
2 S(x)(x − t)2] (∗∗)

Then (∗) and (∗∗) imply that g(0) = f (x) − [f (0) + f ′(0)x + 1
2 S(x)x2] = 0 and that g(x) =

f (x)− [f (x)+ 0 + 0] = 0. So, by the mean value theorem, there exists a number c strictly between
0 and x such that g′(c) = 0. Differentiating (∗∗) with respect to t , with x fixed, we get

g′(t) = −f ′(t) + f ′(t) − f ′′(t)(x − t) + S(x)(x − t)

Thus, g′(c) = −f ′′(c)(x − c) + S(x)(x − c). Because g′(c) = 0 and c �= x, it follows that
S(x) = f ′′(c). Hence, we have proved (7.6.4).

The proof for the case when n > 1 is based on the same idea, generalizing (∗) and (∗∗) in the
obvious way.

P R O B L E M S F O R S E C T I O N 8 . 4

1. Find the maximum and minimum and draw the graph of

f (x) = 4x2 − 40x + 80, x ∈ [0, 8]

⊂SM⊃2. Find the maximum and minimum of each function over the indicated interval:

(a) f (x) = −2x − 1, [0, 3] (b) f (x) = x3 − 3x + 8, [−1, 2]

(c) f (x) = x2 + 1

x
, [ 1

2 , 2] (d) f (x) = x5 − 5x3, [−1,
√

5 ]

(e) f (x) = x3 − 4500x2 + 6 · 106x, [0, 3000]
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3. Suppose the function g is defined for all x ∈ [−1, 2] by g(x) = 1
5 (ex2 +e2−x2

). Calculate g′(x)

and find the extreme points of g.

4. A sports club plans to charter a plane, and charge its members 10% commission on the price
they pay to buy seats. That price is arranged by the charter company. The standard fare for each
passenger is $800. For each additional person above 60, all travellers (including the first 60) get
a discount of $10. The plane can take at most 80 passengers.

(a) How much commission is earned when there are 61, 70, 80, and 60 + x passengers?

(b) Find the number of passengers that maximizes the total commission earned by the sports
club.

5. Let the function f be defined for x ∈ [1, e3] by

f (x) = (ln x)3 − 2(ln x)2 + ln x

(a) Compute f (e1/3), f (e2), and f (e3). Find the zeros of f (x).

(b) Find the extreme points of f .

(c) Show that f defined over [e, e3] has an inverse function g and determine g′(2).

HARDER PROBLEMS

⊂SM⊃6. For the following functions determine all numbers x∗ in the specified intervals such that f ′(x∗) =
[f (b) − f (a)]/(b − a):

(a) f (x) = x2 in [1, 2] (b) f (x) =
√

1 − x2 in [0, 1]

(c) f (x) = 2/x in [2, 6] (d) f (x) =
√

9 + x2 in [0, 4]

7. You are supposed to sail from point A in a lake to point B. What does the mean value theorem
have to say about your trip?

8. Is the function f defined for all x ∈ [−1, 1] by

f (x) =
{

x for x ∈ (−1, 1)

0 for x = −1 and for x = 1

continuous? Does f attain a maximum or minimum?

9. Let f be defined for all x in (0, ∞) by

f (x) =
{

x + 1 for x ∈ (0, 1]
1 for x ∈ (1, ∞)

Prove that f attains maximum and minimum values. Verify that nevertheless none of the con-
ditions in the extreme value theorem is satisfied.
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8.5 Further Economic Examples

E X A M P L E 1 A firm that produces a single commodity wants to maximize its profits. The total revenue
generated in a certain period by producing and selling Q units is R(Q) dollars, whereas
C(Q) denotes the associated total dollar cost. The profit obtained as a result of producing
and selling Q units is then

π(Q) = R(Q) − C(Q) (∗)

We assume that because of technical limitations, there is a maximum quantity Q̄ that can be
produced by the firm in a given period. We assume too that R and C are differentiable func-
tions of Q in the interval [0, Q̄]. The profit function π is then differentiable, so continuous.
Consequently π does have a maximum value. In special cases, that maximum might occur
at Q = 0 or at Q = Q̄. If not, it has an “interior maximum” where the production level Q∗

satisfies π ′(Q∗) = 0, and so

R′(Q∗) = C ′(Q∗) (∗∗)

Hence, production should be adjusted to a point where the marginal revenue is equal to the
marginal cost.

Let us assume that the firm gets a fixed price P per unit sold. Then R(Q) = PQ, and
(∗∗) takes the form

P = C′(Q∗) (∗∗∗)

Thus, in the case when the firm has no control over the price, production should be adjusted
to a level at which the marginal cost is equal to the price per unit of the commodity (assuming
an interior maximum).

It is quite possible that the firm has functions R(Q) and C(Q) for which equation (∗∗)

has several solutions. If so, the maximum profit occurs at that point Q∗ among the solutions
of (∗∗) which gives the highest value of π(Q∗).

Equation (∗∗) has an economic interpretation rather like that for the corresponding op-
timality condition in Example 8.3.1. Indeed, suppose we contemplate increasing production
from the level Q∗ by one unit. We would increase revenue by the amount R(Q∗ + 1) −
R(Q∗) ≈ R′(Q∗). We would increase cost by the amount C(Q∗ + 1) − C(Q∗) ≈ C ′(Q∗).
Equation (∗∗) equates R′(Q∗) and C ′(Q∗), so that the approximate extra revenue earned
by selling an extra unit is offset by the approximate extra cost of producing that unit.

E X A M P L E 2 Suppose that the firm in the preceding example obtains a fixed price P = 121 per unit,
and that the cost function is

C(Q) = 0.02Q3 − 3Q2 + 175Q + 500

The firm can produce at most Q̄ = 110 units.

(a) Make a table of the values of the functions R(Q) = 121Q, C(Q), and π(Q) =
R(Q) − C(Q) for Q = 0, 10, 30, 50, 70, 90, and 110. Draw the graphs of R(Q) and
C(Q) in the same coordinate system.
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(b) Answer the following questions (approximately) by using the graphs in (a):

(i) How many units must be produced in order for the firm to make a profit?

(ii) How many units must be produced for the profit to be 2000 dollars?

(iii) Which production level maximizes profits?

(c) Answer the question in (b)(iii) by computation.

(d) What is the smallest price per unit the firm must charge in order not to lose money, if
capacity is fully utilized (that is if it produces 110 units)?

Solution:

(a) We form the following table:

Table 1

Q 0 10 30 50 70 90 110

R(Q) = 121Q 0 1 210 3 630 6 050 8 470 10 890 13 310

C(Q) 500 1 970 3 590 4 250 4 910 6 530 10 070

π(Q) = R(Q) − C(Q) −500 −760 40 1 800 3 560 4 360 3 240

The graphs of R(Q) and C(Q) are shown in Fig. 1.

6000

8000

10 000

12 000

4000

2000

10 50 100

Maximum profit

Profit $2000

R(Q),C (Q)

C (Q)

R(Q)

Q

Figure 1

(b) (i) The firm earns a profit if π(Q) > 0, that is when R(Q) > C(Q). On the figure we
see that R(Q) > C(Q) when Q is larger than (approximately) 30.

(ii) We must find where the “gap” between R(Q) and C(Q) is 2000. This occurs when
Q ≈ 52.

(iii) The profit is the largest when the gap between R(Q) and C(Q) is the largest. This
seems to occur when Q ≈ 90.



Essential Math. for Econ. Analysis, 4th edn EME4_C08.TEX, 16 May 2012, 14:24 Page 278

278 C H A P T E R 8 / S I N G L E - V A R I A B L E O P T I M I Z A T I O N

(c) When the formula for C ′(Q) is inserted into equation (∗∗∗) of the preceding example,
because P = 121, the result is

121 = 0.06Q2 − 6Q + 175

Solving this quadratic equation yields Q = 10 and Q = 90. We know that π(Q)

must have a maximum point in [0, 110], and there are four candidates: Q = 0, 10, 90,
and 110. Using Table 1, we see that

π(0) = −500, π(10) = −760, π(90) = 4360, π(110) = 3240

The firm therefore attains maximum profit by producing 90 units.

(d) If the price per unit is P , the profit from producing 110 units is

π(110) = P · 110 − C(110) = 110P − 10 070

The smallest price P which ensures that the firm does not lose money when producing
110 units, satisfies π(110) = 0, that is 110P = 10 070 with solution P ≈ 91.55. This
is the average cost of producing 110 units. The price must be at least 91.55 dollars if
revenue is going to be enough to cover the cost of producing at full capacity.

E X A M P L E 3 In the model of the previous example, the firm took the price as given. Consider an
example at the other extreme, where the firm has a monopoly in the sale of the commodity.
Assume that the price per unit, P(Q), varies with Q according to the formula

P(Q) = 100 − 1

3
Q, Q ∈ [0, 300]

Suppose now the cost function is

C(Q) = 1

600
Q3 − 1

3
Q2 + 50Q + 1000

3

Then the profit is

π(Q) = QP(Q) − C(Q) = − 1

600
Q3 + 50Q − 1000

3
, Q ∈ [0, 300]

Find the production level that maximizes profit, and compute the maximum profit.

Solution: The derivative of π(Q) is π ′(Q) = − 1
200Q2 + 50. Hence

π ′(Q) = 0 for Q2 = 10 000, that is Q = 100

(The other possibility, Q = −100, is not permissible.) The values of π(Q) at the end points
of [0, 300] are π(0) = −1000/3 and π(300) = −91 000/3. Since π(100) = 3000, we
conclude that Q = 100 maximizes profit, and the maximum profit is 3000.
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E X A M P L E 4 (“Either a Borrower or a Lender Be”)3 A student has current income y1 and expects
future income y2. She plans current consumption c1 and future consumption c2 in order to
maximize the utility function

U = ln c1 + 1

1 + δ
ln c2 , c1, c2 > 0

where δ is her discount rate. If she borrows now, so that c1 > y1, then future consumption,
after repaying the loan amount c1 − y1 with interest charged at rate r , will be

c2 = y2 − (1 + r)(c1 − y1)

Alternatively, if she saves now, so that c1 < y1, then future consumption will be

c2 = y2 + (1 + r)(y1 − c1)

after receiving interest at rate r on her savings. Find the optimal borrowing or saving plan.

Solution: Whether the student borrows or saves, second period consumption is

c2 = y2 − (1 + r)(c1 − y1)

in either case. So the student will want to maximize

U = ln c1 + 1

1 + δ
ln[y2 − (1 + r)(c1 − y1)] (∗)

We can obviously restrict attention to the interval 0 < c1 < y1 + (1 + r)−1y2, where both
c1 and c2 are positive. Differentiating (∗) w.r.t. the choice variable c1 gives

dU

dc1
= 1

c1
− 1 + r

1 + δ
· 1

y2 − (1 + r)(c1 − y1)

Rewriting the fractions so that they have a common denominator yields

dU

dc1
= (1 + δ)[y2 − (1 + r)(c1 − y1)] − (1 + r)c1

c1(1 + δ)[y2 − (1 + r)(c1 − y1)]

Rearranging the numerator and equating the derivative to 0, we have

dU

dc1
= (1 + δ)[(1 + r)y1 + y2] − (2 + δ)(1 + r)c1

c1(1 + δ)[y2 − (1 + r)(c1 − y1)]
= 0 (∗∗)

The unique solution of this equation is

c∗
1 = (1 + δ)[(1 + r)y1 + y2]

(2 + δ)(1 + r)
= y1 + (1 + δ)y2 − (1 + r)y1

(2 + δ)(1 + r)

From (∗∗), we see that for c1 < c∗
1 one has dU/dc1 > 0, whereas for c1 > c∗

1 one has
dU/dc1 < 0. We conclude that c∗

1 indeed maximizes U . Moreover, the student lends if and
only if (1 + δ)y2 < (1 + r)y1. In the more likely case when (1 + δ)y2 > (1 + r)y1 because
future income is considerably higher than present income, she will borrow. Only if by some
chance (1 + δ)y2 is exactly equal to (1 + r)y1 will she be neither a borrower nor a lender.
However, this discussion has neglected the difference between borrowing and lending rates
of interest that one always observes in reality.

3 According to Shakespeare, Polonius’s advice to Hamlet was: “Neither a borrower nor a lender be”.
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P R O B L E M S F O R S E C T I O N 8 . 5

1. With reference to Example 1, suppose that

R(Q) = 10Q − Q2

1000
, C(Q) = 5000 + 2Q, Q ∈ [0, 10 000]

Find the value of Q that maximizes profits.

2. (a) With reference to Example 1, let

R(Q) = 80Q and C(Q) = Q2 + 10Q + 900

The firm can at most produce 50 units. Draw the graphs of R and C in the same coordinate
system.

(b) Answer the following questions both graphically and by computation:
(i) How many units must be produced for the firm to make a profit?

(ii) How many units must be produced for the firm to maximize profits?

3. A pharmaceutical firm produces penicillin. The sales price per unit is 200, while the cost of
producing x units is given by

C(x) = 500 000 + 80x + 0.003x2

The firm can produce at most 30 000 units. What value of x maximizes profits?

⊂SM⊃4. Consider Example 1 and find the production level that maximizes profits when

(i) R(Q) = 1840Q, C(Q) = 2Q2 + 40Q + 5000

(ii) R(Q) = 2240Q, C(Q) = 2Q2 + 40Q + 5000

(iii) R(Q) = 1840Q, C(Q) = 2Q2 + 1940Q + 5000

5. The price a firm obtains for a commodity varies with demand Q according to the formula
P(Q) = 18 − 0.006Q. Total cost is C(Q) = 0.004Q2 + 4Q + 4500.

(a) Find the firm’s profit π(Q) and the value of Q that maximizes profit.

(b) Find a formula for the elasticity of P(Q) w.r.t. Q, and find the particular value Q∗ of Q at
which the elasticity is equal to −1.

(c) Show that the marginal revenue is 0 at Q∗.

6. With reference to Example 1, let

R(Q) = PQ and C(Q) = aQb + c

where P , a, b, and c are positive constants, and b > 1. Find the value of Q that maximizes the
profit

π(Q) = PQ − (aQb + c)

Make use of Theorem 8.2.2.
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8.6 Local Extreme Points
So far this chapter has discussed what are often referred to as global optimization problems.
The reason for this terminology is that we have been seeking the largest or smallest values
of a function when we compare the function values “globally”—that is, at all points in the
domain without exception. In applied optimization problems, especially those arising in
economics, it is usually these global (or absolute) maxima and minima that are of interest.
However, sometimes one is interested in the local maxima and minima of a function. In this
case, we compare the function value at the point in question only with alternative function
values at nearby points.

c1 d1 c2 d2a b

y

x

P1

P2

Q2

Q1

Figure 1 c1, c2, and b are local maximum points;
a, d1, and d2 are local minimum points

Consider Fig. 1 and think of the graph as representing the profile of a landscape. Then the
mountain tops P1 and P2 represent local maxima, whereas the valley bottoms Q1 and Q2

represent local minima. The precise definitions are as follows:

The function f has a local (or relative) maximum (minimum) at c, if there
exists an interval (α, β) about c such that f (x) ≤ (≥) f (c) for all x in (α, β)

which are in the domain of f .
(1)

NOTE 1 These definitions imply that point a in Fig. 1 is a local minimum point, while
b is a local (and global) maximum point. Some authors restrict the definition of local
maximum/minimum points only to interior points of the domain of the function. According
to this definition, a global maximum point that is not an interior point of the domain is not
a local maximum point. It seems desirable that a global maximum/minimum point should
always be a local maximum/minimum point as well, so we stick to definition (1).

Function values corresponding to local maximum (minimum) points are called local max-
imum (minimum) values. As collective names we use local extreme points and local
extreme values.

In searching for (global) maximum and minimum points, Theorem 8.1.1 was very useful.
Actually, the same result is valid for local extreme points: At a local extreme point in the
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interior of the domain of a differentiable function, the derivative must be zero. This is clear
if we recall that the proof of Theorem 8.1.1 needed to consider the behaviour of the function
in only a small interval about the optimal point. Consequently, in order to find possible local
maxima and minima for a function f defined in an interval I , we can again search among
the following types of point:

(i) Interior points in I where f ′(x) = 0

(ii) End points of I (if included in I )

(iii) Interior points in I where f ′ does not exist

We have thus established necessary conditions for a function f defined in an interval I to
have a local extreme point. But how do we decide whether a point satisfying the necessary
conditions is a local maximum, a local minimum, or neither? In contrast to global extreme
points, it does not help to calculate the function value at the different points satisfying these
necessary conditions. To see why, consider again the function whose graph is given in Fig. 1.
Point P1 is a local maximum point and Q2 is a local minimum point, but the function value
at P1 is smaller than the function value at Q2. (Point Q2 is higher than P1.)

The First-Derivative Test

There are two main ways of determining whether a given stationary point is a local maximum,
a local minimum, or neither. One of them is based on studying the sign of the first derivative
about the stationary point, and is an easy modification of Theorem 8.2.1.

T H E O R E M 8 . 6 . 1 ( F I R S T - D E R I V A T I V E T E S T F O R L O C A L E X T R E M E P O I N T S )

Suppose c is a stationary point for y = f (x).

(a) If f ′(x) ≥ 0 throughout some interval (a, c) to the left of c and f ′(x) ≤ 0
throughout some interval (c, b) to the right of c, then x = c is a local
maximum point for f .

(b) If f ′(x) ≤ 0 throughout some interval (a, c) to the left of c and f ′(x) ≥ 0
throughout some interval (c, b) to the right of c, then x = c is a local
minimum point for f .

(c) If f ′(x) > 0 both throughout some interval (a, c) to the left of c and through-
out some interval (c, b) to the right of c, then x = c is not a local extreme
point for f . The same conclusion holds if f ′(x) < 0 on both sides of c.

Only case (c) is not already covered by Theorem 8.2.1. In fact, if f ′(x) > 0 in (a, c) and
also in (c, b), then f (x) is strictly increasing in (a, c] as well as in [c, b). Then x = c cannot
be a local extreme point.
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E X A M P L E 1 Classify the stationary points of f (x) = 1
9x3 − 1

6x2 − 2
3x + 1.

Solution: We get f ′(x) = 1
3 (x +1)(x −2), so x = −1 and x = 2 are the stationary points.

The sign diagram for f ′(x) is:

−2 −1 0 1 2 3

1
3 (x + 1) ◦
x − 2 ◦

f ′(x) ◦ ◦

f (x) � �

We conclude from this sign diagram that x = −1 is a local maximum point whereas x = 2
is a local minimum point.

E X A M P L E 2 Classify the stationary points of f (x) = x2ex .

Solution: Differentiating, we get f ′(x) = 2xex +x2ex = xex(2+x). Then f ′(x) = 0 for
x = 0 and for x = −2. A sign diagram shows that f has a local maximum point at x = −2
and a local (and global) minimum point at x = 0. (The graph of f is given in Fig. A4.R.9
in the answer section.)

The Second-Derivative Test

For most problems of practical interest in which an explicit function is specified, the first-
derivative test on its own will determine whether a stationary point is a local maximum,
a local minimum, or neither. Note that the theorem requires knowing the sign of f ′(x) at
points both to the left and to the right of the given stationary point. The next test requires
knowing the first two derivatives of the function, but only at the stationary point itself.

T H E O R E M 8 . 6 . 2 ( S E C O N D - D E R I V A T I V E T E S T )

Let f be a twice differentiable function in an interval I , and let c be an interior
point of I . Then:

(a) f ′(c) = 0 and f ′′(c) < 0 �⇒ x = c is a strict local maximum point.

(b) f ′(c) = 0 and f ′′(c) > 0 �⇒ x = c is a strict local minimum point.

(c) f ′(c) = 0 and f ′′(c) = 0 �⇒ ?
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Proof: To prove part (a), assume f ′(c) = 0 and f ′′(c) < 0. By definition of f ′′(c) as the derivative
of f ′(x) at c,

f ′′(c) = lim
h→0

f ′(c + h) − f ′(c)
h

= lim
h→0

f ′(c + h)

h

Because f ′′(c) < 0, it follows that f ′(c + h)/h < 0 if |h| is sufficiently small. In particular, if h

is a small positive number, then f ′(c + h) < 0, so f ′ is negative in an interval to the right of c. In
the same way, we see that f ′ is positive in some interval to the left of c. But then c is a strict local
maximum point for f .

Part (b) can be proved in the same way. For the inconclusive part (c), see the comments that
follow.

y � x 4y

x

y � �x 4

y

x

y � x 3y

x

Figure 2 f ′(0) = f ′′(0) =
0, and 0 is a minimum point

Figure 3 f ′(0) = f ′′(0) =
0, and 0 is a maximum point

Figure 4 f ′(0) = f ′′(0) =
0, and 0 is an inflection point

The theorem leaves unsettled case (c) where f ′(c) = f ′′(c) = 0. Then “anything” can
happen. Each of three functions f (x) = x4, f (x) = −x4, and f (x) = x3 satisfies f ′(0) =
f ′′(0) = 0. At x = 0, they have, as shown in Figs. 2 to 4 respectively, a minimum, a
maximum, and what in Section 8.7 will be called a point of inflection. Usually (as here), the
first-derivative test can be used to classify stationary points at which f ′(c) = f ′′(c) = 0.

E X A M P L E 3 Classify the stationary points of

f (x) = 1
9x3 − 1

6x2 − 2
3x + 1

by using the second-derivative test.

Solution: We saw in Example 1 that f ′(x) = 1
3x2 − 1

3x − 2
3 = 1

3 (x + 1)(x − 2), with two
stationary points x = −1 and x = 2. Furthermore, f ′′(x) = 2

3x − 1
3 , so that f ′′(−1) = −1

and f ′′(2) = 1. From Theorem 8.6.2 it follows that x = −1 is a local maximum point and
x = 2 is a local minimum point. This confirms the results in Example 1.

E X A M P L E 4 Classify the stationary points of f (x) = x2ex by using the second-derivative test.

Solution: From Example 2, f ′(x) = 2xex + x2ex , with x = 0 and x = −2 as the two
stationary points. The second derivative of f is

f ′′(x) = 2ex + 2xex + 2xex + x2ex = ex(2 + 4x + x2 )

We find that f ′′(0) = 2 > 0 and f ′′(−2) = −2e−2 < 0. From Theorem 8.6.2 it follows
that x = 0 is a local minimum point and x = −2 is a local maximum point. This confirms
the results in Example 2.
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Theorem 8.6.2 can be used to obtain a useful necessary condition for local extrema. Suppose
that f is twice differentiable in the interval I and that c is an interior point of I where there is a
local maximum. Then f ′(c) = 0. Moreover, f ′′(c) > 0 is impossible, because by Theorem
8.6.2(b) this inequality would imply that c is a strict local minimum. Hence, f ′′(c) has to be
≤ 0. In the same way, we see that f ′′(c) ≥ 0 is a necessary condition for local minimum.
Briefly formulated:

c is a local maximum for f �⇒ f ′′(c) ≤ 0 (2)

c is a local minimum for f �⇒ f ′′(c) ≥ 0 (3)

Many results in economic analysis rely on postulating an appropriate sign for the second
derivative rather than suitable variations in the sign of the first derivative.

E X A M P L E 5 Suppose that the firm in Example 8.5.1 faces a sales tax of t dollars per unit. The firm’s
profit from producing and selling Q units is then

π(Q) = R(Q) − C(Q) − tQ

In order to maximize profits at some quantity Q∗ satisfying 0 < Q∗ < Q̄, one must have
π ′(Q∗) = 0. Hence,

R′(Q∗) − C ′(Q∗) − t = 0 (∗)

Suppose R′′(Q∗) < 0 and C ′′(Q∗) > 0. Equation (∗) implicitly defines Q∗ as a differ-
entiable function of t . Find an expression for dQ∗/dt and discuss its sign. Also compute
the derivative w.r.t. t of the optimal value π(Q∗) of the profit function, and show that
dπ(Q∗)/dt = −Q∗.

Solution: Differentiating (∗) with respect to t yields

R′′(Q∗)
dQ∗

dt
− C ′′(Q∗)

dQ∗

dt
− 1 = 0

Solving for dQ∗/dt gives
dQ∗

dt
= 1

R′′(Q∗) − C ′′(Q∗)
(∗∗)

The sign assumptions on R′′ and C ′′ imply that dQ∗/dt < 0. Thus, the optimal number of
units produced will decline if the tax rate t increases.

The optimal value of the profit function is π(Q∗) = R(Q∗) − C(Q∗) − tQ∗. Taking
into account the dependence of Q∗ on t , we get

dπ(Q∗)
dt

= R′(Q∗)
dQ∗

dt
− C ′(Q∗)

dQ∗

dt
− Q∗ − t

dQ∗

dt

= [
R′(Q∗) − C ′(Q∗) − t

]dQ∗

dt
− Q∗ = −Q∗

Note how the square bracket disappears from this last expression because of the first-order
condition (∗). This is an instance of the “envelope theorem”, which will be discussed in
Section 14.7. For each 1 cent increase in the sales tax, profit decreases by approximately
Q∗ cents, where Q∗ is the number of units produced at the optimum.
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P R O B L E M S F O R S E C T I O N 8 . 6

1. Consider the function f defined for all x by f (x) = x3 − 12x. Find the stationary points of f

and classify them by using both the first- and second-derivative tests.

⊂SM⊃2. Determine possible local extreme points and values for the following functions:

(a) f (x) = −2x − 1 (b) f (x) = x3 − 3x + 8 (c) f (x) = x + 1

x

(d) f (x) = x5 − 5x3 (e) f (x) = 1
2 x2 − 3x + 5 (f) f (x) = x3 + 3x2 − 2

⊂SM⊃3. A function f is given by the formula

f (x) = (
1 + 2

x

)√
x + 6

(a) Find the domain of f and the intervals where f (x) is positive.

(b) Find possible local extreme points.

(c) Examine f (x) as x → 0−, x → 0+, and x → ∞. Also determine the limit of f ′(x) as
x → ∞. Does f have a maximum or a minimum in the domain?

4. Figure 5 graphs the derivative of a function f . Which of the points a, b, c, d, and e are local
maximum points for f , local minimum points for f , or neither?

f �

a b dc e

y

x

Figure 5

5. What requirements must be imposed on the constants a, b, and c in order that

f (x) = x3 + ax2 + bx + c

(a) will have a local minimum at x = 0?

(b) will have stationary points at x = 1 and x = 3?

6. Find the local extreme points of (a) f (x) = x3ex (b) g(x) = x22x .

HARDER PROBLEM

⊂SM⊃7. Find the local extreme points of

f (x) = x3 + ax + b

Use the answer to show that the equation f (x) = 0 has three different real roots if and only if
4a3 + 27b2 < 0.
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8.7 Inflection Points
Recall that in Section 6.9 we defined a twice differentiable function f (x) to be concave
(convex) in an interval I if f ′′(x) ≤ 0 (≥) for all x in I . Points at which a function changes
from being convex to being concave, or vice versa, are called inflection points. For twice
differentiable functions they can be defined this way:

I N F L E C T I O N P O I N T S

The point c is called an inflection point for the function f if there exists an
interval (a, b) about c such that:

(a) f ′′(x) ≥ 0 in (a, c) and f ′′(x) ≤ 0 in (c, b),

or

(b) f ′′(x) ≤ 0 in (a, c) and f ′′(x) ≥ 0 in (c, b).

(1)

Briefly, x = c is an inflection point if f ′′(x) changes sign at x = c. Then we also refer to
the point (c, f (c)) as an inflection point on the graph. Figure 1 gives an example.

f ��(x) � 0 f ��(x) � 0

c

P

y

x

P

Figure 1 Point P is an inflection point
on the graph (x = c is an inflection
point for the function)

Figure 2 The point P , where the slope
is steepest, is an inflection point

Figure 2 shows the profile of a ski jump. Point P , where the slope is steepest, is an inflection
point.

When looking for possible inflection points of a function, we usually use part (b) in the
following theorem:

T H E O R E M 8 . 7 . 1 ( T E S T F O R I N F L E C T I O N P O I N T S )

Let f be a function with a continuous second derivative in an interval I , and let
c be an interior point of I .

(a) If c is an inflection point for f , then f ′′(c) = 0.

(b) If f ′′(c) = 0 and f ′′ changes sign at c, then c is an inflection point for f .
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Proof:
(a) Because f ′′(x) ≤ 0 on one side of c and f ′′(x) ≥ 0 on the other, and because f ′′ is

continuous, it must be true that f ′′(c) = 0.

(b) If f ′′ changes sign at c, then c is an inflection point for f , according to (1).

This theorem implies that f ′′(c) = 0 is a necessary condition for c to be an inflection point.
It is not a sufficient condition, however, because f ′′(c) = 0 does not imply that f ′′ changes
sign at x = c. A typical case is given in the next example.

E X A M P L E 1 Show that f (x) = x4 does not have an inflection point at x = 0, even though f ′′(0) = 0.

Solution: Here f ′(x) = 4x3 and f ′′(x) = 12x2, so that f ′′(0) = 0. But f ′′(x) > 0 for all
x �= 0, and so f ′′ does not change sign at x = 0. Hence, x = 0 is not an inflection point.
(In fact, it is a global minimum, of course, as shown in Fig. 8.6.2.)

E X A M P L E 2 Find possible inflection points for f (x) = 1
9x3 − 1

6x2 − 2
3x + 1.

Solution: From Example 3 in the previous section we find that f ′′(x) = 2
3x − 1

3 =
2
3

(
x − 1

2

)
. Hence, f ′′(x) ≤ 0 for x ≤ 1/2, whereas f ′′(1/2) = 0 and f ′′(x) ≥ 0 for

x > 1/2. According to Theorem 8.7.1(b), x = 1/2 is an inflection point for f .

E X A M P L E 3 Find possible inflection points for f (x) = x6 − 10x4.

Solution: In this case f ′(x) = 6x5 − 40x3 and

f ′′(x) = 30x4 − 120x2 = 30x2(x2 − 4) = 30x2(x − 2)(x + 2)

A sign diagram for f ′′ is as follows:

−2 −1 0 1 2

30x2 ◦
x − 2 ◦
x + 2 ◦
f ′′(x) ◦ ◦ ◦
f (x) � � � �

From the sign diagram we see that f ′′ changes sign at x = −2 and at x = 2, so these are
inflection points. Since f ′′ does not change sign at x = 0, it is not an inflection point, even
though f ′′(0) = 0.

Economic models often involve functions having inflection points. The cost function in
Fig. 4.7.2 is a typical example. Here is another.
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E X A M P L E 4 A firm produces a commodity using only one input. Let x = f (v), v ≥ 0, be the max-
imum output obtainable when v units of the input are used. Then f is called a production
function. It is often assumed that the function is “S-shaped”. That is, the marginal product
f ′(v) is increasing up to a certain production level v0, and then decreasing. Such a produc-
tion function is indicated in Fig. 3. If f is twice differentiable, then f ′′(v) is ≥ 0 in [0, v0]
and ≤ 0 in [v0, ∞). Hence, f is first convex and then concave, with v0 as an inflection
point. Note that at v0 a unit increase in input gives the maximum increase in output.

x

vv0

f

Figure 3 f is an S-shaped production function;
v0 is an inflection point

More General Definitions of Concave and Convex Functions

So far the convexity and concavity properties of functions have been defined by looking
at the sign of the second derivative. An alternative geometric characterization of convexity
and concavity suggests a more general definition that is valid even for functions that are not
differentiable.

A function f is called concave (convex) if the line segment joining any

two points on the graph is below (above) the graph, or on the graph.
(2)

f

y

x

f

y

x

Figure 4 f is concave Figure 5 f is convex

These definitions are illustrated in Figs. 4 and 5. Because the graph has a “corner” in Fig. 4,
this function is not even differentiable, let alone twice differentiable. For twice differentiable
functions, however, one can prove that (2) is equivalent to the definitions in (6.9.3).
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In order to use definition (2) to examine the convexity/concavity of a given function, we
need an algebraic formulation. This will be discussed in FMEA.

Strictly Concave and Strictly Convex Functions
A function f is called strictly concave (convex) if the line segment joining any two points
on the graph is strictly below (above) the graph (except at the end points of the segment). For
instance, the function whose graph is shown in Fig. 4 has two linear pieces, on which line
segments joining two points coincide with part of the graph. Thus this function is concave,
but not strictly concave. By contrast, the function graphed in Fig. 5 is strictly convex.

Fairly obvious sufficient conditions for strict concavity/convexity are the following,
which will be further discussed in FMEA:

f ′′(x) < 0 for all x ∈ (a, b) �⇒ f (x) is strictly concave in (a, b)

f ′′(x) > 0 for all x ∈ (a, b) �⇒ f (x) is strictly convex in (a, b)
(3)

The reverse implications are not correct. For instance, one can prove that f (x) = x4

is strictly convex in the interval (−∞, ∞), but f ′′(x) is not > 0 everywhere, because
f ′′(0) = 0.

For twice differentiable functions, it is usually much easier to check concavity/convex-
ity by considering the sign of the second derivative than by using the definitions in (2).
However, in theoretical arguments, the definitions in (2) are often very useful, especially
because they generalize easily to functions of several variables. (See FMEA.)

P R O B L E M S F O R S E C T I O N 8 . 7

1. Let f be defined for all x by f (x) = x3 + 3
2 x2 − 6x + 10.

(a) Find the stationary points of f and determine the intervals where f increases.

(b) Find the inflection point for f .

2. Decide where the following functions are convex and determine possible inflection points:

(a) f (x) = x

1 + x2
(b) g(x) = 1 − x

1 + x
(c) h(x) = xex

⊂SM⊃3. Find local extreme points and inflection points for the functions defined by the following for-
mulas:

(a) y = (x + 2)e−x (b) y = ln x + 1/x (c) y = x3e−x

(d) y = ln x

x2
(e) y = e2x − 2ex (f) y = (x2 + 2x)e−x

4. (a) A competitive firm receives a price p for each unit of its output, and pays a price w for each
unit of its only variable input. It also incurs set-up costs of F . Its output from using x units
of variable input is f (x) = √

x. Determine the firm’s revenue, cost, and profit functions.

(b) Write the first-order condition for profit maximization, and give it an economic interpret-
ation. Check whether profit really is maximized at a point satisfying the first-order condition.
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5. Find the extreme points and inflection points of the function f whose graph is given in Fig. 6.

y � f (x)

�2�3 �1 10 2 3 4 5 6

4

2

1

y

x

Figure 6

6. Find numbers a and b such that the graph of f (x) = ax3 + bx2 passes through (−1, 1) and has
an inflection point at x = 1/2.

7. Find the intervals where the following cubic cost function, defined for x ≥ 0, is convex and
where it is concave. Find also the unique inflection point.

C(x) = ax3 + bx2 + cx + d, a > 0, b < 0, c > 0, d > 0

8. Use the same coordinate system to draw the graphs of two concave functions f and g, both
defined for all x. Let the function h be defined by

h(x) = min{f (x), g(x)}
(For each given x, the number h(x) is the smaller of f (x) and g(x).) Draw the graph of h and
explain why it is also concave.

R E V I E W P R O B L E M S F O R C H A P T E R 8

1. (a) Let f (x) = x2

x2 + 2
. Compute f ′(x) and determine where f (x) is increasing/decreasing.

(b) Find possible inflection points.

(c) Determine the limit of f (x) as x → ±∞, and sketch the graph of f (x).

2. A firm’s production function is Q(L) = 12L2 − 1
20 L3, where L denotes the number of workers,

with L ∈ [0, 200].

(a) What size of the work force (L∗) maximizes output Q(L)? What size of the work force
(L∗∗) maximizes output per worker, Q(L)/L?

(b) Note that Q′(L∗∗) = Q(L∗∗)/L∗∗. Is this a coincidence?

3. A farmer has 1000 metres of fence wire with which to make a rectangular enclosure, as in
Problem 4.6.7. This time, however, one side of the enclosure will be a straight river bank,
along which no fencing is needed. What should be the dimensions of the enclosure in order to
maximize area?

4. By producing and selling Q units of some commodity a firm earns total revenue R(Q) =
−0.0016Q2 + 44Q and incurs cost C(Q) = 0.0004Q2 + 8Q + 64 000.

(a) What production level Q∗ maximizes profits?

(b) The elasticity ElQC(Q) ≈ 0.12 for Q = 1000. Interpret this result.
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5. The price P per unit obtained by a firm in producing and selling Q units is P = a − bQ2,
Q ≥ 0, and the cost of producing and selling Q units is C = α−βQ. All constants are positive.
Find the value of Q that maximizes profits.

6. (a) Let g(x) = x − 2 ln(x + 1). Where is g defined?

(b) Find g′(x) and g′′(x).

(c) Find possible extreme points and inflection points. Sketch the graph.

7. Let f (x) = ln(x + 1) − x + x2

2
− x3

6
.

(a) Find the domain Df and prove that f ′(x) = x2 − x3

2(x + 1)
for x ∈ Df .

(b) Find possible extreme points and inflection points.

(c) Check f (x) as x → (−1)+, and sketch the graph on the interval (−1, 2].

⊂SM⊃8. Consider the function h defined for all x by h(x) = ex

2 + e2x
.

(a) Where is h increasing/decreasing? Find possible maximum and minimum points for h.

(b) Why doeshdefined on (−∞, 0] have an inverse? Find an expression for the inverse function.

9. Let f (x) = (
e2x + 4e−x

)2
.

(a) Find f ′(x) and f ′′(x).

(b) Determine where f is increasing/decreasing, and show that f is convex.

(c) Find possible global extreme points for f .

HARDER PROBLEMS

⊂SM⊃10. (a) Consider the function

f (x) = x
3
√

x2 − a
(a > 0)

Find the domain Df of f and the intervals where f (x) is positive. Show that the graph of
f is symmetric about the origin.

(b) Where is f increasing and where is it decreasing? Find possible local extreme points.

(c) Find possible inflection points for f .

⊂SM⊃11. Classify the stationary points of f (x) = 6x3

x4 + x2 + 2
by using the first-derivative test. Sketch

the graph of f .
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The true mathematician is

not a juggler of numbers,

but of concepts.

—I. Stewart (1975)

The main topic of the preceding three chapters was differentiation, which can be directly

applied to many interesting economic problems. Economists, however, especially when

doing statistics, often face the mathematical problem of finding a function from information

about its derivative. This process of reconstructing a function from its derivative can be regarded

as the “inverse” of differentiation. Mathematicians call this integration.

There are simple formulas that have been known since ancient times for calculating the area

of any triangle, and so of any polygon that, by definition, is entirely bounded by straight lines.

Over 4000 years ago, however, the Babylonians were concerned with accurately measuring the

area of plane surfaces, like circles, that are not bounded by straight lines. Solving this kind of

area problem is intimately related to integration, as will be explained in Section 9.2.

Apart from providing an introduction to integration, this chapter will also discuss some

important applications of integrals that economists are expected to know. A brief introduction

to some simple differential equations concludes the chapter.

9.1 Indefinite Integrals
Suppose we do not know the function F , but we have been told that its derivative is equal
to x2, so that F ′(x) = x2. What is F ? Since the derivative of x3 is 3x2, we see that 1

3x3 has
x2 as its derivative. But so does 1

3x3 + C where C is an arbitrary constant, since additive
constants disappear with differentiation.

In fact, let G(x) denote an arbitrary function having x2 as its derivative. Then the de-
rivative of G(x) − 1

3x3 is equal to 0 for all x. But a function that has derivative equal to 0
for all x must be constant. (See (6.3.3).)

This shows that
F ′(x) = x2 ⇐⇒ F(x) = 1

3x3 + C

with C as an arbitrary constant.
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E X A M P L E 1 Assume that the marginal cost function of a firm is

C ′(x) = 2x2 + 2x + 5

and that the fixed costs are 100. Find the cost function C(x).

Solution: Considering separately each of the three terms in the expression for C ′(x), we
realize that the cost function must have the form C(x) = 2

3x3 + x2 + 5x + c, because if we
differentiate this function we obtain precisely 2x2 + 2x + 5. But the fixed costs are 100,
which means that C(0) = 100. Inserting x = 0 into the proposed formula for C(x) yields
c = 100. Hence, the required cost function must be

C(x) = 2
3x3 + x2 + 5x + 100

Suppose f (x) and F(x) are two functions of x having the property that f (x) = F ′(x) for all
x in some interval I . We pass from F to f by taking the derivative, so the reverse process of
passing from f to F could appropriately be called taking the antiderivative. But following
usual mathematical practice, we call F an indefinite integral of f over the interval I , and
denote it by

∫
f (x) dx. Two functions having the same derivative throughout an interval

must differ by a constant, so:

D E F I N I T I O N O F T H E I N D E F I N I T E I N T E G R A L∫
f (x) dx = F(x) + C when F ′(x) = f (x) (C is an arbitrary constant) (1)

For instance, the solution to Example 1 implies that∫
(2x2 + 2x + 5) dx = 2

3x3 + x2 + 5x + C

The symbol
∫

is the integral sign, and the function f (x) appearing in (1) is the integrand.
Then we write dx to indicate that x is the variable of integration. Finally, C is a constant
of integration. We read (1) this way: The indefinite integral of f (x) w.r.t. x is F(x) plus
a constant. We call it an indefinite integral because F(x) + C is not to be regarded as one
definite function, but as a whole class of functions, all having the same derivative f .

Differentiating each side of (1) shows directly that

d

dx

∫
f (x) dx = f (x) (2)

i.e., that the derivative of an indefinite integral equals the integrand. Also, (1) can obviously
be rewritten as ∫

F ′(x) dx = F(x) + C (3)

Thus, integration and differentiation cancel each other out.
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Some Important Integrals

There are some important integration formulas which follow immediately from the corres-
ponding rules for differentiation.

Let a be a fixed number �= −1. Because the derivative of xa+1/(a + 1) is xa , one has∫
xa dx = 1

a + 1
xa+1 + C (a �= −1) (4)

This very important result states that the indefinite integral of any power of x (except x−1)
is obtained by increasing the exponent of x by 1, then dividing by the new exponent, and
finally adding a constant of integration. Here are three prominent examples.

E X A M P L E 2

(a)
∫

x dx =
∫

x1 dx = 1

1 + 1
x1+1 + C = 1

2
x2 + C

(b)
∫

1

x3
dx =

∫
x−3 dx = 1

−3 + 1
x−3+1 + C = − 1

2x2
+ C

(c)
∫ √

x dx =
∫

x1/2 dx = 1
1
2 + 1

x
1
2 +1 + C = 2

3
x3/2 + C

When a = −1, the formula in (4) is not valid, because the right-hand side involves division
by zero and so becomes meaningless. The integrand is then 1/x, and the problem is thus to
find a function having 1/x as its derivative. Now ln x has this property, but it is only defined
for x > 0. Note, however, that ln(−x) is defined for x < 0, and according to the chain rule,
its derivative is [1/(−x)] (−1) = 1/x. Recall too that |x| = x when x ≥ 0 and |x| = −x

when x < 0. Thus, whether x > 0 or x < 0, we have∫
1

x
dx = ln |x| + C (5)

Consider next the exponential function. The derivative of ex is ex . Thus
∫

ex dx =
ex + C. More generally, ∫

eax dx = 1

a
eax + C (a �= 0) (6)

because the derivative of (1/a)eax is eax . For a > 0 we can write ax = e(ln a)x . As a special
case of (6), when ln a �= 0 because a �= 1, we obtain∫

ax dx = 1

ln a
ax + C (a > 0 and a �= 1) (7)

The above were examples of how knowing the derivative of a function given by a formula
automatically gives us a corresponding indefinite integral. Indeed, suppose it were possible
to construct a complete table with every formula that we knew how to differentiate in the first
column, and the corresponding derivative in the second column. For example, corresponding
to the entry y = x2ex in the first column, there would be y ′ = 2xex + x2ex in the second
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column. Because integration is the reverse of differentiation, we infer the corresponding
integration result that

∫
(2xex + x2ex) dx = x2ex + C for a constant C.

Even after this superhuman effort, you would look in vain for e−x2
in the second column of

this table. The reason is that there is no “elementary” function that has e−x2
as its derivative.

(See Section 9.3.) Indeed, the integral of e−x2
is a new special “error function” that plays

a prominent role in statistics because of its relationship to the “normal distribution”—see
Problem 4.9.5.

Using the proper rules systematically allows us to differentiate very complicated func-
tions. On the other hand, finding the indefinite integral of even quite simple functions can
be very difficult, or even impossible. Where it is possible, mathematicians have developed a
number of integration methods to help in the task. Some of these methods will be explained
in the rest of this chapter.

It is usually quite easy, however, to check whether a proposed indefinite integral is correct.
We simply differentiate the proposed function to see if its derivative really is equal to the
integrand.

E X A M P L E 3 Verify that for x > 0,
∫

ln x dx = x ln x − x + C.

Solution: We put F(x) = x ln x − x + C. Then F ′(x) = 1 · ln x + x · (1/x) − 1 =
ln x + 1 − 1 = ln x, which shows that the integral formula is correct.

Some General Rules

The two differentiation rules (aF (x))′ = aF ′(x) and (F (x) + G(x))′ = F ′(x) + G′(x)

immediately imply the following integration rules

∫
af (x) dx = a

∫
f (x) dx (a is a constant) (8)

∫ [
f (x) + g(x)

]
dx =

∫
f (x) dx +

∫
g(x) dx (9)

The first of these rules says that a constant factor can be moved outside the integral, while
the other shows that the integral of a sum is the sum of the integrals.

Repeated use of these properties yields the general rule:

∫ [
a1f1(x) + · · · + anfn(x)

]
dx = a1

∫
f1(x) dx + · · · + an

∫
fn(x) dx (10)

E X A M P L E 4 Use rule (10) to evaluate (a)
∫

(3x4 + 5x2 + 2) dx (b)
∫ (

3

x
− 8e−4x

)
dx
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Solution:

(a)
∫

(3x4 + 5x2 + 2) dx = 3
∫

x4 dx + 5
∫

x2 dx + 2
∫

1 dx

= 3
( 1

5x5 + C1
) + 5

( 1
3x3 + C2

) + 2(x + C3)

= 3
5x5 + 5

3x3 + 2x + 3C1 + 5C2 + 2C3

= 3
5x5 + 5

3x3 + 2x + C

Because C1, C2, and C3 are arbitrary constants, 3C1 + 5C2 + 2C3 is also an arbitrary
constant. So in the last line we have replaced it by just one constant C. In future examples
of this kind, we will usually drop the two middle lines of the displayed equations.

(b)
∫ (

3

x
− 8e−4x

)
dx = 3

∫
1

x
dx + (−8)

∫
e−4x dx = 3 ln |x| + 2e−4x + C

So far, we have always used x as the variable of integration. In applications, the variables
often have other labels, but this makes no difference to the rules of integration.

E X A M P L E 5 Evaluate: (a)
∫

B

r2.5
dr (b)

∫
(a + bq + cq2) dq (c)

∫
(1 + t)5 dt

Solution:

(a) Writing B/r2.5 as Br−2.5, formula (4) can be used with r replacing x, and so∫
B

r2.5
dr = B

∫
r−2.5 dr = B

1

−2.5 + 1
r−2.5+1 + C = − B

1.5r1.5
+ C

(b)
∫

(a + bq + cq2) dq = aq + 1
2bq2 + 1

3cq3 + C

(c)
∫

(1 + t)5 dt = 1
6 (1 + t)6 + C

P R O B L E M S F O R S E C T I O N 9 . 1

1. Find the following integrals by using (4):

(a)
∫

x13 dx (b)
∫

x
√

x dx (c)
∫

1√
x

dx (d)
∫ √

x

√
x
√

x dx

2. Find the following integrals:

(a)
∫

e−x dx (b)
∫

e
1
4 x dx (c)

∫
3e−2x dx (d)

∫
2x dx

3. In the manufacture of a product, the marginal cost of producing x units is C ′(x) and fixed costs
are C(0). Find the total cost function C(x) when:

(a) C ′(x) = 3x + 4, C(0) = 40 (b) C ′(x) = ax + b, C(0) = C0
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⊂SM⊃4. Find the following integrals:

(a)
∫

(t3 + 2t − 3) dt (b)
∫

(x − 1)2 dx (c)
∫

(x − 1)(x + 2) dx

(d)
∫

(x + 2)3 dx (e)
∫ (

e3x − e2x + ex
)
dx (f)

∫
x3 − 3x + 4

x
dx

⊂SM⊃5. Find the following integrals: (a)
∫

(y − 2)2

√
y

dy (b)
∫

x3

x + 1
dx (c)

∫
x(1+x2)15 dx

(Hint: In part (a), first expand (y − 2)2, and then divide each term by
√

y. In part (b), do
polynomial division as in Section 4.7. In part (c), what is the derivative of (1 + x2)16 ?)

6. Show that

(a)
∫

x2 ln x dx = 1
3 x3 ln x − 1

9 x3 + C

(b)
∫ √

x2 + 1 dx = 1
2 x

√
x2 + 1 + 1

2 ln
(
x + √

x2 + 1
) + C

7. Suppose that f (0) = 2 and that the derivative of f has the graph given in Fig. 1. Sketch the
graph of f (x), and find an explicit function f (x) which has this graph. (Suggest first a formula
for f ′(x).)

f �(x)

2

3

1

�1

�2

�3

�2 �1 2 3 4

y

x

f �(x)
2

1

�1

�2

�2�3�4 �1 1

y

x

Figure 1 For Problem 7 Figure 2 For Problem 8

8. Suppose that f (0) = 0 and that the derivative of f has the graph given in Fig. 2. Sketch the
graph of f (x) and find an explicit function f (x) which has this graph.

9. Prove that
∫

2x ln(x2 + a2) dx = (x2 + a2) ln(x2 + a2) − x2 + C.

10. (a) Show that
∫

(ax + b)p dx = 1

a(p + 1)
(ax + b)p+1 + C (a �= 0, p �= −1)

(b) Evaluate (i)
∫

(2x + 1)4 dx (ii)
∫ √

x + 2 dx (iii)
∫

1√
4 − x

dx.

11. Find F(x) if (a) F ′(x) = 1
2 ex − 2x and F(0) = 1

2 ; (b) F(0) = x(1 − x2) and F(1) = 5
12 .

12. Find the general form of a function f whose second derivative, f ′′(x), is x2. If we require in
addition that f (0) = 1 and f ′(0) = −1, what is f (x)?
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⊂SM⊃13. Suppose that f ′′(x) = x−2 + x3 + 2 for x > 0, and f (1) = 0, f ′(1) = 1/4. Find f (x).

9.2 Area and Definite Integrals
This section will show how the concept of the integral can be used to calculate the area of
many plane regions. This problem has been important in economics for over 4000 years.
Like all major rivers, the Tigris and Euphrates in Mesopotamia (now part of Iraq) and the
Nile in Egypt would occasionally change course as a result of severe floods. Some farmers
would gain new land from the river, while others would lose land. Since taxes were often
assessed on land area, it became necessary to re-calculate the area of a parcel of land whose
boundary might be an irregularly shaped river bank.

Rather later, but still around 360 B.C., the Greek mathematician Eudoxos developed a
general method of exhaustion for determining the areas of irregularly shaped plane regions.
The idea was to exhaust the area by inscribing within it an expanding sequence of polygonal
regions, whose area can be calculated exactly by summing the areas of a finite collection of
triangles. Provided this sequence does indeed “exhaust” the area by including every point
in the limit, we can define the area of the region as the limit of the increasing sequence of
areas of the inscribed polygonal regions.

Eudoxos and Archimedes, amongst others, used the method of exhaustion in order to
determine quite accurate approximations to the areas of a number of specific plane regions,
especially for a circular disk. (See Example 7.11.1 for an illustration of how this might work.)
The method, however, turned out to work only in some special cases, largely because of
the algebraic problems encountered. Nearly 1900 years passed after Eudoxos before an
exact method could be devised, combining what we now call integration with the new
differential calculus due to Newton and Leibniz. Besides allowing areas to be measured
with complete accuracy, their ideas have many other applications. Demonstrating the precise
logical relationship between differentiation and integration is one of the main achievements
of mathematical analysis. It has even been argued that this discovery is the single most
important in all of science.

The problem to be considered and solved in this section is illustrated in Fig. 1: How do
we compute the area A under the graph of a continuous and nonnegative function f over
the interval [a, b]?

y � f (x)

A � ?

y

xa b

y � f (x)

A(t)

y

xa bt

Figure 1 Figure 2
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Let t be an arbitrary point in [a, b], and let A(t) denote the area under the curve y = f (x)

over the interval [a, t], as shown in Fig. 2. Clearly, A(a) = 0, because there is no area from
a to a. On the other hand, the area in Fig. 1 is A = A(b). It is obvious from Fig. 2 that,
because f is always positive, A(t) increases as t increases. Suppose we increase t by a
positive amount �t . Then A(t + �t) is the area under the curve y = f (x) over the interval
[a, t + �t]. Hence, A(t + �t) − A(t) is the area �A under the curve over the interval
[t, t + �t], as shown in Fig. 3.

y � f (x)
y

xa bt t � Δ t

Δ A

t t � Δ t

Δ Af (t)
f (t � Δ t)

Figure 3 Figure 4

In Fig. 4, the area �A has been magnified. It cannot be larger than the area of the rectangle
with base �t and height f (t + �t), nor smaller than the area of the rectangle with base �t

and height f (t). Hence, for all �t > 0, one has

f (t) �t ≤ A(t + �t) − A(t) ≤ f (t + �t) �t (∗)

Because �t > 0, this implies

f (t) ≤ A(t + �t) − A(t)

�t
≤ f (t + �t) (∗∗)

Let us consider what happens to (∗∗) as �t → 0. The interval [t, t + �t] shrinks to the
single point t , and by continuity of f , the value f (t + �t) approaches f (t). The Newton
quotient [A(t + �t) − A(t)]/�t is squeezed between f (t) and a quantity f (t + �t) that
tends to f (t). This quotient must therefore tend to f (t) in the limit as �t → 0.

So we arrive at the remarkable conclusion that the function A(t), which measures the
area under the graph of f over the interval [a, t], is differentiable, with derivative given by

A′(t) = f (t) for all t in (a, b) (∗∗∗)

This proves that the derivative of the area function A(t) is the curve’s “height” function
f (t), and the area function is therefore one of the indefinite integrals of f (t).1

1 The function f in the figures is increasing in the interval [t, t +�t]. It is easy to see that the same
conclusion is obtained whenever the function f is continuous on the closed interval [t, t +�t]. On
the left-hand side of (∗), just replace f (t) by f (c), where c is a minimum point of the continuous
function f in the interval; and on the right-hand side, replace f (t + �t) by f (d), where d is
a maximum point of f in [t, t + �t]. By continuity, both f (c) and f (d) must tend to f (t) as
�t → 0. So (∗∗∗) holds also for general continuous functions f .
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Let us now use x as the free variable, and suppose that F(x) is an arbitrary indefinite
integral of f (x). Then A(x) = F(x) + C for some constant C. Recall that A(a) = 0.
Hence, 0 = A(a) = F(a) + C, so C = −F(a). Therefore,

A(x) = F(x) − F(a) where F(x) =
∫

f (x) dx (1)

Suppose G(x) is another function with G′(x) = f (x). Then G(x) = F(x) + C for some
constant C, and so G(x)−G(a) = F(x)+C −(F (a)+C) = F(x)−F(a). This argument
tells us that the area we compute using (1) is independent of which indefinite integral of f

we choose.

E X A M P L E 1 Calculate the area under the parabola f (x) = x2 over the interval [0, 1].

Solution: The area in question is the shaded region in Fig. 5. The area is equal to A =
F(1) − F(0) where F(x) is an indefinite integral of x2. Now,

∫
x2 dx = 1

3x3 + C, so we
choose F(x) = 1

3x3. Thus the required area is

A = F(1) − F(0) = 1
3 · 13 − 1

3 · 03 = 1
3

Figure 5 suggests that this answer is reasonable, because the shaded region appears to have
roughly 1/3 the area of a square whose side is of length 1.

1

1

y � x 2
y

x

f (x) � px � q
pb � q

pa � q

a b

y

x

Figure 5 Figure 6

The argument leading to (1) is based on rather intuitive considerations. Formally, mathema-
ticians choose to define the area under the graph of a continuous and nonnegative function
f over the interval [a, b] as the number F(b)−F(a), where F ′(x) = f (x). The concept of
area that emerges agrees with the usual concept for regions bounded by straight lines. The
next example verifies this in a special case.

E X A M P L E 2 Find the area A under the straight line f (x) = px + q over the interval [a, b], where a,
b, p, and q are all positive, with b > a.

Solution: The area is shown shaded in Fig. 6. It is equal to F(b) − F(a) where F(x) is an
indefinite integral of px + q. Now,

∫
(px + q) dx = 1

2px2 + qx + C. The obvious choice
of an indefinite integral is F(x) = 1

2px2 + qx, and so

A = F(b) − F(a) = ( 1
2pb2 + qb

) − ( 1
2pa2 + qa

) = 1
2p(b2 − a2) + q(b − a)

As Fig. 6 shows, the area A is the sum of a rectangle whose area is (b − a)(pa + q), and a
triangle whose area is 1

2p(b − a)2, which you should check gives the same answer.



Essential Math. for Econ. Analysis, 4th edn EME4_C09.TEX, 16 May 2012, 14:24 Page 302

302 C H A P T E R 9 / I N T E G R A T I O N

The Definite Integral

Let f be a continuous function defined in the interval [a, b]. Suppose that the function F is
continuous in [a, b] and has a derivative with F ′(x) = f (x) for every x in (a, b). Then the
difference F(b) − F(a) is called the definite integral of f over [a, b]. We observed above
that this difference does not depend on which of the indefinite integrals of f we choose
as F . The definite integral of f over [a, b] is therefore a number that depends only on the
function f and the numbers a and b. We denote this number by∫ b

a

f (x) dx (2)

This notation makes explicit the function f (x) we integrate and the interval of integration
[a, b]. The numbers a and b are called, respectively, the lower and upper limit of integra-
tion. The variable x is a dummy variable in the sense that it could be replaced by any other
variable that does not occur elsewhere in the expression. For instance,∫ b

a

f (x) dx =
∫ b

a

f (y) dy =
∫ b

a

f (ξ) dξ

are all equal (to F(b) − F(a)). But do not write anything like
∫ y

a
f (y) dy, with the same

variable as both the upper limit and the dummy variable of integration, because that is

meaningless. The difference F(b) − F(a) is denoted by
∣∣∣b
a

F (x), or by
[
F(x)

]b

a
. Thus:

D E F I N I T I O N O F T H E D E F I N I T E I N T E G R A L

∫ b

a

f (x) dx =
b

a

F (x) = F(b) − F(a)

where F is any indefinite integral of f over an interval containing both a and b.

(3)

E X A M P L E 3 Evaluate (a)
∫ 5

2
e2x dx (b)

∫ 2

−2
(x − x3 − x5) dx

Solution:

(a) Because
∫

e2x dx = 1
2e2x + C,

∫ 5

2
e2x dx =

5

2

1
2e2x = 1

2e10 − 1
2e4 = 1

2e4(e6 − 1).

(b)
∫ 2

−2
(x − x3 − x5) dx =

2

−2
( 1

2x2 − 1
4x4 − 1

6x6) = (2 − 4 − 64
6 ) − (2 − 4 − 64

6 ) = 0.

After reading the next subsection and realizing that the graph of f (x) = x − x3 − x5 is
symmetric about the origin, you should understand better why the answer must be 0.

Definition (3) does not necessarily require a < b. However, if a > b and f (x) is positive
throughout the interval [b, a], then

∫ b

a
f (x) dx is a negative number.

Note that we have defined the definite integral without necessarily giving it a geometric
interpretation as the area under a curve. In fact, depending on the context, it can have different
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interpretations. For instance, if f (r) is an income distribution function, then
∫ b

a
f (r) dr is

the proportion of people with income between a and b. (See Section 9.4.)
Although the notation for definite and indefinite integrals is similar, the two integrals

are entirely different. In fact,
∫ b

a
f (x) dx denotes a single number, whereas

∫
f (x) dx

represents any one of the infinite set of functions all having f (x) as their derivative.

Area when f(x) Is Negative

If f (x) ≥ 0 over [a, b], then∫ b

a

f (x) dx is the area below the graph of f over [a, b] (4)

If f is defined in [a, b] and f (x) ≤ 0 for all x in [a, b], then the graph of f , the x-axis, and
the lines x = a and x = b still enclose an area. This area is − ∫ b

a
f (x) dx, with a minus

sign before the integral because the area of a region must be positive (or zero), whereas the
definite integral is negative.

E X A M P L E 4 Figure 7 shows the graph of f (x) = ex/3 − 3. Evaluate the shaded area A between the
x-axis and this graph over the interval [0, 3 ln 3]. (Note that f (3 ln 3) = 0.)

Solution: Because f (x) ≤ 0 in the interval [0, 3 ln 3], we obtain

A = −
∫ 3 ln 3

0

(
ex/3 − 3

)
dx = −

3 ln 3

0
(3ex/3 − 3x)

= −(3eln 3 − 3 · 3 ln 3) + 3e0 = −9 + 9 ln 3 + 3 = 9 ln 3 − 6 ≈ 3.89

Is the answer reasonable? Yes, because the shaded set in Fig. 7 seems to have an area
somewhat less than that of the triangle enclosed by the points (0, 0), (0, −2), and (4, 0),
whose area is 4, and a little more than the area of the inscribed triangle with vertices (0, 0),
(0, −2), and (3 ln 3, 0), whose area is 3 ln 3 ≈ 3.30.

1

�1

�2

1 2 3 4

f (x) � e x�3 � 3

y

x
c1

a
bc2 c3

y � f (x)

y

x

Figure 7 Figure 8

Suppose the function f is defined and continuous in [a, b], and that it is positive in some
subintervals, negative in others, as shown in Fig. 8. Let c1, c2, c3 denote three roots of the
equation f (x) = 0—that is, three points where the graph crosses the x-axis. The definite
integral

∫ b

a
f (x)dx is the sum of the two shaded areas above the x-axis, minus the sum

of the two shaded areas below the x-axis. The total area bounded by the graph of f , the
x-axis, and the lines x = a and x = b, on the other hand, is calculated by computing the
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positive areas in each subinterval [a, c1], [c1, c2], [c2, c3], and [c3, b] in turn according to
the previous definitions, and then adding these areas. Specifically, the shaded area is

−
∫ c1

a

f (x) dx +
∫ c2

c1

f (x) dx −
∫ c3

c2

f (x) dx +
∫ b

c3

f (x) dx

In fact, this illustrates a general result: the area between the graph of a function f and the
x-axis is given by the definite integral

∫ b

a
|f (x)| dx of the absolute value of the integrand

f (x), which equals the area under the graph of the nonnegative-valued function |f (x)|.

P R O B L E M S F O R S E C T I O N 9 . 2

1. Compute the areas under the graphs of (a) f (x) = x3 and (b) f (x) = x10 over [0, 1].

2. Compute the area bounded by the graph of the function over the indicated interval. In (c), sketch
the graph and indicate by shading the area in question.

(a) f (x) = 3x2 in [0, 2] (b) f (x) = x6 in [0, 1]

(c) f (x) = ex in [−1, 1] (d) f (x) = 1/x2 in [1, 10]

3. Compute the area A bounded by the graph of f (x) = 1/x3, the x-axis, and the two lines x = −2
and x = −1. Make a drawing. (Hint: f (x) < 0 in [−2, −1].)

4. Compute the area A bounded by the graph of f (x) = 1
2 (ex + e−x), the x-axis, and the lines

x = −1 and x = 1.

⊂SM⊃5. Evaluate the following integrals:

(a)
∫ 1

0
x dx (b)

∫ 2

1
(2x + x2) dx (c)

∫ 3

−2

(
1
2 x2 − 1

3 x3
)
dx

(d)
∫ 2

0
(t3 − t4) dt (e)

∫ 2

1

(
2t5 − 1

t2

)
dt (f)

∫ 3

2

(
1

t − 1
+ t

)
dt

⊂SM⊃6. (a) Let f (x) = x(x − 1)(x − 2). Calculate f ′(x). Where is f (x) increasing?

(b) Sketch the graph and calculate
∫ 1

0
f (x)dx.

7. (a) The profit of a firm as a function of its output x is given by

f (x) = 4000 − x − 3 000 000/x, x > 0

Find the level of output that maximizes profit. Sketch the graph of f .

(b) The actual output varies between 1000 and 3000 units. Compute the average profit I =
1

2000

∫ 3000

1000
f (x) dx.

8. Evaluate the integrals

(a)
∫ 3

1

3x

10
dx (b)

∫ −1

−3
ξ 2 dξ (c)

∫ 1

0
αeβτ dτ (β �= 0) (d)

∫ −1

−2

1

y
dy
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9.3 Properties of Definite Integrals
From the definition of the definite integral, a number of properties can be derived. If f is a
continuous function in an interval that contains a, b, and c, then

∫ b

a

f (x) dx = −
∫ a

b

f (x) dx (1)∫ a

a

f (x) dx = 0 (2)∫ b

a

αf (x) dx = α

∫ b

a

f (x) dx (α an arbitrary number) (3)∫ b

a

f (x) dx =
∫ c

a

f (x) dx +
∫ b

c

f (x) dx (4)

All these rules follow easily from definition (3) in the previous section. For example, (4)
can be proved as follows: Let F be continuous in [a, b], and suppose that F ′(x) = f (x)

for all x in an interval big enough to include a, b, and c. Then

∫ c

a

f (x) dx +
∫ b

c

f (x) dx = [
F(c) − F(a)

] + [
F(b) − F(c)

]
= F(b) − F(a) =

∫ b

a

f (x) dx

When the definite integral is interpreted as an area, (4) is the additivity property of areas, as
illustrated in Fig. 1. Of course, (4) easily generalizes to the case in which we partition the
interval [a, b] into an arbitrary finite number of subintervals.

y � f (x)

a bc

y

x

Figure 1
∫ b

a
f (x) dx = ∫ c

a
f (x) dx + ∫ b

c
f (x) dx

Equations (3) and (4) are counterparts for definite integrals of, respectively, the constant
multiple property (9.1.8) and the summation property (9.1.9) for indefinite integrals. In fact,
if f and g are continuous in [a, b], and if α and β are real numbers, then it is easy to prove
that ∫ b

a

[
αf (x) + βg(x)

]
dx = α

∫ b

a

f (x) dx + β

∫ b

a

g(x) dx (5)

This rule can obviously be extended to more than two functions.
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Differentiation w.r.t. the Limits of Integration

Suppose that F ′(x) = f (x) for all x in an open interval (a, b). Suppose too that a < t < b.
It follows that

∫ t

a
f (x) dx = t

a
F (x) = F(t) − F(a), so

d

dt

∫ t

a

f (x) dx = F ′(t) = f (t) (6)

In words: The derivative of the definite integral w.r.t. the upper limit of integration is equal
to the integrand evaluated at that limit.

Correspondingly,
∫ b

t
f (x) dx = b

t
F (x) = F(b) − F(t), so that

d

dt

∫ b

t

f (x) dx = −F ′(t) = −f (t) (7)

In words: The derivative of the definite integral w.r.t. the lower limit of integration is equal
to minus the integrand evaluated at that limit.

NOTE 1 Suppose that f (x) ≥ 0 and t < b. We can interpret
∫ b

t
f (x) dx as the area below

the graph of f over the interval [t, b]. Then the interval shrinks as t increases, and the area
will decrease. So the fact that the derivative in (7) is negative is not surprising.

The results in (6) and (7) can be generalized. In fact, if a(t) and b(t) are differentiable and
f (x) is continuous, then

d

dt

∫ b(t)

a(t)

f (x) dx = f (b(t)) b′(t) − f (a(t)) a′(t) (8)

To prove this formula, suppose F is an indefinite integral of f , so that F ′(x) = f (x). Then∫ v

u
f (x) dx = F(v) − F(u), so in particular,

∫ b(t)

a(t)

f (x) dx = F(b(t)) − F(a(t))

Using the chain rule to differentiate the right-hand side of this equation w.r.t. t , we obtain
F ′(b(t))b′(t) − F ′(a(t))a′(t). But F ′(b(t)) = f (b(t)) and F ′(a(t)) = f (a(t)), so (8)
results. (Formula (8) is a special case of Leibniz’s formula discussed in FMEA, Section 4.2.)

Continuous Functions are Integrable

Suppose f (x) is a continuous function in [a, b]. Then we defined
∫ b

a
f (x) dx as the number

F(b)−F(a), provided that F(x) is some function whose derivative is f (x). In some cases,
we are able to find an explicit expression for F(x). For instance, we can evaluate

∫ 1
0 x5 dx

as 1/6 because (1/6)x6 has x5 as its derivative. On the other hand, it is impossible to
find an explicit standard function of x whose derivative is the positive valued function
f (x) = (1/

√
2π)e−x2/2 (the standard normal density function in statistics). Yet f (x) really



Essential Math. for Econ. Analysis, 4th edn EME4_C09.TEX, 16 May 2012, 14:24 Page 307

S E C T I O N 9 . 3 / P R O P E R T I E S O F D E F I N I T E I N T E G R A L S 307

is continuous on any interval [a, b] of the real line, so the area under the graph of f over
this interval definitely exists and is equal to

∫ b

a
f (x)dx. (See the graph of f in the answer

to problem 4.9.5.)
In fact, one can prove that any continuous function has an antiderivative. Here are some

integrals that really are impossible to “solve”, except by introducing special new functions:∫
ex2

dx,

∫
e−x2

dx,

∫
ex

x
dx,

∫
1

ln x
dx,

∫
1√

x4 + 1
dx (9)

The Riemann Integral
The kind of integral discussed so far, which is based on the antiderivative, is called the Newton–Leibniz
(N–L) integral. Several other kinds of integral are considered by mathematicians. For continuous
functions, they all give the same result as the N–L integral. We briefly sketch the so-called Riemann
integral. The idea behind the definition is closely related to the exhaustion method that was described
in Section 9.2.

Let f be a bounded function in the interval [a, b], and let n be a natural number. Subdivide [a, b]
into n parts by choosing points a = x0 < x1 < x2 < · · · < xn−1 < xn = b. Put �xi = xi+1 − xi ,
i = 0, 1, . . . , n − 1, and choose an arbitrary number ξi in each interval [xi, xi+1] (draw a figure).
The sum

f (ξ0)�x0 + f (ξ1)�x1 + · · · + f (ξn−1)�xn−1

is called a Riemann sum associated with the function f . This sum will depend on f as well as on
the subdivision and on the choice of the different ξi . Suppose that, when n approaches infinity and
simultaneously the largest of the numbers �x0, �x1, . . . , �xn−1 approaches 0, the limit of the sum
exists. Then f is called Riemann integrable (R integrable) in the interval [a, b], and we put

∫ b

a

f (x) dx = lim
n−1∑
i=0

f (ξi) �xi

Textbooks on mathematical analysis show that the value of the integral is independent of how the ξi

are chosen. They also show that every continuous function is R integrable, and that the R integral in
this case satisfies (9.2.3). The N–L integral and the R integral thus coincide for continuous functions.
But the R integral is defined for some (discontinuous) functions whose N–L integral does not exist.

P R O B L E M S F O R S E C T I O N 9 . 3

1. Evaluate the following integrals:

(a)
∫ 5

0
(x + x2) dx (b)

∫ 2

−2
(ex − e−x) dx (c)

∫ 10

2

dx

x − 1
(d)

∫ 1

0
2xex2

dx

(e)
∫ 4

−4
(x − 1)3 dx (f)

∫ 2

1
(x5 + x−5) dx (g)

∫ 4

0

1
2

√
x dx (h)

∫ 2

1

1 + x3

x2
dx

2. If
∫ b

a

f (x) dx = 8 and
∫ c

a

f (x) dx = 4, what is
∫ b

c

f (x) dx?

3. If
∫ 1

0
(f (x) − 2g(x)) dx = 6 and

∫ 1

0
(2f (x) + 2g(x)) dx = 9, find I =

∫ 1

0
(f (x) − g(x)) dx.
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⊂SM⊃4. (a) Evaluate the integral
∫ 1

0
xp(xq + xr) dx, where p, q, and r are positive constants.

(b) Find the function f (x) if f ′(x) = ax2 + bx, and

(i) f ′(1) = 6 (ii) f ′′(1) = 18 (iii)
∫ 2

0
f (x) dx = 18

⊂SM⊃5. Evaluate the following integrals (in (d) all constants are positive):

(a)
∫ 3

0
( 1

3 e3t−2 + (t + 2)−1) dt (b)
∫ 1

0
(x2 + 2)2 dx

(c)
∫ 1

0

x2 + x + √
x + 1

x + 1
dx (d)

∫ b

1

(
A

x + b

x + c
+ d

x

)
dx

6. (a) Put F(x) =
∫ x

0
(t2 + 2) dt and G(x) =

∫ x2

0
(t2 + 2) dt . Find F ′(x) and G′(x).

(b) Define H(t) = ∫ t2

0 K(τ)e−ρτ dτ , where K(τ) is a given continuous function and ρ is a
constant. Find H ′(t).

7. Find:

(a)
d

dt

∫ t

0
x2 dx (b)

d

dt

∫ 3

t

e−x2
dx (c)

d

dt

∫ t

−t

dx√
x4 + 1

(d)
d

dλ

∫ 2

−λ

(f (t) − g(t)) dt

8. Find the area between the two parabolas defined by the equations y+1 = (x−1)2 and 3x = y2.
(The points of intersection have integer coordinates.)

HARDER PROBLEMS

⊂SM⊃9. A theory of investment has used a function W defined for all T > 0 by

W(T ) = K

T

∫ T

0
e−
t dt (K and 
 are positive constants)

Evaluate the integral, then prove that W(T ) takes values in the interval (0, K) and is strictly
decreasing. (Hint: Problem 6.11.11.)

⊂SM⊃10. Consider the function f defined for x > 0 by the formula f (x) = 4 ln(
√

x + 4 − 2).

(a) Show that f has an inverse function g, and find a formula for g.

(b) Draw the graphs of f and g in the same coordinate system.

(c) Give a geometric interpretation of A = ∫ 10
5 4 ln(

√
x + 4 − 2) dx, and explain why

A = 10 · a −
∫ a

0
(ex/2 + 4ex/4) dx, where a = f (10)

Use this equality to express A in terms of a.
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9.4 Economic Applications
We motivated the definite integral as a tool for computing the area under a curve. However,
the integral has many other important interpretations. In statistics, many important prob-
ability distributions are expressed as integrals of continuous probability density functions.
This section presents some examples showing the importance of integrals in economics.

Extraction from an Oil Well

Assume that at time t = 0 an oil producer starts extracting oil from a well that contains K

barrels at that time. Let us define

x(t) = number of barrels of oil that is left at time t

In particular, x(0) = K . Assuming it is impractical to put oil back into the well, x(t) is a
decreasing function of t . The amount of oil that is extracted in a time interval [t, t + �t]
(where �t > 0) is x(t) − x(t + �t) . Extraction per unit of time is, therefore,

x(t) − x(t + �t)

�t
= −x(t + �t) − x(t)

�t
(∗)

If we assume that x(t) is differentiable, then as �t → 0 the fraction (∗) tends to −ẋ(t).
Letting u(t) denote the rate of extraction at time t , we have

ẋ(t) = −u(t) with x(0) = K (1)

The solution to equation (1) is

x(t) = K −
∫ t

0
u(τ) dτ (2)

Indeed, we check (2) as follows. First, setting t = 0 gives x(0) = K . Moreover, differenti-
ating (2) w.r.t. t according to rule (9.3.6) yields ẋ(t) = −u(t).

The result (2) may be interpreted as follows: The amount of oil left at time t is equal to
the initial amount K , minus the total amount that has been extracted during the time span
[0, t], namely

∫ t

0 u(τ) dτ .
If the rate of extraction is constant, with u(t) = ū, then (2) yields

x(t) = K −
∫ t

0
ū dτ = K −

t

0
ūτ = K − ūt

In particular, the well will be empty when x(t) = 0, or when K − ūt = 0, that is when
t = K/ū. (Of course, this particular answer could have been found more directly, without
recourse to integration.)

The example illustrates two concepts that it is important to distinguish in many economic
arguments. The quantity x(t) is a stock, measured in barrels. On the other hand, u(t) is a
flow, measured in barrels per unit of time.
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Income Distribution
In many countries, data collected by income tax authorities can be used to reveal some
properties of the income distribution within a given year, as well as how the distribution
changes from year to year.

Suppose we measure annual income in dollars and let F(r) denote the proportion of
individuals that receive no more than r dollars in a particular year. Thus, if there are n

individuals in the population, nF(r) is the number of individuals with income no greater
than r . If r0 is the lowest and r1 is the highest (registered) income in the group, we are
interested in the function F defined on the interval [r0, r1]. By definition, F is not continuous
and therefore also not differentiable in [r0, r1], because r has to be a multiple of $0.01 and
F(r) has to be a multiple of 1/n. However, if the population consists of a large number
of individuals, then it is usually possible to find a “smooth” function that gives a good
approximation to the true income distribution. Assume, therefore, that F is a function with
a continuous derivative denoted by f , so that f (r) = F ′(r) for all r in (r0, r1). According
to the definition of the derivative, we have

f (r) �r ≈ F(r + �r) − F(r)

for all small �r . Thus, f (r) �r is approximately equal to the proportion of individuals who
have incomes between r and r +�r . The function f is called an income density function,
and F is the associated cumulative distribution function.2

Suppose that f is a continuous income distribution for a certain population with incomes
in the interval [r0, r1]. If r0 ≤ a ≤ b ≤ r1, then the previous discussion and the definition
of the definite integral imply that

∫ b

a
f (r) dr is the proportion of individuals with incomes

in [a, b] . Thus,

n

∫ b

a

f (r) dr = the number of individuals with incomes in [a, b] (3)

We will now find an expression for the combined income of those who earn between a and b

dollars. Let M(r) denote the total income of those who earn no more than r dollars during
the year, and consider the income interval [r, r + �r]. There are approximately nf (r) �r

individuals with incomes in this interval. Each of them has an income approximately equal
to r , so that the total income of these individuals, M(r + �r) − M(r), is approximately
equal to nrf (r) �r . So we have

M(r + �r) − M(r)

�r
≈ nrf (r)

The approximation improves (in general) as �r decreases. By taking the limit as �r → 0,
we obtain M ′(r) = nrf (r) . Integrating over the interval from a to b gives M(b)−M(a) =
n

∫ b

a
rf (r) dr . Hence,

n

∫ b

a

rf (r) dr = total income of individuals with income in [a, b] (4)

2 Readers who know some elementary statistics will see the analogy with probability density func-
tions and with cumulative (probability) distribution functions.
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The argument that leads to (4) can be made more exact: M(r + �r) − M(r) is the total income of
those who have income in the interval [r, r + �r], when �r > 0. In this income interval, there are
n[F(r + �r) − F(r)] individuals each of whom earns at least r and at most r + �r . Thus,

nr
[
F(r + �r) − F(r)

] ≤ M(r + �r) − M(r) ≤ n(r + �r)
[
F(r + �r) − F(r)

]
(∗)

If �r > 0, division by �r yields

nr
F (r + �r) − F(r)

�r
≤ M(r + �r) − M(r)

�r
≤ n(r + �r)

F (r + �r) − F(r)

�r
(∗∗)

(If �r < 0, then the inequalities in (∗) are left unchanged, whereas those in (∗∗) are reversed.)

Letting �r → 0 gives nrF ′(r) ≤ M ′(r) ≤ nrF ′(r), so that M ′(r) = nrF ′(r) = nrf (r).

The ratio between the total income and the number of individuals belonging to a certain
income interval [a, b] is called the mean income for the individuals in this income inter-
val. Therefore,

Mean income of individuals with
incomes in the interval [a, b]

}
: m =

∫ b

a

rf (r) dr∫ b

a

f (r) dr

(5)

A function that approximates actual income distributions quite well, particularly for large
incomes, is the Pareto distribution. In this case, the proportion of individuals who earn at
most r dollars is given by

f (r) = B

rβ
(6)

Here B and β are positive constants. Empirical estimates of β are usually in the range
2.4 < β < 2.6 . For values of r close to 0, the formula is of no use. In fact, the integral∫ a

0 f (r) dr diverges to ∞, as will be seen using the arguments of Section 9.7.

E X A M P L E 1 Consider a population of n individuals in which the income density function for those
with incomes between a and b is given by f (r) = B/r2.5. Here b > a > 0, and B is
positive. Determine the mean income of this group.

Solution: According to (3), the total number of individuals in this group is

N = n

∫ b

a

Br−2.5 dr = nB
b

a

(− 2
3 r−1.5) = 2

3nB
(
a−1.5 − b−1.5)

According to (4), the total income of these individuals is

M = n

∫ b

a

rBr−2.5 dr = nB

∫ b

a

r−1.5 dr = −2nB
b

a

r−0.5 = 2nB
(
a−0.5 − b−0.5)

So the mean income of the group is

m = M

N
= 3

a−0.5 − b−0.5

a−1.5 − b−1.5

Suppose that b is very large. Then b−0.5 and b−1.5 are both close to 0, and so m ≈ 3a. The
mean income of those who earn at least a is therefore approximately 3a.
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The Influence of Income Distribution on Demand
Obviously each consumer’s demand for a particular commodity depends on its price p. In
addition, economists soon learn that it depends on the consumer’s income r as well. Here,
we consider the total demand quantity for a group of consumers whose individual demands
are given by the same continuous function D(p, r) of the single price p, as well as of
individual income r whose distribution is given by a continuous density function f (r) on
the interval [a, b].

Given a particular price p, let T (r) denote the total demand for the commodity by all
individuals whose income does not exceed r . Consider the income interval [r, r + �r].
There are approximately nf (r) �r individuals with incomes in this interval. Because each
of them demands approximately D(p, r) units of the commodity, the total demand of these
individuals will be approximately nD(p, r)f (r) �r . However, the actual total demand of
individuals with incomes in the interval [r, r + �r] is T (r + �r) − T (r), by definition. So
we must have T (r + �r) − T (r) ≈ nD(p, r)f (r) �r , and thus

T (r + �r) − T (r)

�r
≈ nD(p, r)f (r)

The approximation improves (in general) as �r decreases. Taking the limit as �r → 0,
we obtain T ′(r) = nD(p, r)f (r). By definition of the definite integral, T (b) − T (a) =
n

∫ b

a
D(p, r)f (r) dr . But T (b) − T (a) is the desired measure of total demand for the

commodity by all the individuals in the group. In fact, this total demand will depend on the
price p. So we denote it by x(p), and thus we have

x(p) =
∫ b

a

nD(p, r)f (r) dr (total demand) (7)

E X A M P L E 2 Let the income distribution function be that of Example 1, and let D(p, r) = Ap−1.5r2.08.
Compute the total demand.

Solution: Using (7) gives

x(p) =
∫ b

a

nAp−1.5r2.08Br−2.5 dr = nABp−1.5
∫ b

a

r−0.42 dr

Hence,

x(p) = nABp−1.5
b

a

1

0.58
r0.58 = nAB

0.58
p−1.5(b0.58 − a0.58)

Consumer and Producer Surplus
Economists are interested in studying how much consumers and producers as a whole
benefit (or lose) when market conditions change. A common (but theoretically questionable)
measure of these benefits used by many applied economists is the total amount of consumer
and producer surplus defined below.3 At the equilibrium point E in Fig. 1, demand is equal
to supply. The corresponding equilibrium price P ∗ is the one which induces consumers to
purchase (demand) precisely the same aggregate amount that producers are willing to offer

3 See, for example, H. Varian: Intermediate Microeconomics: A Modern Approach, 8th ed., Norton,
2009 for a closer treatment.
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(supply) at that price, as in Example 4.5.3. According to the demand curve in Fig. 1, there
are consumers who are willing to pay more than P ∗ per unit. In fact, even if the price is
almost as high as P1, some consumers still wish to buy some units at that price. The total
amount “saved” by all such consumers is called the consumer surplus.

P

E
Demand Curve

Supply Curve

QQ*

P*

P1

P0

P � g (Q)

P � f (Q)

E

P

QQ*Q

P � f (Q)f (Q)

f (Q) � ΔQ

Figure 1 Figure 2

Consider the small rectangle indicated in Fig. 2. It has base �Q and height f (Q), so its
area is f (Q) · �Q. It is approximately the maximum additional amount that consumers
as a whole are willing to pay for an extra �Q units at price f (Q), after they have already
bought Q units. For those willing to buy the commodity at price P ∗ or higher, the total
amount they are willing to pay is the total area below the demand curve over the interval
[0, Q∗], that is

∫ Q∗
0 f (Q) dQ. This area is shaded in Fig. 2. If all consumers together buy

Q∗ units of the commodity, the total cost is P ∗Q∗. This represents the area of the rectangle
with base Q∗ and height P ∗. It can therefore be expressed as the integral

∫ Q∗
0 P ∗ dQ. The

consumer surplus is defined as the integral

CS =
∫ Q∗

0
[f (Q) − P ∗] dQ (8)

which equals the total amount consumers are willing to pay for Q∗, minus what they actually
pay. In Fig. 3,

∫ Q∗
0 f (Q) dQ is the area OP1EQ∗, whereas OP ∗EQ∗ is P ∗Q∗. So CS is

equal to the area P ∗P1E between the demand curve and the horizontal line P = P ∗. This
is also the area to the left of the demand curve—that is between the demand curve and the
P -axis. So the consumer surplus CS is the lighter-shaded area in Fig. 3.

CS

PS

P

QQ*O

P*

P1

P0

P � g (Q)

P � f (Q)

E

Figure 3
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Most producers also derive positive benefit or “surplus” from selling at the equilibrium
price P ∗ because they would be willing to supply the commodity for less than P ∗. In Fig. 3,
even if the price is almost as low as P0, some producers are still willing to supply the
commodity. Consider the total surplus of all the producers who receive more than the price
at which they are willing to sell. We call this the producer surplus. Geometrically it is
represented by the darker-shaded area in Fig. 3. Analytically, it is defined by

PS =
∫ Q∗

0
[P ∗ − g(Q)] dQ (9)

since this is the total revenue producers actually receive, minus what would make them
willing to supply Q∗. In Fig. 3, the area OP ∗EQ∗ is again P ∗Q∗, and

∫ Q∗
0 g(Q) dQ is the

area OP0EQ∗. So PS is equal to the area P ∗P0E between the supply curve and the line
P = P ∗. This is also the area to the left of the supply curve—that is between the supply
curve and the P -axis.

E X A M P L E 3 Suppose that the demand curve is P = f (Q) = 50 − 0.1Q and the supply curve
is P = g(Q) = 0.2Q + 20. Find the equilibrium price and compute the consumer and
producer surplus.

Solution: The equilibrium quantity is determined by the equation 50 − 0.1Q∗ = 0.2Q∗ +
20, which gives Q∗ = 100. Then P ∗ = 0.2Q∗ + 20 = 40. Hence,

CS =
∫ 100

0
[50 − 0.1Q − 40] dQ =

∫ 100

0
[10 − 0.1Q] dQ =

100

0
(10Q − 0.05Q2) = 500

PS =
∫ 100

0
[40−(0.2Q+20)] dQ =

∫ 100

0
[20−0.2Q] dQ =

100

0
(20Q−0.1Q2) = 1000

P R O B L E M S F O R S E C T I O N 9 . 4

1. Assume that the rate of extraction u(t) from an oil well decreases exponentially over time, with

u(t) = ūe−at

where ū and a are positive constants. Given the initial stock x(0) = K , find an expression
x(t) for the remaining amount of oil at time t . Under what condition will the well never be
exhausted?

⊂SM⊃2. (a) Follow the pattern in Example 1 and find the mean income m over the interval [b, 2b] when
f (r) = Br−2, assuming that there are n individuals in the population.

(b) Assume that the individuals’ demand function is D(p, r) = Apγ rδ with A > 0 γ < 0,
δ > 0, δ �= 1. Compute the total demand x(p) by using formula (7).

3. Solve the equation S =
∫ T

0
ert dt for T .
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4. Let K(t) denote the capital stock of an economy at time t . Then net investment at time t ,
denoted by I (t), is given by the rate of increase K̇(t) of K(t).

(a) If I (t) = 3t2 + 2t + 5 (t ≥ 0), what is the total increase in the capital stock during the
interval from t = 0 to t = 5?

(b) If K(t0) = K0, find an expression for the total increase in the capital stock from time t = t0
to t = T when the investment function I (t) is as in part (a).

5. An oil company is planning to extract oil from one of its fields, starting today at t = 0, where
t is time measured in years. It has a choice between two extraction profiles f and g giving the
rates of flow of oil, measured in barrels per year. Both extraction profiles last for 10 years, with
f (t) = 10t2 − t3 and g(t) = t3 − 20t2 + 100t for t in [0, 10].

(a) Sketch the two profiles in the same coordinate system.

(b) Show that
∫ t

0 g(τ) dτ ≥ ∫ t

0 f (τ) dτ for all t in [0, 10].

(c) The company sells its oil at a price per unit given by p(t) = 1 + 1/(t + 1). Total revenues
from the two profiles are then given by

∫ 10
0 p(t)f (t) dt and

∫ 10
0 p(t)g(t) dt respectively.

Compute these integrals. Which of the two extraction profiles earns the higher revenue?

6. Suppose that the demand and supply curves are P = f (Q) = 200 − 0.2Q and P = g(Q) =
20 + 0.1Q, respectively. Find the equilibrium price and quantity, and compute the consumer
and producer surplus.

7. Suppose the demand and supply curves are P = f (Q) = 6000

Q + 50
, P = g(Q) = Q+ 10. Find

the equilibrium price and quantity, and compute the consumer and producer surplus.

9.5 Integration by Parts
Mathematicians, statisticians and economists often need to evaluate integrals like

∫
x3e2x dx,

whose integrand is a product of two functions. We know that 1
4x4 has x3 as its derivative

and that 1
2e2x has e2x as its derivative, but ( 1

4x4)( 1
2e2x) certainly does not have x3e2x as its

derivative. In general, because the derivative of a product is not the product of the derivatives,
the integral of a product is not the product of the integrals.

The correct rule for differentiating a product allows us to derive an important and useful
rule for integrating products. The product rule for differentiation states that

(
f (x)g(x)

)′ = f ′(x)g(x) + f (x)g′(x) (∗)

Now take the indefinite integral of each side in (∗), and then use the rule for integrating a
sum. The result is

f (x)g(x) =
∫

f ′(x)g(x) dx +
∫

f (x)g′(x) dx
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where the constants of integration have been left implicit in the indefinite integrals on the
right-hand side of this equation. Rearranging this last equation yields the following formula:

F O R M U L A F O R I N T E G R A T I O N B Y P A R T S

∫
f (x)g′(x) dx = f (x)g(x) −

∫
f ′(x)g(x) dx (1)

At first sight, this formula does not look at all helpful. Yet the examples that follow show
how this impression is quite wrong, once one has learned to use the formula properly.

Indeed, suppose we are asked to integrate a function H(x) that can be written in the form
f (x)g′(x). By using (1), the problem can be transformed into that of integrating f ′(x)g(x).
Usually, a function H(x) can be written as f (x)g′(x) in several different ways. The point
is, therefore, to choose f and g so that it is easier to find

∫
f ′(x)g(x) dx than it is to find∫

f (x)g′(x) dx.

E X A M P L E 1 Use integration by parts to evaluate
∫

xex dx.

Solution: In order to use (1), we must write the integrand in the form f (x)g′(x). Let
f (x) = x and g′(x) = ex , implying that g(x) = ex . Then f (x)g′(x) = xex , and so∫

x · ex dx = x · ex − ∫
1 · ex dx = xex −

∫
ex dx = xex − ex + C

↓ ↓ ↓ ↓ ↓ ↓
f (x) g′(x) f (x) g(x) f ′(x) g(x)

The derivative of xex − ex + C is indeed ex + xex − ex = xex , so the integration has been
carried out correctly.

An appropriate choice of f and g enabled us to evaluate the integral. Let us see what
happens if we interchange the roles of f and g, and try f (x) = ex and g′(x) = x instead.
Then g(x) = 1

2x2. Again f (x)g′(x) = exx = xex , and by (1):∫
ex · x dx = ex · 1

2x2 −
∫

ex · 1
2x2 dx

↓ ↓ ↓ ↓ ↓ ↓
f (x) g′(x) f (x) g(x) f ′(x) g(x)

In this case, the integral on the right-hand side is more complicated than the original one.
Thus, this second choice of f and g does not simplify the integral.

The example illustrates that we must be careful how we split the integrand. Insights into
making a good choice, if there is one, come only with practice.

Sometimes integration by parts works not by producing a simpler integral, but one that
is similar, as in (a) of the next example.

E X A M P L E 2 Evaluate the following: (a) I =
∫

1

x
ln x dx (b) J =

∫
x3e2x dx.
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Solution:
(a) Choosing f (x) = 1/x and g′(x) = ln x leads nowhere. Choosing f (x) = ln x and

g′(x) = 1/x works better:

I =
∫

1

x
ln x dx =

∫
ln x

1

x
dx = ln x ln x −

∫
1

x
ln x dx

↓ ↓ ↓ ↓ ↓ ↓
f (x) g′(x) f (x) g(x) f ′(x)g(x)

In this case, the last integral is exactly the one we started with, namely I . So it must
be true that I = (ln x)2 − I + C1 for some constant C1. Solving for I yields I =
1
2 (ln x)2 + 1

2C1. Putting C = 1
2C1, we conclude that∫

1

x
ln x dx = 1

2 (ln x)2 + C

(b) We begin by arguing rather loosely as follows. Differentiation makes x3 simpler by
reducing the power in the derivative 3x2 from 3 to 2. On the other hand, e2x becomes
about equally simple whether we differentiate or integrate it. Therefore, we choose
f (x) = x3 and g′(x) = e2x , so that integration by parts tells us to differentiate f and
integrate g′. This yields f ′(x) = 3x2 and we can choose g(x) = 1

2e2x . Therefore,

J =
∫

x3e2x dx = x3( 1
2e2x) −

∫
(3x2)( 1

2e2x) dx = 1
2x3e2x − 3

2

∫
x2e2x dx (i)

The last integral is somewhat simpler than the one we started with because the power
of x has been reduced. Integrating by parts once more yields∫

x2e2x dx = x2( 1
2e2x) −

∫
(2x)( 1

2e2x) dx = 1
2x2e2x −

∫
xe2x dx (ii)

Using integration by parts a third and final time gives∫
xe2x dx = x( 1

2e2x) −
∫

1
2e2x dx = 1

2xe2x − 1
4e2x + C (iii)

Successively inserting the results of (iii) and (ii) into (i) yields (with 3C/2 = c):

J = 1
2x3e2x − 3

4x2e2x + 3
4xe2x − 3

8e2x + c

It is a good idea to double-check your work by verifying that dJ/dx = x3e2x .

There is a corresponding result for definite integrals. From the definition of the definite
integral and the product rule for differentiation, we have∫ b

a

[
f ′(x)g(x) + f (x)g′(x)

]
dx =

∫ b

a

d

dx

[
f (x)g(x)

]
dx =

b

a

f (x)g(x)

implying that ∫ b

a

f (x)g′(x) dx =
b

a

f (x)g(x) −
∫ b

a

f ′(x)g(x) dx (2)
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E X A M P L E 3 Evaluate
∫ 10

0
(1 + 0.4t)e−0.05t dt .

Solution: Put f (t) = 1+0.4t and g′(t) = e−0.05t . Then we can choose g(t) = −20e−0.05t ,
and (2) yields

∫ 10

0
(1 + 0.4t)e−0.05t dt =

10

0
(1 + 0.4t)(−20)e−0.05t −

∫ 10

0
(0.4)(−20)e−0.05t dt

= −100e−0.5 + 20 + 8
∫ 10

0
e−0.05t dt

= −100e−0.5 + 20 − 160(e−0.5 − 1) ≈ 22.3

P R O B L E M S F O R S E C T I O N 9 . 5

⊂SM⊃1. Use integration by parts to evaluate the following:

(a)
∫

xe−x dx (b)
∫

3xe4x dx (c)
∫

(1 + x2)e−x dx (d)
∫

x ln x dx

⊂SM⊃2. Use integration by parts to evaluate the following:

(a)
∫ 1

−1
x ln(x + 2) dx (b)

∫ 2

0
x2x dx (c)

∫ 1

0
x2ex dx (d)

∫ 3

0
x
√

1 + x dx

(In (d) you should graph the integrand and decide if your answer is reasonable.)

3. Use integration by parts to evaluate the following:

(a)
∫ 4

1

√
t ln t dt (b)

∫ 2

0
(x − 2)e−x/2 dx (c)

∫ 3

0
(3 − x)3x dx

4. Of course, f (x) = 1 · f (x) for any function f (x). Use this fact to prove that

∫
f (x) dx = xf (x) −

∫
xf ′(x) dx

Apply this formula to f (x) = ln x. Compare with Example 9.1.3.

5. Show that
∫

xρ ln x dx = xρ+1

ρ + 1
ln x − xρ+1

(ρ + 1)2
+ C, (ρ �= −1).

⊂SM⊃6. Evaluate the following integrals (r �= 0):

(a)
∫ T

0
bte−rt dt (b)

∫ T

0
(a + bt)e−rt dt (c)

∫ T

0
(a − bt + ct2)e−rt dt
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9.6 Integration by Substitution
In this section we shall see how the chain rule for differentiation leads to an important
method for evaluating many complicated integrals. We start with some simple examples.

E X A M P L E 1 Evaluate (a)
∫

(x2 + 10)502x dx (b)
∫ a

0
xe−cx2

dx (c �= 0)

Solution:

(a) Attempts to use integration by parts fail. Expanding (x2 + 10)50 to get a polynomial
of 51 terms, and then integrating term by term, would work in principle, but would
be extremely cumbersome. Instead, let us introduce u = x2 + 10 as a new variable.
Using differential notation, we see that du = 2xdx. Inserting these into the integral in
(a) yields ∫

u50 du

This integral is easy,
∫

u50 du = 1
51u51 + C. Because u = x2 + 10, it appears that∫

(x2 + 10)502x dx = 1

51
(x2 + 10)51 + C

By the chain rule, the derivative of 1
51 (x2 + 10)51 + C is precisely (x2 + 10)502x, so

the result is confirmed.

(b) First we consider the indefinite integral
∫

xe−cx2
dx and substitute u = −cx2. Then

du = −2cx dx, and thus x dx = −du/2c. Therefore∫
xe−cx2

dx =
∫ −1

2c
eu du = − 1

2c
eu + C = − 1

2c
e−cx2 + C

The definite integral is∫ a

0
xe−cx2

dx = − 1

2c

a

0
e−cx2 = 1

2c
(1 − e−ca2

)

In both of these examples, the integrand could be written in the form f (u)u′, whereu = g(x).
In (a), we put f (u) = u50 with u = g(x) = x2 + 10. In (b), we put f (u) = eu with
u = g(x) = −cx2. Then the integrand is a constant −1/(2c) multiplied by f

(
g(x)

)
g′(x).

Let us try the same method on the more general integral∫
f

(
g(x)

)
g′(x) dx

If we put u = g(x), then du = g′(x) dx, and so the integral reduces to
∫

f (u) du. Suppose
we could find an antiderivative function F(u) such that F ′(u) = f (u). Then we would have∫

f (u) du = F(u) + C, which implies that∫
f

(
g(x)

)
g′(x) dx = F

(
g(x)

) + C

Does this purely formal method always give the right result? To convince you that it does,
we use the chain rule to differentiate F

(
g(x)

)+C w.r.t. x. The derivative is F ′(g(x)
)
g′(x),

which is precisely equal to f
(
g(x)

)
g′(x), thus confirming the following rule:
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I N T E G R A T I O N B Y S U B S T I T U T I O N ( C H A N G E O F V A R I A B L E )

∫
f

(
g(x)

)
g′(x) dx =

∫
f (u) du (u = g(x)) (1)

NOTE 1 Precise assumptions for this formula to be valid are as follows: g is continuously differ-
entiable, and f (u) is continuous at all points u belonging to the relevant range of g.

E X A M P L E 2 Evaluate
∫

8x2(3x3 − 1)16 dx.

Solution: Substitute u = 3x3 − 1. Then du = 9x2 dx, so that 8x2 dx = 8
9 du. Hence

∫
8x2(3x3 − 1)16 dx = 8

9

∫
u16 du = 8

9
· 1

17
u17 + C = 8

153
(3x3 − 1)17 + C

The definite integral in Example 1(b) can be evaluated more simply by “carrying over” the
limits of integration. We substituted u = −cx2. As x varies from 0 to a, so u varies from 0
to −ca2. This allows us to write:∫ a

0
xe−cx2

dx =
∫ −ca2

0

−1

2c
eu du = −1

2c

−ca2

0
eu = 1

2c
(1 − e−ca2

)

This method of carrying over the limits of integration can be used in general. In fact,∫ b

a

f
(
g(x)

)
g′(x) dx =

∫ g(b)

g(a)

f (u) du (u = g(x)) (2)

The argument is simple: Provided that F ′(u) = f (u), we obtain

∫ b

a

f
(
g(x)

)
g′(x) dx =

b

a

F
(
g(x)

) = F
(
g(b)

) − F
(
g(a)

) =
∫ g(b)

g(a)

f (u) du

E X A M P L E 3 Evaluate the integral
∫ e

1

1 + ln x

x
dx.

Solution: We suggest the substitution u = 1 + ln x. Then du = (1/x) dx. Also, if x = 1
then u = 1, and if x = e then u = 2. So we have∫ e

1

1 + ln x

x
dx =

∫ 2

1
u du = 1

2

2

1
u2 = 1

2
(4 − 1) = 3

2

More Complicated Cases
The examples of integration by substitution considered so far were rather simple. More
challenging applications of this integration method are studied in this subsection.

E X A M P L E 4 Try to find a substitution that allows
∫

x − √
x

x + √
x

dx to be evaluated (assuming x > 0).
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Solution: Because
√

x occurs in both the numerator and the denominator, we try to simplify
the integral by substituting u = √

x. Then x = u2 and dx = 2u du, so we get∫
x − √

x

x + √
x

dx =
∫

u2 − u

u2 + u
2u du = 2

∫
u2 − u

u + 1
du = 2

∫ (
u − 2 + 2

u + 1

)
du

= u2 − 4u + 4 ln |u + 1| + C

where we have performed the polynomial division (u2 − u) ÷ (u + 1) with a remainder, as
in Section 4.7, in order to derive the third equality. Replacing u by

√
x in the last expression

yields the answer ∫
x − √

x

x + √
x

dx = x − 4
√

x + 4 ln
(√

x + 1
) + C

where we use the fact that
√

x + 1 > 0 for all x.

The last example shows the method that is used most frequently. We can summarize it as
follows:

M E T H O D F O R F I N D I N G A C O M P L I C A T E D I N T E G R A L
∫

G ( x ) d x

1. Pick out a “part” of G(x) and introduce this “part” as a new variable,
u = g(x).

2. Compute du = g′(x) dx.

3. Using the substitution u = g(x), du = g′(x) dx, transform (if
possible)

∫
G(x) dx to an integral of the form

∫
f (u) du.

4. Find (if possible)
∫

f (u) du = F(u) + C.

5. Replace u by g(x). The final answer is then∫
G(x) dx = F

(
g(x)

) + C

At step 3 of this procedure, it is crucial that the substitution results in an integrand f (u) that
only contains u (and du), without any x’s. Probably the most common error when integrating
by substitution is to replace dx by du, rather than use the correct formula du = g′(x) dx.

Note that if one particular substitution does not work, one can try another. But as ex-
plained in Section 9.3, there is always the possibility that no substitution at all will work.

E X A M P L E 5 Find the following: (a)
∫

x3
√

1 + x2 dx (b)
∫ 1

0
x3

√
1 + x2 dx.

Solution: (a) We follow steps 1 to 5:

1. We pick a “part” of x3
√

1 + x2 as a new variable. Let us try u = √
1 + x2.

2. When u = √
1 + x2, then u2 = 1 + x2 and so 2u du = 2x dx, implying that u du =

x dx. (Note that this is easier than differentiating u directly.)
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3.
∫

x3
√

1 + x2 dx =
∫

x2
√

1 + x2 x dx =
∫

(u2 − 1)uu du =
∫

(u4 − u2) du

4.
∫

(u4 − u2) du = 1
5u5 − 1

3u3 + C

5.
∫

x3
√

1 + x2 dx = 1
5

(√
1 + x2

)5 − 1
3

(√
1 + x2

)3 + C

(b) We combine the results in steps 3 and 4 of part (a), while noting that u = 1 when x = 0
and u = √

2 when x = 1. The implication is is∫ 1

0
x3

√
1 + x2 dx =

√
2

1

(1

5
u5 − 1

3
u3

)
= 4

√
2

5
− 2

√
2

3
− 1

5
+ 1

3
= 2

15
(
√

2 + 1)

In this example the substitution u = 1 + x2 also works.

Integrating Rational Functions, and Partial Fractions
In Section 4.7 we defined a rational function as the ratio P(x)/Q(x) of two polynomials. Just occa-
sionally economists need to integrate such functions. So we will merely give two examples that illus-
trate a procedure one can use more generally. One example has already appeared in Problem 9.1.5(b),
where the integrand was the rational function x3/(x + 1). As explained in Section 4.7, this can be
simplified by polynomial division with a remainder to a form that can be integrated directly.

That first example was particularly simple because the denominator is a polynomial of degree 1
in x. When degree of the denominator exceeds 1, however, it is generally necessary to combine
polynomial division with a partial fraction expansion of the remainder. Here is an example:

E X A M P L E 6 Calculate the integral
∫

x4 + 3x2 − 4

x2 + 2x
dx.

Solution: We apply polynomial division to the integrand, which yields (see Example 4.7.6)

x4 + 3x2 − 4

x2 + 2x
= x2 − 2x + 7 − 14x + 4

x2 + 2x

We can easily integrate the first 3 terms of the RHS to obtain
∫
(x2 − 2x + 7)dx = 1

3 x3 − x2 + 7x +
constant. The fourth term, however, has a denominator equal to the product of the two degree-one
factors x and x + 2. To obtain an integrand we can integrate, we expand this term as

14x + 4

x(x + 2)
= A

x
+ B

x + 2

— i.e., the sum of two partial fractions, where A and B are constants to be determined. Multiplying
each side of the equation by the common denominator x(x + 2) gives 14x + 4 = A(x + 2) + Bx, or
equivalently (14 − A − B)x + 4 − 2A = 0. To make this true for all x �= 0 and all x �= −2 (points
where the fraction is undefined), we require that both the coefficient 14 − A − B of x and also the
constant 4 − 2A are 0. Solving these two simultaneous equations gives A = 2 and B = 12. Finally,
therefore, we can integrate the fourth remainder term of the integrand to obtain∫

14x + 4

x2 + 2x
dx =

∫
2

x
dx +

∫
12

x + 2
dx = 2 ln |x| + 12 ln |x + 2| + C

Hence, the overall answer is∫
x4 + 3x2 − 4

x2 + 2x
dx = 1

3
x3 − x2 + 7x + 2 ln |x| + 12 ln |x + 2| + C

This answer, of course, can be verified by differentiation.
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P R O B L E M S F O R S E C T I O N 9 . 6

1. Find the following integrals by using (1):

(a)
∫

(x2 + 1)8 2x dx (b)
∫

(x + 2)10 dx (c)
∫

2x − 1

x2 − x + 8
dx

⊂SM⊃2. Find the following integrals by means of an appropriate substitution:

(a)
∫

x(2x2 + 3)5 dx (b)
∫

x2ex3+2 dx (c)
∫

ln(x + 2)

2x + 4
dx

(d)
∫

x
√

1 + x dx (e)
∫

x3

(1 + x2)3
dx (f)

∫
x5

√
4 − x3 dx

3. Find the following integrals:

(a)
∫ 1

0
x
√

1 + x2 dx (b)
∫ e

1

ln y

y
dy (c)

∫ 3

1

1

x2
e2/x dx (d)

∫ 8

5

x

x − 4
dx

(In (d) you should try at least two different methods.)

4. Solve the equation
∫ x

3

2t − 2

t2 − 2t
dt = ln

(
2
3 x − 1

)
for values of x satisfying x > 2.

5. Show that
∫ t1

t0

S ′(x(t)
)
ẋ(t) dt = S

(
x(t1)

) − S
(
x(t0)

)
.

HARDER PROBLEMS

⊂SM⊃6. Calculate the following integrals:

(a)
∫ 1

0
(x4 − x9)(x5 − 1)12 dx (b)

∫
ln x√

x
dx (c)

∫ 4

0

dx√
1 + √

x

⊂SM⊃7. Calculate:

(a)
∫ 4

1

e
√

x

√
x (1 + e

√
x)

dx (b)

∫ 1/3

0

dx

ex + 1
(c)

∫ 41

8.5

dx√
2x − 1 − 4

√
2x − 1

(Hint: For (b), substitute t = e−x ; for (c), substitute z4 = 2x − 1.)

8. Find the integral I =
∫

x1/2

1 − x1/3
dx.

(Hint: How can you simultaneously eliminate both fractional exponents in x1/2 and x1/3 using
only one substitution?)

9. Use the method of partial fractions suggested in Example 6 to write f (x) = cx + d

(x − a)(x − b)
as a sum of two fractions, and use the result to integrate:

(a)
∫

x dx

(x + 1)(x + 2)
(b)

∫
(1 − 2x) dx

x2 − 2x − 15
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9.7 Infinite Intervals of Integration
In Example 9.6.1(b) we proved that

∫ a

0
xe−cx2

dx = 1

2c
(1 − e−ca2

)

Suppose c is a positive number and let a tend to infinity. Then the right-hand expression
tends to 1/(2c). This makes it seem natural to write

∫ ∞

0
xe−cx2

dx = 1

2c

In statistics and economics it is common to encounter such integrals over an infinite interval.
In general, suppose f is a function that is continuous for all x ≥ a. Then

∫ b

a
f (x) dx is

defined for each b ≥ a. If the limit of this integral as b → ∞ exists (and is finite), then we
say that f is integrable over [a, ∞), and define

∫ ∞

a

f (x) dx = lim
b→∞

∫ b

a

f (x) dx (1)

The improper integral
∫ ∞
a

f (x) dx is then said to converge. If the limit does not exist,
however, the improper integral is said to diverge. If f (x) ≥ 0 in [a, ∞), we interpret the
integral (1) as the area below the graph of f over the infinite interval [a, ∞).

Analogously, we define

∫ b

−∞
f (x) dx = lim

a→−∞

∫ b

a

f (x) dx (2)

when f is continuous in (−∞, b]. If this limit exists, the improper integral is said to
converge. Otherwise, it diverges.

E X A M P L E 1 The exponential distribution in statistics is defined by the density function

f (x) = λe−λx (x ≥ 0; λ is a positive constant)

Show that the area below the graph of f over [0, ∞) is equal to 1. (See Fig. 1.)

Solution: For b > 0, the area below the graph of f over [0, b] is equal to

∫ b

0
λe−λx dx =

b

0

(−e−λx
) = −e−λb + 1

As b → ∞, so −e−λb + 1 approaches 1. Therefore,

∫ ∞

0
λe−λx dx = lim

b→∞

∫ b

0
λe−λx dx = lim

b→∞
(−e−λb + 1

) = 1
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f (x) � λe �λx

λ

A

y

x

2

1

1 2 3

f (x) � 1�x

A

y

x

Figure 1 Area A has an unbounded
base but the height decreases to 0 so
rapidly that the total area is 1

Figure 2 “A = ∫ ∞
1 (1/x) dx = ∞.”

1/x does not approach 0 sufficiently
fast, so the improper integral diverges

E X A M P L E 2 For a > 1, show that ∫ ∞

1

1

xa
dx = 1

a − 1
(∗)

Then study the case a ≤ 1.

Solution: For a �= 1 and b > 1,

∫ b

1

1

xa
dx =

∫ b

1
x−a dx =

b

1

1

1 − a
x1−a = 1

1 − a
(b1−a − 1) (∗∗)

For a > 1, one has b1−a = 1/ba−1 → 0 as b → ∞. Hence, (∗) follows from (∗∗) by
letting b → ∞.

For a = 1, the RHS of (∗∗) is undefined. Nevertheless,
∫ b

1 (1/x) dx = ln b− ln 1 = ln b,
which tends to ∞ as b tends to ∞, so

∫ ∞
1 (1/x) dx diverges. See Fig. 2.

For a < 1, the last expression in (∗∗) tends to ∞ as b tends to ∞. Hence, the integral
diverges in this case also.

If both limits of integration are infinite, the improper integral of a continuous function f on
(−∞, ∞) is defined by

∫ ∞

−∞
f (x) dx =

∫ 0

−∞
f (x) dx +

∫ ∞

0
f (x) dx (3)

If both integrals on the right-hand side converge, the improper integral
∫ ∞
−∞ f (x) dx is said

to converge; otherwise, it diverges. Instead of using 0 as the point of subdivision, one could
use an arbitrary fixed real number c. The value assigned to the integral will always be the
same, provided that the integral does converge.

It is important to note that definition (3) requires both integrals on the right-hand side to
converge. Note in particular that

lim
b→∞

∫ b

−b

f (x) dx (4)
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is not the definition of
∫ +∞
−∞ f (x) dx. Problem 4 provides an example in which (4) exists, yet

the integral in (3) diverges because
∫ 0
−b

f (x) dx → −∞ as b → ∞, and
∫ b

0 f (x) dx → ∞
as b → ∞. So (4) is not an acceptable definition, whereas (3) is.

E X A M P L E 3 For c > 0, prove that the following integral converges, and find its value:∫ +∞

−∞
xe−cx2

dx

Solution: In the introduction to this section we proved that
∫ ∞

0 xe−cx2
dx = 1/2c. In the

same way we see that∫ 0

−∞
xe−cx2

dx = lim
a→−∞

∫ 0

a

xe−cx2
dx = lim

a→−∞

0

a

− 1

2c
e−cx2 = − 1

2c

It follows that ∫ ∞

−∞
xe−cx2

dx = − 1

2c
+ 1

2c
= 0 (c > 0) (∗∗)

In fact, the function f (x) = xe−cx2
satisfies f (−x) = −f (x) for all x, and so its graph is

symmetric about the origin. For this reason, the integral
∫ 0
−∞ xe−cx2

dx must also exist and
be equal to −1/2c. (This result is very important in statistics. See Problem 12.)

Integrals of Unbounded Functions
We turn next to improper integrals where the integrand is not bounded. Consider first the
function f (x) = 1/

√
x, with x ∈ (0, 2]. (See Fig. 3.)

2

3

1

1 2

f (x) � 1��x

h

y

x

Figure 3 As h → 0 the shaded area becomes unbounded, but the graph
of f approaches the y-axis so quickly that the total area is finite.

Note that f (x) → ∞ as x → 0+. The function f is continuous in the interval [h, 2] for
any fixed number h in (0, 2). Therefore, the definite integral of f over the interval [h, 2]
exists, and in fact ∫ 2

h

1√
x

dx =
2

h

2
√

x = 2
√

2 − 2
√

h
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The limit of this expression as h → 0+ is 2
√

2. Then, by definition,∫ 2

0

1√
x

dx = 2
√

2

The improper integral is said to converge in this case, and the area below the graph of f

over the interval (0, 2] is 2
√

2. The area over the interval (h, 2] is shown in Fig. 3.
More generally, suppose that f is a continuous function in the interval (a, b], but f (x)

is not defined at x = a. Then we can define∫ b

a

f (x) dx = lim
h→0+

∫ b

a+h

f (x) dx (5)

if the limit exists, and the improper integral of f is said to converge in this case. If f (x) ≥ 0
in (a, b], we identify the integral as the area under the graph of f over the interval (a, b].

In the same way, if f is not defined at b, we can define∫ b

a

f (x) dx = lim
h→0+

∫ b−h

a

f (x) dx (6)

if the limit exists, in which case the improper integral of f is said to converge.
Suppose f is continuous in (a, b). We may not even have f defined at a or b. For

instance, suppose f (x) → −∞ as x → a+ and f (x) → +∞ as x → b−. In this case, f

is said to be integrable in (a, b), and we can define∫ b

a

f (x) dx =
∫ c

a

f (x) dx +
∫ b

c

f (x) dx (7)

provided that both integrals on the right-hand side of (7) converge. Here c is an arbitrary
fixed number in (a, b), and neither the convergence of the integral nor its value depends on
the choice of c. If either of the integrals on the right-hand side of (7) does not converge, the
left-hand side is not well defined.

A Comparison Test for Convergence
The following convergence test for integrals is occasionally useful because it does not require eval-
uation of the integral.

T H E O R E M 9 . 7 . 1 ( A C O M P A R I S O N T E S T F O R C O N V E R G E N C E )

Suppose that f and g are continuous for all x ≥ a and

|f (x)| ≤ g(x) (for all x ≥ a)

If
∫ ∞
a

g(x) dx converges, then
∫ ∞
a

f (x) dx also converges, and∣∣∣∣
∫ ∞

a

f (x) dx

∣∣∣∣ ≤
∫ ∞

a

g(x) dx
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Considering the case in which f (x) ≥ 0, Theorem 9.7.1 can be interpreted as follows: If the area
below the graph of g is finite, then the area below the graph of f is finite as well, because at no
point in [a, ∞) does the graph of f lie above the graph of g. (Draw a figure.) This result seems
quite plausible and we shall not give an analytical proof. A corresponding theorem holds for the
case where the lower limit of integration is −∞. Also, similar comparison tests can be proved for
unbounded functions defined on bounded intervals.

E X A M P L E 4 Integrals of the form ∫ ∞

t0

U
(
c(t)

)
e−αt dt (∗)

often appear in economic growth theory. Here c(t) denotes consumption at time t , whereas U is an
instantaneous utility function, and α is a positive discount rate. Suppose that there exist numbers M

and β, with β < α, such that
|U(

c(t)
)| ≤ Meβt (∗∗)

for all t ≥ t0 and for each possible consumption level c(t) at time t . Thus, the absolute value of the
utility of consumption is growing at a rate less than the discount rate α. Prove that then (∗) converges.

Solution: From (∗∗), we have |U(
c(t)

)
e−αt | ≤ Me−(α−β)t for all t ≥ t0. Moreover,

∫ T

t0

Me−(α−β)t dt =
T

t0

−M

α − β
e−(α−β)t = M

α − β

[
e−(α−β)t0 − e−(α−β)T

]
Because α − β > 0, the last expression tends to

[M/(α − β)] e−(α−β)t0 as T → ∞
From Theorem 9.7.1 it follows that (∗) converges.

E X A M P L E 5 The function f (x) = e−x2
is extremely important in statistics. When multiplied by a suitable

constant (actually 1/
√

π ) it is the density function associated with a Gaussian, or normal, distribution.
We want to show that the improper integral∫ +∞

−∞
e−x2

dx (∗)

converges. Recall from Section 9.1 that the indefinite integral of f (x) = e−x2
cannot be expressed

in terms of “elementary” functions. Because f (x) = e−x2
is symmetric about the y-axis, one has∫ ∞

−∞ e−x2
dx = 2

∫ ∞
0 e−x2

dx, so it suffices to prove that
∫ ∞

0 e−x2
dx converges. To show this,

subdivide the interval of integration so that∫ ∞

0
e−x2

dx =
∫ 1

0
e−x2

dx +
∫ ∞

1
e−x2

dx (∗∗)

Of course,
∫ 1

0 e−x2
dx presents no problem because it is the integral of a continuous function over a

bounded interval. For x ≥ 1, one has x2 ≥ x and so 0 ≤ e−x2 ≤ e−x . Now
∫ ∞

1 e−x dx converges

(to 1/e), so according to Theorem 9.7.1, the integral
∫ ∞

1 e−x2
dx must also converge. From (∗∗), it

follows that
∫ ∞

0 e−x2
dx converges. Thus, the integral (∗) does converge, but we have not found its

value. In fact, more advanced techniques of integration are used in FMEA to show that∫ +∞

−∞
e−x2

dx = √
π (8)
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P R O B L E M S F O R S E C T I O N 9 . 7

1. Determine the following integrals, if they converge. Indicate those that diverge.

(a)
∫ ∞

1

1

x3
dx (b)

∫ ∞

1

1√
x

dx (c)
∫ 0

−∞
ex dx (d)

∫ a

0

x dx√
a2 − x2

(a > 0)

2. Define f for all x by f (x) = 1/(b − a) for x ∈ [a, b], and f (x) = 0 for x �∈ [a, b], where
b > a. (In statistics, f is the density function of the uniform (or rectangular) distribution on
the interval [a, b].) Find the following:

(a)
∫ +∞

−∞
f (x) dx (b)

∫ +∞

−∞
xf (x) dx (c)

∫ +∞

−∞
x2f (x) dx

⊂SM⊃3. In connection with Example 1, find the following:

(a)
∫ ∞

0
xλe−λx dx (b)

∫ ∞

0
(x − 1/λ)2 λe−λx dx (c)

∫ ∞

0
(x − 1/λ)3 λe−λx dx

(The three numbers you obtain are called respectively the expectation, the variance, and the
third central moment of the exponential distribution.)

4. Prove that
∫ +∞

−∞
x/(1 + x2) dx diverges, but that lim

b→∞

∫ b

−b

x/(1 + x2) dx converges.

⊂SM⊃5. The function f is defined for x > 0 by f (x) = (ln x)/x3.

(a) Find the maximum and minimum points of f , if there are any.

(b) Examine the convergence of
∫ 1

0
f (x) dx and

∫ ∞

1
f (x) dx.

6. Use Theorem 9.7.1 to prove the convergence of
∫ ∞

1

1

1 + x2
dx.

⊂SM⊃7. Show that
∫ 3

−2

(
1√

x + 2
+ 1√

3 − x

)
dx = 4

√
5.

8. R. E. Hall and D. W. Jorgenson, in their article on “Tax Policy and Investment Behavior”, use
the integral

z =
∫ ∞

0
e−rsD(s) ds

to represent the present discounted value, at interest rate r , of the time-dependent stream of
depreciation allowances D(s) (0 ≤ s < ∞). Find z as a function of τ in the following cases:

(a) D(s) = 1/τ for 0 ≤ s ≤ τ , D(s) = 0 for s > τ . (Constant depreciation over τ years.)

(b) D(s) = 2(τ − s)/τ 2 for 0 ≤ s ≤ τ , D(s) = 0 for s > τ . (Straight-line depreciation.)

9. Suppose you evaluate
∫ +1
−1 (1/x2) dx by using the definition of the definite integral without

thinking carefully. Show that you get a negative answer even though the integrand is never
negative. What has gone wrong?
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10. Prove that the integral
∫ 1

0

ln x√
x

dx converges and find its value. (Hint: See problem 9.6.6(b).)

11. Find the integral

Ik =
∫ ∞

1

(
k

x
− k2

1 + kx

)
dx (k is a positive constant)

Find the limit of Ik as k → ∞, if it exists.

HARDER PROBLEM

⊂SM⊃12. In statistics, the normal, or Gaussian, density function with mean μ and variance σ 2 is defined by

f (x) = 1

σ
√

2π
exp

[−(x − μ)2/2σ 2
]

in the interval (−∞, ∞).4 Prove that

(a)
∫ +∞

−∞
f (x) dx = 1 (b)

∫ +∞

−∞
xf (x) dx = μ (c)

∫ +∞

−∞
(x − μ)2f (x) dx = σ 2

(Hint: Use the substitution u = (x − μ)/
√

2σ , together with (8) and the result in Example 3.)

9.8 A Glimpse at Differential Equations
In economic growth theory, in studies of the extraction of natural resources, in many models
in environmental economics, and in several other areas of economics, one encounters equa-
tions where the unknowns are functions, and where the derivatives of these functions also
appear. Equations of this general type are called differential equations, and their study
is one of the most fascinating fields of mathematics. Here we shall consider only a few
simple types of such equations. We denote the independent variable by t , because most of
the differential equations in economics have time as the independent variable.

We have already solved the simplest type of differential equation: Let f (t) be a given
function. Find all functions that have f (t) as their derivative—that is, find all functions
that solve ẋ(t) = f (t) for x(t). (Recall that ẋ denotes the derivative of x w.r.t. time t .) We
already know that the answer is an indefinite integral:

ẋ(t) = f (t) ⇐⇒ x(t) =
∫

f (t) dt + C

We call x(t) = ∫
f (t) dt + C the general solution of the equation ẋ(t) = f (t).

Consider next some more challenging types of differential equation.

4 This function, its bell-shaped graph, and a portrait of its inventor Carl Friedrich Gauss (1777–
1855), appeared on the German 10-mark bank note that circulated between 1991 and 2001, in the
decade before the euro was introduced.
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The Law for Natural Growth

Let x(t) denote an economic quantity such as the national output of China. The ratio
ẋ(t)/x(t) has previously been called the relative rate of change of this quantity. Several
economic models postulate that the relative rate of change is approximately a constant, r .
Thus,

ẋ(t) = rx(t) for all t (1)

Which functions have a constant relative rate of change? For r = 1 the differential equation
is ẋ = x, and we know that the derivative of x = et is again ẋ = et . More generally, the
function x = Aet satisfies the equation ẋ = x for all values of the constant A. By trial and
error you will probably be able to come up with x(t) = Aert as a solution of (1). In any
case, it is easy to verify: If x = Aert , then ẋ(t) = Arert = rx(t). Moreover, we can prove
that no other function satisfies (1): Indeed, multiply equation (1) by the positive function
e−rt and collect all terms on the left-hand side. This gives

ẋ(t)e−rt − rx(t)e−rt = 0 for all t (2)

Equation (2) must have precisely the same solutions as (1). But the left-hand side of this
equation is the derivative of the product x(t)e−rt . So equation (2) can be rewritten as
d
dt

[x(t)e−rt ] = 0. It follows that x(t)e−rt must equal a constant A. Hence, x(t) = Aert . If
the value of x(t) at t = 0 is x0, then x0 = Ae0 = A. We conclude that

ẋ(t) = rx(t), x(0) = x0 ⇐⇒ x(t) = x0e
rt (3)

Another way to solve (1) is to take logarithms. In fact d
dt

(ln x) = ẋ/x = r , so ln x(t) =∫
r dt = rt + C. This implies that x(t) = ert+C = ert eC = Aert , where A = eC .

E X A M P L E 1 Let S(t) denote the sales volume of a particular commodity per unit of time, evaluated
at time t . In a stable market where no sales promotion is carried out, the decrease in S(t)

per unit of time is proportional to S(t). Thus sales decelerate at the constant proportional
rate a > 0, implying that

Ṡ(t) = −aS(t)

(a) Find an expression for S(t) when sales at time 0 are S0.

(b) Solve the equation S0e
−at = 1

2S0 for t . Interpret the answer.

Solution:

(a) This is an equation of type (1) with x = S and r = −a. According to (3), the solution
is S(t) = S0e

−at .

(b) From S0e
−at = 1

2S0, we obtain e−at = 1
2 . Taking the natural logarithm of each side

yields −at = ln(1/2) = − ln 2. Hence t = ln 2/a. This is the time it takes before sales
fall to half their initial level.
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Equation (1) has often been called the law for natural growth. Whatever it may be called,
this law is probably the most important differential equation that economists have to know.

Suppose that x(t) denotes the number of individuals in a population at time t . The
population could be, for instance, a particular colony of bacteria, or polar bears in the
Arctic. We call ẋ(t)/x(t) the per capita growth rate of the population. If there is neither
immigration nor emigration, then the per capita rate of increase will be equal to the difference
between the per capita birth and death rates. These rates will depend on many factors such
as food supply, age distribution, available living space, predators, disease, and parasites,
among other things.

Equation (1) specifies a simple model of population growth, the so-called Malthus’s
law. According to (3), if the per capita growth rate is constant, then the population must
grow exponentially. In reality, of course, exponential growth can go on only for a limited
time. Let us consider some alternative models for population growth.

Growth towards an Upper Limit

Suppose the population size x(t) cannot exceed some carrying capacity K , and that the rate
of change of population is proportional to its deviation from this carrying capacity:

ẋ(t) = a(K − x(t)) (∗)

With a little trick, it is easy to find all the solutions to this equation. Define a new function
u(t) = K − x(t), which at each time measures the deviation of the population size from
the carrying capacity K . Then u̇(t) = −ẋ(t). Inserting this into (∗) gives −u̇(t) = au(t),
or u̇(t) = −au(t). This is an equation like (1). The solution is u(t) = Ae−at , so that
K − x(t) = Ae−at , hence x(t) = K − Ae−at . If x(0) = x0, then x0 = K − A, and so
A = K − x0. It follows that

ẋ(t) = a(K − x(t)), x(0) = x0 ⇐⇒ x(t) = K − (K − x0)e
−at (4)

In Problem 4 we shall see that the same equation describes the population in countries where
the indigenous population has a fixed relative rate of growth, but where there is immigration
each year. The same equation can also represent several other phenomena, some of which
are discussed in the problems for this section.

E X A M P L E 2 Suppose that a population has a carrying capacity of K = 200 (millions) and that at
time t = 0 there are 50 (millions). Let x(t) denote the population at time t . Suppose that
a = 0.05 and find the solution of equation (∗) in this case. Sketch a graph of the solution.

Solution: Using (4) we find that

x(t) = 200 − (200 − 50)e−0.05t = 200 − 150e−0.05t

The graph is drawn in Fig. 1.
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x (t) � 200 � 150 e �0.05 t

100

200

x

t

x (t) � 
K

1 � Ae�rt

K�2

K

x

t

Figure 1 Growth to level 200 Figure 2 Logistic growth up to level K

Logistic Growth

Instead of the differential equation (∗), a more realistic assumption is that the relative rate
of increase is approximately constant while the population is small, but that it converges to
zero as the population approaches its carrying capacity K . A special form of this assumption
is expressed by the equation

ẋ(t) = rx(t)

(
1 − x(t)

K

)
(5)

Indeed, when the population x(t) is small in proportion to K , so that x(t)/K is small, then
ẋ(t) ≈ rx(t), which implies that x(t) increases (approximately) exponentially. As x(t)

becomes larger, however, the factor 1 − x(t)/K increases in significance. In general, we
claim that if x(t) satisfies (5) (and is not identically equal to 0), then x(t) must have the form

x(t) = K

1 + Ae−rt
for some constant A (6)

The function x given in (6) is called a logistic function.

Proof of (6): We use a little trick. Suppose that x = x(t) is not 0 and introduce the new variable
u = u(t) = −1 + K/x. Then u̇ = −Kẋ/x2 = −Kr/x + r = −r(−1 + K/x) = −ru. Hence
u = u(t) = Ae−rt for some constant A. But then −1 + K/x(t) = Ae−rt , and solving this equation
for x(t) yields (6).

Suppose the population consists of x0 individuals at time t = 0, and thus x(0) = x0. Then
(6) gives x0 = K/(1 + A), so that A = (K − x0)/x0. All in all, we have shown that

ẋ(t) = rx(t)

(
1 − x(t)

K

)
, x(0) = x0 ⇐⇒ x(t) = K

1 + K − x0

x0
e−rt

(7)

If 0 < x0 < K , it follows from (7) that x(t) is strictly increasing and that x(t) → K

as t → ∞ (assuming r > 0). We say in this case that there is logistic growth up to
the level K . The graph of the solution is shown in Fig. 2. It has an inflection point at
the height K/2 above the t-axis. We verify this by differentiating (5) w.r.t. t . This gives
ẍ = rẋ(1 − x/K) + rx(−ẋ/K) = rẋ(1 − 2x/K) = 0. So ẍ = 0 when x = K/2, and ẍ

changes sign at this point.
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Equations of type (5), and hence logistic functions of the form (6), appear in many
economic models. Some of them are discussed in the problems.

The simple differential equations studied here are so important that we present them and
their general solutions in a form which makes it easier to see their structure. As is often
done in the theory of differential equations, we suppress the symbol for time dependence.

ẋ = ax for all t ⇐⇒ x = Aeat for some constant A (8)

ẋ + ax = b for all t ⇐⇒ x = Ae−at + b

a
for some constant A (9)

ẋ + ax = bx2 for all t ⇐⇒ x = a

b − Aeat
for some constant A (10)

(In (9) we must assume that a �= 0. In (10) the function x(t) ≡ 0 is also a solution.)

P R O B L E M S F O R S E C T I O N 9 . 8

1. Which of the following functions have a constant relative rate of increase, ẋ/x?

(a) x = 5t + 10 (b) x = ln(t + 1) (c) x = 5et

(d) x = −3 · 2t (e) x = et2
(f) x = et + e−t

2. Suppose that a firm’s capital stock K(t) satisfies the differential equation

K̇(t) = I − δK(t)

where investment I is constant, and δK(t) denotes depreciation, with δ a positive constant.

(a) Find the solution of the equation if the capital stock at time t = 0 is K0.

(b) Let δ = 0.05 and I = 10. Explain what happens as t → ∞ when: (i) K0 = 150;
(ii) K0 = 250.

3. Let N(t) denote the number of people in a country whose homes have broadband internet.
Suppose that the rate at which new people get access is proportional to the number of people
who still have no access. If the population size is P , the differential equation for N(t) is then

Ṅ(t) = k(P − N(t))

where k is a positive constant. Find the solution of this equation if N(0) = 0. Then find the
limit of N(t) as t → ∞.

4. A country’s annual natural rate of population growth (births minus deaths) is 2%. In addition
there is a net immigration of 40 000 persons per year. Write down a differential equation for
the function N(t) which denotes the number of persons in the country at time t (year). Suppose
that the population at time t = 0 is 2 000 000. Find N(t).

5. Let P(t) denote Europe’s population in millions t years after 1960. According to UN estimates,
P(0) = 641 and P(10) = 705. Suppose that P(t) grows exponentially, with P(t) = 641ekt .
Compute k and then find P(15) and P(40) (estimates of the population in 1975 and in 2000).
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6. When a colony of bacteria is subjected to strong ultraviolet light, they die as their DNA is
destroyed. In a laboratory experiment it was found that the number of living bacteria decreased
approximately exponentially with the length of time they were exposed to ultraviolet light.
Suppose that 70.5% of the bacteria still survive after 7 seconds of exposure. What percentage
will be alive after 30 seconds? How long does it take to kill 95% of the bacteria?

7. Solve the following differential equations by using one of (8)–(10):

(a) ẋ = −0.5x (b) K̇ = 0.02K (c) ẋ = −0.5x + 5

(d) K̇ − 0.2K = 100 (e) ẋ + 0.1x = 3x2 (f) K̇ = K(−1 + 2K)

8. A study of British agricultural mechanization from 1950 onwards estimated that y, the number
of tractors in use (measured in thousands) as a function of t (measured in years, so that t = 0
corresponds to 1950), was approximately given by y(t) = 250 + x(t), where x = x(t) satisfied
the logistic differential equation

ẋ = 0.34x (1 − x/230) , x(0) = 25

(a) Find an expression for y(t).

(b) Find the limit of y(t) as t → ∞, and draw the graph.

9. In a model of how influenza spreads, let N(t) denote the number of persons who develop
influenza t days after all members of a group of 1000 people have been in contact with a carrier
of infection. Assume that

Ṅ(t) = 0.39N(t)(1 − N(t)/1000) , N(0) = 1

(a) Find a formula for N(t). How many develop influenza after 20 days?

(b) How many days does it take until 800 are sick?

(c) Will all 1000 people eventually get influenza?

⊂SM⊃10. (a) The logistic function (5) has been used for describing the stock of certain fish populations.
Suppose such a population is harvested at a rate proportional to the stock, so that

ẋ(t) = rx(t)

(
1 − x(t)

K

)
− f x(t) (11)

Solve this equation, when the population at time t = 0 is x0.

(b) Suppose f > r . Examine the limit of x(t) as t → ∞.

HARDER PROBLEM

11. According to Newton’s law of cooling, the rate at which a warm object cools is proportional
to the difference between the temperature of the object and the “ambient” temperature of its
surroundings. If the temperature of the object at time t and the (constant) ambient temperature is
C, then Ṫ (t) = k(C−T (t)). Note that this is an equation of the type given in (4). At 12 noon, the
police enter a room and discover a dead body. Immediately they measure its temperature, which
is 35 degrees (Centigrade). At 1 pm they take the temperature again, which is now 32 degrees.
The temperature in the room is constant at 20 degrees. When did the person die? (Hint: Let the
temperature be T (t), where t is measured in hours and 12 noon corresponds to t = 0.)
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9.9 Separable and Linear Differential Equations
In this final section of the chapter we consider two general types of differential equation
that are frequently encountered in economics. The discussion will be brief—for a more
extensive treatment we refer to FMEA.

Separable Equations
A differential equation of the type

ẋ = f (t)g(x) (1)

is called separable. The unknown function is x = x(t), and its rate of change ẋ is given as
the product of a function only of t and a function only of x. A simple case is ẋ = tx, which is
obviously separable, while ẋ = t + x is not. In fact, all the differential equations studied in
the previous section were separable equations of the type ẋ = g(x), with f (t) ≡ 1. Equation
(9.8.10), for instance, is separable, since ẋ + ax = bx2 can be rewritten as ẋ = g(x) where
g(x) = −ax + bx2.

The following general method for solving separable equations is justified in FMEA.

Method for Solving Separable Differential Equations:

A. Write equation (1) as
dx

dt
= f (t)g(x) (∗)

B. Separate the variables:
dx

g(x)
= f (t) dt

C. Integrate each side: ∫
dx

g(x)
=

∫
f (t) dt

D. Evaluate the two integrals (if possible) and you obtain a solution of (∗)

(possibly in implicit form). Solve for x, if possible.

NOTE 1 In step B we divided by g(x). In fact, if g(x) has a zero at x = a, so that g(a) = 0,
then x(t) ≡ a will be a particular solution of the equation, because the right- and left-hand
sides of the equation are both 0 for all t . For instance, in the logistic equation (9.8.5), both
x(t) = 0 and x(t) = K are particular solutions.

E X A M P L E 1 Solve the differential equation
dx

dt
= etx2

and find the solution curve (often called the integral curve) which passes through the point
(t, x) = (0, 1).
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Solution: We observe first that x(t) ≡ 0 is one (trivial) solution. To find the other solutions
we follow the recipe:

dx

x2
= et dtSeparate: ∫

dx

x2
=

∫
et dtIntegrate:

− 1

x
= et + CEvaluate:

It follows that

x = −1

et + C
(∗)

To find the integral curve through (0, 1), we must determine the correct value of C. Because
we require x = 1 for t = 0, it follows from (∗) that 1 = −1/(1 + C), so C = −2. Thus,
the integral curve passing through (0, 1) is x = 1/(2 − et ).

E X A M P L E 2 (Economic Growth)5 Let X = X(t) denote the national product, K = K(t) the capital
stock, and L = L(t) the number of workers in a country at time t . Suppose that, for all
t ≥ 0,

(a) X = √
K

√
L (b) K̇ = 0.4X (c) L = e0.04t

Derive from these equations a single differential equation for K = K(t), and find the
solution of that equation when K(0) = 10000. (In (a) we have a Cobb–Douglas production
function, (b) says that aggregate investment is proportional to output, whereas (c) implies
that the labour force grows exponentially.)

Solution: From equations (a)–(c), we derive the single differential equation

K̇ = dK

dt
= 0.4

√
K

√
L = 0.4e0.02t

√
K

This is clearly separable. Using the recipe yields:

dK√
K

= 0.4e0.02t dt∫
dK√

K
=

∫
0.4e0.02t dt

2
√

K = 20e0.02t + C

If K = 10 000 for t = 0, then 2
√

10 000 = 20+C, so C = 180. Then
√

K = 10e0.02t +90,
and so the required solution is

K(t) = (10e0.02t + 90)2 = 100(e0.02t + 9)2

The capital–labour ratio has a somewhat bizarre limiting value in this model: K(t)/L(t) =
100(e0.02t + 9)2/e0.04t = 100[(e0.02t + 9)/e0.02t ]2 = 100[1 + 9e−0.02t ]2 → 100 as t → ∞.

5 This is a special case of the Solow–Swan growth model. See Example 5.7.3 in FMEA.
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E X A M P L E 3 Solve the separable differential equation (ln x)ẋ = e1−t .

Solution: Following the recipe yields

ln x
dx

dt
= e1−t

ln x dx = e1−t dt∫
ln x dx =

∫
e1−t dt

x ln x − x = −e1−t + C

Here we used the result in Example 9.1.3. The desired functions x = x(t) are those that
satisfy the last equation for all t .

NOTE 2 We usually say that we have solved a differential equation even if the unknown
function (as shown in Example 3) cannot be expressed explicitly. The important point is that
we have expressed the unknown function in an equation that does not include the derivative
of that function.

First-Order Linear Equations

A first-order linear differential equation is one that can be written in the form

ẋ + a(t)x = b(t) (2)

where a(t) and b(t) denote known continuous functions of t in a certain interval, and
x = x(t) is the unknown function. Equation (2) is called “linear” because the left-hand side
is a linear function of x and ẋ.

When a(t) and b(t) are constants, the solution was given in (9.8.9):

ẋ + ax = b ⇐⇒ x = Ce−at + b

a
(C is a constant) (3)

We found the solution of this equation by introducing a new variable. In fact, the equation
is separable, so the recipe for separable equations will also lead us to the solution. If we let
C = 0 we obtain the constant solution x(t) = b/a. We say that x = b/a is an equilibrium
state, or a stationary state, for the equation. Observe how this solution can be obtained from
ẋ + ax = b by letting ẋ = 0 and then solving the resulting equation for x. If the constant
a is positive, then the solution x = Ce−at + b/a converges to b/a as t → ∞. In this case,
the equation is said to be stable, because every solution of the equation converges to an
equilibrium as t approaches infinity. (Stability theory is an important issue for differential
equations appearing in economics. See e.g. FMEA for an extensive discussion.)

E X A M P L E 4 Find the solution of
ẋ + 3x = −9

and determine whether the equation is stable.
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Solution: By (3), the solution is x = Ce−3t − 3. Here the equilibrium state is x = −3,
and the equation is stable because a = 3 > 0, and x → −3 as t → ∞.

E X A M P L E 5 (Price Adjustment Mechanism) Let D(P ) = a − bP denote the demand quantity and
S(P ) = α + βP the supply of a certain commodity when the price is P . Here a, b, α, and
β are positive constants. Assume that the price P = P(t) varies with time, and that Ṗ is
proportional to excess demand D(P ) − S(P ). Thus,

Ṗ = λ[D(P ) − S(P )]

where λ is a positive constant. Inserting the expressions for D(P ) and S(P ) into this equation
gives Ṗ = λ(a − bP − α − βP ). Rearranging, we then obtain

Ṗ + λ(b + β)P = λ(a − α)

According to (3), the solution is

P = Ce−λ(b+β)t + a − α

b + β

Because λ(b + β) is positive, as t tends to infinity, P converges to the equilibrium price
P e = (a − α)/(b + β), for which D(P e) = S(P e). Thus, the equation is stable.

Variable Right-Hand Side
Consider next the case where the right-hand side is not constant:

ẋ + ax = b(t) (4)

When b(t) is not constant, this equation is not separable. A clever trick helps us find the solu-
tion. We multiply each side of the equation by the positive factor eat , called an integrating
factor. This gives the equivalent equation

ẋeat + axeat = b(t)eat (∗)

This idea may not be obvious beforehand, but it works well because the left-hand side of
(∗) happens to be the exact derivative of the product xeat . Thus (∗) is equivalent to

d

dt
(xeat ) = b(t)eat (∗∗)

According to the definition of the indefinite integral, equation (∗∗) holds for all t in an
interval iff xeat = ∫

b(t)eat dt +C for some constant C. Multiplying this equation by e−at

gives the solution for x. Briefly formulated:

ẋ + ax = b(t) ⇐⇒ x = Ce−at + e−at

∫
eatb(t) dt (5)
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E X A M P L E 6 Find the solution of
ẋ + x = t

and determine the solution curve passing through (0, 0).

Solution: According to (5), with a = 1 and b(t) = t , the solution is given by

x = Ce−t + e−t

∫
tet dt = Ce−t + e−t (tet − et ) = Ce−t + t − 1

where we used integration by parts to evaluate
∫

tet dt . (See Example 9.5.1.) If x = 0 when
t = 0, we get 0 = C − 1, so C = 1 and the required solution is x = e−t + t − 1.

E X A M P L E 7 (Economic Growth) Consider the following model of economic growth in a developing
country (see FMEA, Example 5.4.3 for a more general model):

(a) X(t) = 0.2K(t) (b) K̇(t) = 0.1X(t) + H(t) (c) N(t) = 50e0.03t

Here X(t) is total domestic product per year, K(t) is capital stock, H(t) is the net inflow of
foreign investment per year, and N(t) is the size of the population, all measured at time t .
In (a) we assume that the volume of production is simply proportional to the capital stock,
with the factor of proportionality 0.2 being called the average productivity of capital. In
(b) we assume that the total growth of capital per year is equal to internal savings plus net
foreign investment. We assume that savings are proportional to production, with the factor
of proportionality 0.1 being called the savings rate. Finally, (c) tells us that population
increases at a constant proportional rate of growth 0.03.

Assume that H(t) = 10e0.04t and derive from these equations a differential equation
for K(t). Find its solution given that K(0) = 200. Find also an expression for x(t) =
X(t)/N(t), which is domestic product per capita.

Solution: From (a) and (b), it follows that K(t) must satisfy the linear equation

K̇(t) − 0.02K(t) = 10e0.04t

Using (5) we obtain

K(t) = Ce0.02t + e0.02t

∫
e−0.02t10e0.04t dt = Ce0.02t + 10e0.02t

∫
e0.02t dt

= Ce0.02t + (10/0.02)e0.04t = Ce0.02t + 500e0.04t

For t = 0, K(0) = 200 = C + 500, so C = −300. Thus, the solution is

K(t) = 500e0.04t − 300e0.02t (∗)

Per capita production is x(t) = X(t)/N(t) = 0.2K(t)/50e0.03t = 2e0.01t − 1.2e−0.01t .

The solution procedure for the general linear differential equation (2) is somewhat more
complicated, and we refer to FMEA.
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1. Solve the equation x4ẋ = 1 − t . Find the integral curve through (t, x) = (1, 1).

⊂SM⊃2. Solve the following differential equations

(a) ẋ = e2t /x2 (b) ẋ = e−t+x (c) ẋ − 3x = 18

(d) ẋ = (1 + t)6/x6 (e) ẋ − 2x = −t (f) ẋ + 3x = tet2−3t

3. Suppose that y = αkeβt denotes production as a function of capital k, where the factor eβt is
due to technical progress. Suppose that a constant fraction s ∈ (0, 1) is saved, and that capital
accumulation is equal to savings, so that we have the separable differential equation

k̇ = sαkeβt , k(0) = k0

The constants α, β, and k0 are positive. Find the solution.

4. (a) Suppose Y = Y (t) is national product, C(t) is consumption at time t , and Ī is investment,
which is constant. Suppose Ẏ = α(C + Ī − Y ) and C = aY + b, where a, b, and α are
positive constants with a < 1. Derive a differential equation for Y .

(b) Find its solution when Y (0) = Y0 is given. What happens to Y (t) as t → ∞?

⊂SM⊃5. (a) In a growth model production Q is a function of capital K and labour L. Suppose that
(i) K̇ = γQ, (ii) Q = KαL, (iii) L̇/L = β with L(0) = L0. Assume that β �= 0 and
α ∈ (0, 1). Derive a differential equation for K .

(b) Solve this equation when K(0) = K0.

6. Find x(t) when Elt x(t) = a for all t . Assume that both t and x are positive and that a is a
constant. (Recall that Elt x(t) is the elasticity of x(t) w.r.t. t .)

R E V I E W P R O B L E M S F O R C H A P T E R 9

1. Find the following integrals:

(a)
∫

(−16) dx (b)
∫

55 dx (c)
∫

(3 − y) dy (d)
∫

(r − 4r1/4) dr

(e)
∫

x8 dx (f)
∫

x2√x dx (g)
∫

1

p5
dp (h)

∫
(x3 + x) dx

2. Find the following integrals:

(a)
∫

2e2x dx (b)
∫

(x − 5e
2
5 x) dx (c)

∫
(e−3x + e3x) dx (d)

∫
2

x + 5
dx

3. Evaluate the following integrals:

(a)
∫ 12

0
50 dx (b)

∫ 2

0
(x − 1

2 x2) dx (c)
∫ 3

−3
(u + 1)2 du

(d)
∫ 5

1

2

z
dz (e)

∫ 12

2

3 dt

t + 4
dt (f)

∫ 4

0
v
√

v2 + 9 dv
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⊂SM⊃4. Find the following integrals:

(a)
∫ ∞

1

5

x5
dx (b)

∫ 1

0
x3(1 + x4)4 dx (c)

∫ ∞

0

−5t

et
dt (d)

∫ e

1
(ln x)2 dx

(e)
∫ 2

0
x2

√
x3 + 1 dx (f)

∫ 0

−∞

e3z

e3z + 5
dz (g)

∫ e/2

1/2
x3 ln(2x) dx (h)

∫ ∞

1

e−√
x

√
x

dx

⊂SM⊃5. Find the following integrals:

(a)
∫ 25

0

1

9 + √
x

dx (b)
∫ 7

2
t
√

t + 2 dt (c)
∫ 1

0
57x2 3

√
19x3 + 8 dx

6. Find F ′(x) if (a) F(x) =
∫ x

4

(√
u + x√

u

)
du (b) F(x) =

∫ x

√
x

ln u du

7. With C(Y ) as the consumption function, suppose the marginal propensity to consume is C ′(Y ) =
0.69, with C(0) = 1000. Find C(Y ).

8. In the manufacture of a product, the marginal cost of producing x units is C ′(x) = αeβx + γ ,
with β �= 0, and fixed costs are C0. Find the total cost function C(x).

9. Suppose f and g are continuous functions on [−1, 3] and that
∫ 3

−1
(f (x) + g(x)) dx = 6 and∫ 3

−1
(3f (x) + 4g(x)) dx = 9. Find I =

∫ 3

−1
(f (x) + g(x)) dx.

⊂SM⊃10. For the following two cases, find the equilibrium price and quantity and calculate the consumer
and producer surplus when the demand curve is f (Q) and the supply curve is g(Q):

(a) f (Q) = 100 − 0.05Q and g(Q) = 10 + 0.1Q.

(b) f (Q) = 50

Q + 5
and g(Q) = 4.5 + 0.1Q.

⊂SM⊃11. (a) Define f for t > 0 by f (t) = 4
(ln t)2

t
. Find f ′(t) and f ′′(t).

(b) Find possible local extreme points, and sketch the graph of f .

(c) Calculate the area below the graph of f over the interval
[
1, e2

]
.

12. Solve the following differential equations:

(a) ẋ = −3x (b) ẋ + 4x = 12 (c) ẋ − 3x = 12x2

(d) 5ẋ = −x (e) 3ẋ + 6x = 10 (f) ẋ − 1
2 x = x2

⊂SM⊃13. Solve the following differential equations:

(a) ẋ = tx2 (b) 2ẋ + 3x = −15 (c) ẋ − 3x = 30

(d) ẋ + 5x = 10t (e) ẋ + 1
2 x = et (f) ẋ + 3x = t2
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14. (a) Let V (x) denote the number of litres of fuel left in an aircraft’s fuel tank if it has flown x

km. Suppose that V (x) satisfies the following differential equation:

V ′(x) = −aV (x) − b

(The fuel consumption per km is a constant b > 0. The term −aV (x), with a > 0, is due
to the weight of the fuel.) Find the solution of the equation with V (0) = V0.

(b) How many km, x∗, can the plane fly if it takes off with V0 litres in its tank?

(c) What is the minimum number of litres, Vm, needed at the outset if the plane is to fly x̂ km?

(d) Put b = 8, a = 0.001, V0 = 12 000, and x̂ = 1200. Find x∗ and Vm in this case.

15. A population of n individuals has an income density function f (r) = (1/m)e−r/m for r in
[0, ∞), where m is a positive constant. (See Section 9.4.)

(a) Show that m is the mean income.

(b) Suppose the demand function is D(p, r) = ar −bp. Compute the total demand x(p) when
the income distribution is as in (a).

HARDER PROBLEM

⊂SM⊃16. A probability density function f is defined for all x by

f (x) = λae−λx

(e−λx + a)2
(a and λ are positive constants)

(a) Show that F(x) = a

e−λx + a
is an indefinite integral of f (x), and determine lim

x→∞ F(x) and

lim
x→−∞ F(x).

(b) Show that
∫ x

−∞
f (t) dt = F(x), and that F(x) is strictly increasing.

(c) Compute F ′′(x) and show that F has an inflection point x0. Compute F(x0) and sketch the
graph of F .

(d) Compute
∫ ∞

−∞
f (x) dx.
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10
T O P I C S I N F I N A N C I A L
E C O N O M I C S

I can calculate the motions of heavenly bodies, but not the madness of people.1

—I. Newton (attr.)

This chapter treats some basic topics in the mathematics of finance. The main concern is how

the values of investments and loans at different times are affected by interest rates.

Sections 1.2 and 4.9 have already discussed some elementary calculations involving interest

rates. This chapter goes a step further and considers different interest periods. It also discusses

in turn effective rates of interest, continuously compounded interest, present values of future

claims, annuities, mortgages, and the internal rate of return on investment projects. The calcu-

lations involve the summation formula for geometric series, which we therefore derive.

In the last section we give a brief introduction to difference equations.

10.1 Interest Periods and Effective Rates
In advertisements that offer bank loans or savings accounts, interest is usually quoted as an
annual rate, also called a nominal rate, even if the actual interest period is different. This
interest period is the time which elapses between successive dates when interest is added
to the account. For some bank accounts the interest period is one year, but recently it has
become increasingly common for financial institutions to offer other interest schemes. For
instance, many US bank accounts now add interest daily, some others at least monthly. If a
bank offers 9% annual rate of interest with interest payments each month, then (1/12)9% =
0.75% of the capital accrues at the end of each month. The annual rate must be divided by
the number of interest periods to get the periodic rate—that is, the interest per period.

Suppose a principal (or capital) of S0 yields interest at the rate p% per period (for example
one year). As explained in Section 1.2, after t periods it will have increased to the amount

S(t) = S0(1 + r)t where r = p/100

Each period the principal increases by the factor 1 + r . Note that p% means p/100, and
we say that the interest rate is p% or r .

1 Claimed to be Newton’s reaction to the outcome of the “South Sea Bubble”, a serious financial
crisis in 1720, in which Newton lost money.
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The formula assumes that the interest is added to the principal at the end of each period.
Suppose that the annual interest rate is p%, but that interest is paid biannually (i.e. twice a
year) at the rate p/2%. Then the principal after half a year will have increased to

S0 + S0
p/2

100
= S0

(
1 + r

2

)
Each half year the principal increases by the factor 1 + r/2. After 2 periods (= one year) it
will have increased to S0(1 + r/2)2, and after t years to

S0

(
1 + r

2

)2t

Note that a biannual interest payment at the rate 1
2 r is better for a lender than an annual interest

payment at the rate r . This follows from the fact that (1 + r/2)2 = 1 + r + r2/4 > 1 + r .
More generally, suppose that interest at the rate p/n% is added to the principal at n

different times distributed more or less evenly over the year. For example, n = 4 if interest
is added quarterly, n = 12 if it is added monthly, etc. Then the principal will be multiplied
by a factor (1 + r/n)n each year. After t years, the principal will have increased to

S0

(
1 + r

n

)nt

(1)

The greater is n, the faster interest accrues to the lender. (See Problem 10.2.6.)

E X A M P L E 1 A deposit of £5000 is put into an account earning interest at the annual rate of 9%, with
interest paid quarterly. How much will there be in the account after 8 years?

Solution: The periodic rate r/n is 0.09/4 = 0.0225 and the number of periods nt is
4 · 8 = 32. So formula (1) gives:

5000(1 + 0.0225)32 ≈ 10 190.52

E X A M P L E 2 How long will it take for the £5000 in Example 1 (with annual interest rate 9% and
interest paid quarterly) to increase to £15 000?

Solution: After t quarterly payments the account will grow to 5000(1 + 0.0225)t . So

5000(1 + 0.0225)t = 15 000 or 1.0225t = 3

To find t we take the natural logarithm of each side:

t ln 1.0225 = ln 3 (because ln ap = p ln a)

t = ln 3

ln 1.0225
≈ 49.37

Thus it takes approximately 49.37 quarterly periods, that is approximately 12 years and four
months, before the account has increased to £15 000.



Essential Math. for Econ. Analysis, 4th edn EME4_C10.TEX, 16 May 2012, 14:24 Page 347

S E C T I O N 1 0 . 1 / I N T E R E S T P E R I O D S A N D E F F E C T I V E R A T E S 347

Effective Rate of Interest

A consumer who needs a loan may receive different offers from several competing financial
institutions. It is therefore important to know how to compare various offers. The concept
of effective interest rate is often used in making such comparisons.

Consider a loan which implies an annual interest rate of 9% with interest at the rate
9/12 = 0.75% added 12 times a year. If no interest is paid in the meantime, after one year
an initial principal of S0 will have grown to a debt of S0(1 + 0.09/12)12 ≈ S0 · 1.094. In
fact, as long as no interest is paid, the debt will grow at a constant proportional rate that
is (approximately) 9.4% per year. For this reason, we call 9.4% the effective yearly rate.
More generally:

E F F E C T I V E Y E A R L Y R A T E

When interest is added n times during the year at the rate r/n per period, then
the effective yearly rate R is defined as

R =
(

1 + r

n

)n − 1

(2)

The effective yearly rate is independent of the amount S0. For a given value of r > 0, it is
increasing in n. (See Problem 10.2.6.)

E X A M P L E 3 What is the effective yearly rate R corresponding to an annual interest rate of 9% with
interest compounded: (i) each quarter; (ii) each month?

Solution:

(i) Applying formula (2) with r = 0.09 and n = 4, the effective rate is

R = (
1 + 0.09/4

)4 − 1 = (1 + 0.0225)4 − 1 ≈ 0.0931 or 9.31%

(ii) In this case r = 0.09 and n = 12, so the effective rate is

R = (
1 + 0.09/12

)12 − 1 = (1 + 0.0075)12 − 1 ≈ 0.0938 or 9.38%

A typical case in which we can use the effective rate of interest to compare different financial
offers is the following.

E X A M P L E 4 When investing in a savings account, which of the following offers are better: 5.9% with
interest paid quarterly; or 6% with interest paid twice a year?

Solution: According to (2), the effective rates for the two offers are

R = (
1 + 0.059/4

)4 − 1 ≈ 0.0603, R = (
1 + 0.06/2

)2 − 1 = 0.0609

The second offer is therefore better for the saver.
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NOTE 1 In many countries there is an official legal definition of effective interest rate which
takes into account different forms of fixed or “closing” costs incurred when initiating a loan.
The effective rate of interest is then defined as the rate which implies that the combined
present value of all the costs is equal to the size of the loan. This is the internal rate of return,
as defined in Section 10.7. (Present values are discussed in Section 10.3.)

P R O B L E M S F O R S E C T I O N 1 0 . 1

1. (a) What will be the size of an account after 5 years if $8000 is invested at an annual interest
rate of 5% compounded (i) monthly; (ii) daily (with 365 days in a year)?

(b) How long does it take for the $8000 to double with monthly compounding?

2. (a) An amount $5000 earns interest at 3% per year. What will this amount have grown to after
10 years?

(b) How long does it take for the $5000 to triple?

3. What annual percentage rate of growth is needed for a country’s GDP to become 100 times as
large after 100 years? ( 100

√
100 ≈ 1.047.)

4. (a) An amount of 2000 euros is invested at 7% per year. What is the balance in the account
after (i) 2 years; (ii) 10 years?

(b) How long does it take (approximately) for the balance to reach 6000 euros?

5. Calculate the effective yearly interest if the nominal rate is 17% and interest is added:
(i) biannually; (ii) quarterly; (iii) monthly.

6. Which terms are preferable for a borrower: (i) an annual interest rate of 21.5%, with interest
paid yearly; or (ii) an annual interest rate of 20%, with interest paid quarterly?

7. (a) A sum of $12 000 is invested at 4% annual interest. What will this amount have grown to
after 15 years?

(b) How much should you have deposited in a bank account 5 years ago in order to have $50 000
today, given that the interest rate has been 5% per year over the period?

(c) A credit card is offered with interest on the outstanding balance charged at 2% per month.
What is the effective annual rate of interest?

8. What is the nominal yearly interest rate if the effective yearly rate is 28% and interest is com-
pounded quarterly?



Essential Math. for Econ. Analysis, 4th edn EME4_C10.TEX, 16 May 2012, 14:24 Page 349

S E C T I O N 1 0 . 2 / C O N T I N U O U S C O M P O U N D I N G 349

10.2 Continuous Compounding
We saw in the previous section that if interest at the rate r/n is added to the principal S0 at n

different times during the year, the principal will be multiplied by a factor (1 + r/n)n each
year. After t years, the principal will have increased to S0(1 + r/n)nt . In practice, there is a
limit to how frequently interest can be added to an account. However, let us examine what
happens to the expression as the annual frequency n tends to infinity. We put r/n = 1/m.
Then n = mr and so

S0

(
1 + r

n

)nt

= S0

(
1 + 1

m

)mrt

= S0

[(
1 + 1

m

)m]rt

(1)

As n → ∞ (with r fixed), so m = n/r → ∞, and according to Example 7.11.2, we have
(1 + 1/m)m → e. Hence, the expression in (1) approaches S0e

rt as n tends to infinity,
implying that interest is compounded more and more frequently. In the limit, we talk about
continuous compounding of interest:

C O N T I N U O U S C O M P O U N D I N G O F I N T E R E S T

The formula
S(t) = S0e

rt

shows how much a principal of S0 will have increased to after t years, if the
annual interest is r , and there is continuous compounding of interest.

(2)

E X A M P L E 1 Suppose the sum of £5000 is invested in an account earning interest at an annual rate of
9%. What is the balance after 8 years if interest is compounded continuously?

Solution: Using formula (2) with r = 9/100 = 0.09, we see that the balance is

5000e0.09·8 = 5000e0.72 ≈ 10 272.17

(Compare with the result in Example 10.1.1.)

If S(t) = S0e
rt , then S ′(t) = S0re

rt = rS(t) (according to formula (6.10.2), and so
S ′(t)/S(t) = r . Using the terminology introduced in Section 6.4:

With continuous compounding of interest at the rate r , the principal increases at
the constant relative rate r , so that S ′(t)/S(t) = r .

From (2), we infer that S(1) = S0e
r , so that the principal increases by the factor er during

the first year. In general, S(t + 1) = S0e
r(t+1) = S0e

rt er = S(t)er . Hence:

With continuous compounding of interest, the principal increases each year by a fixed
factor er .
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Comparing Different Interest Periods

Given any fixed interest rate of p% (= 100r) per year, continuous compounding of interest
is best for the lender. (See Problem 6.) For comparatively low interest rates, however, the
difference between annual and continuous compounding of interest is quite small, when the
number of years of compounding is relatively small.

E X A M P L E 2 Find the amount K by which $1 increases in the course of a year when the interest rate
is 8% per year and interest is added: (a) yearly; (b) biannually; (c) continuously.

Solution: In this case r = 8/100 = 0.08, and we obtain

(a) K = 1.08 (b) K = (1 + 0.08/2)2 = 1.0816 (c) K = e0.08 ≈ 1.08329

If we increase either the interest rate or the number of years over which interest accumulates,
then the difference between yearly and continuous compounding of interest increases.

In the previous section the effective yearly interest was defined by the formula
(1 + r/n)n − 1, when interest is compounded n times a year with rate r/n per period.
Letting n approach infinity in this formula, we see that the expression approaches

er − 1 (3)

This is called the effective interest rate with continuous compounding at the annual rate r .

P R O B L E M S F O R S E C T I O N 1 0 . 2

1. (a) How much does $8000 grow to after 5 years if the annual interest rate is 5%, with continuous
compounding?

(b) How long does it take before the $8000 has doubled?

2. An amount $1000 earns interest at 5% per year. What will this amount have grown to after
(a) 10 years, and (b) 50 years, when interest is compounded (i) yearly, or (ii) monthly, or
(iii) continuously?

3. (a) Find the effective rate corresponding to an annual rate of 10% compounded continuously.

(b) What is the maximum amount of compound interest that can be earned at an annual rate
of 10%?

4. The value v0 of a new car depreciates continuously at the annual rate of 10%—that is, v(t) =
v0e

−δt where δ = 0.1 is the rate of depreciation. How many years does it take for the car to
lose 90% of its original value?

5. The value of a machine depreciates continuously at the annual rate of 6%. How many years will
it take for the value of the machine to halve?
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HARDER PROBLEM

⊂SM⊃6. The argument we used to justify (2) shows in particular that (1 + r/n)n → er as n → ∞. For
each fixed r > 0 we claim that (1 + r/n)n is strictly increasing in n. In particular, this implies
that

(1 + r/n)n < er for n = 1, 2, . . . (∗)

This shows that continuous compounding at interest rate r is more profitable for the lender than
interest payments n times a year at interest rate r/n.

To confirm these results, given any r > 0, define the function g(x) = (1 + r/x)x for all
x > 0. Use logarithmic differentiation to show that

g′(x) = g(x)

[
ln(1 + r/x) − r/x

1 + r/x

]

Next, put h(u) = ln(1 + u) − u/(1 + u). Then h(0) = 0. Show that h′(u) > 0 for u > 0, and
hence g′(x) > 0 for all x > 0. What conclusion can you draw?

10.3 Present Value
The sum of $1000 in your hand today is worth more than $1000 to be received at some
future date. One important reason is that you can invest the $1000 and hope to earn some
interest or other positive return.2 If the interest rate is 11% per year, then after 1 year the
original $1000 will have grown to the amount 1000(1 + 11/100) = 1110, and after 6 years,
it will have grown to 1000(1 + 11/100)6 = 1000 · (1.11)6 ≈ 1870. This shows that, at the
interest rate 11% per year, $1000 now has the same value as $1110 next year, or $1870 in 6
years time. Accordingly, if the amount $1110 is due for payment 1 year from now and the
interest rate is 11% per year, then the present value of this amount is $1000. Because $1000
is less than $1110, we often speak of $1000 as the present discounted value (or PDV) of
$1110 next year. The ratio $1000/$1110 = 1/(1+11/100) ≈ 0.9009 is called the (annual)
discount factor, whose reciprocal 1.11 is one plus the discount rate, making the discount
rate equal to the interest rate of 11%.

Similarly, if the interest rate is 11% per year, then the PDV of $1870 due 6 years from
now is $1000. Again, the ratio $1000/$1870 ≈ 0.53 is called the discount factor, this time
for money due in 6 years time.

Suppose that an amount K is due for payment t years after the present date. What is
the present value when the interest rate is p% per year? Equivalently, how much must be
deposited today earning p% annual interest in order to have the amount K after t years?

If interest is paid annually, an amount A will have increased to A(1 + p/100)t after t

years, so that we need A(1 + p/100)t = K . Thus, A = K(1 + p/100)−t = K(1 + r)−t ,
where r = p/100. Here the annual discount factor is (1+r)−1, and (1+r)−t is the discount
factor appropriate for t years.

2 If prices are expected to increase, another reason for preferring $1000 today is inflation, because
$1000 to be paid at some future date will buy less then than $1000 does today.
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If interest is compounded continuously, then the amount A will have increased to Aert

after t years. Hence, Aert = K , or A = Ke−rt . Here e−rt is the discount factor. To
summarize:

P R E S E N T D I S C O U N T E D V A L U E

If the interest or discount rate is p% per year and r = p/100, an amount K that
is payable in t years has the present value (or present discounted value, or PDV):

K(1 + r)−t , with annual interest payments

Ke−rt , with continuous compounding of interest

(1)

E X A M P L E 1 Find the present value of $100 000 which is due for payment after 15 years if the interest
rate is 6% per year, compounded (i) annually, or (ii) continuously.

Solution:

(i) According to (1), the present value is 100 000(1 + 0.06)−15 ≈ 41726.51.

(ii) According to (1), the present value is 100 000e−0.06·15 = 100 000e−0.9 ≈ 40656.97.
As expected, the present value with continuous compounding is the smaller, because
capital increases most rapidly with continuous compounding of interest.

E X A M P L E 2 (When to Harvest a Tree?) Consider a tree that is planted at time t = 0, and let P(t) be
its current market value at time t , where P(t) is differentiable with P(t) > 0 for all t ≥ 0.
Assume that the interest rate is 100r% per year, and assume continuous compounding of
interest.

(a) At what time t∗ should this tree be cut down in order to maximize its present value?

(b) The optimal cutting time t∗ depends on the interest rate r . Find dt∗/dr .

Solution: (a) The present value is f (t) = P(t)e−rt , whose derivative is

f ′(t) = P ′(t)e−rt + P(t)(−r)e−rt = e−rt
[
P ′(t) − rP (t)

]
(∗)

A necessary condition for t∗ > 0 to maximize f (t) is that f ′(t∗) = 0. This occurs when

P ′(t∗) = rP (t∗) (∗∗)

The tree, therefore, should be cut down at a time t∗ when the relative rate of increase in the
value of the tree is precisely equal to the interest rate. Of course, some conditions have to
be placed on f in order for t∗ to be a maximum point. It suffices to have P ′(t) ≥ rP (t) for
t < t∗ and P ′(t) ≤ rP (t) for t > t∗.

(b) Differentiating (∗∗) w.r.t r yields P ′′(t∗) dt∗/dr = P(t∗) + rP ′(t∗) dt∗/dr . Solving
for dt∗/dr ,

dt∗

dr
= P(t∗)

P ′′(t∗) − rP ′(t∗)
(∗∗∗)
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NOTE 1 Differentiating (∗) w.r.t. t yields

f ′′(t) = P ′′(t)e−rt − rP ′(t)e−rt − P ′(t)re−rt + r2P(t)e−rt

Using (∗∗) we see that the second-order condition f ′′(t∗) < 0 is satisfied if and only if

e−rt [P ′′(t∗) − 2rP ′(t∗) + r2P(t∗)] = e−rt [P ′′(t∗) − rP ′(t∗)] < 0

in which case dt∗/dr < 0. Thus the optimal growing time shortens as r increases (which
makes the foresters more impatient). In particular, given any r > 0, the optimal t∗ is less
than the time t̂ that maximizes current market value P(t), which is optimal only if r = 0.

We did not consider how the land the tree grows on may be used after harvesting—for
example, by planting a new tree. This generalization is studied in Problem 10.4.8.

P R O B L E M S F O R S E C T I O N 1 0 . 3

1. Find the present value of 350 000 which is due after 10 years if the interest rate is 8% per year
(i) compounded annually, or (ii) compounded continuously.

2. Find the present value of 50 000 which is due after 5 years when the interest rate is 5.75% per
year, paid (i) annually, or (ii) continuously.

3. With reference to the tree-cutting problem of Example 2, consider the case where

f (t) = (t + 5)2e−0.05t , t ≥ 0

(a) Find the value of t that maximizes f (t). (Study the sign variation of f ′(t).)

(b) Find limt→∞ f (t) and draw the graph of f .

10.4 Geometric Series
This section studies geometric series. These have many applications in economics and
finance. Here we shall use them to calculate annuities and mortgage payments.

E X A M P L E 1 This year a firm has an annual revenue of $100 million that it expects to increase by 16%
per year throughout the next decade. How large is its expected revenue in the tenth year,
and what is the total revenue expected over the whole period?

Solution: The expected revenue in the second year (in millions of dollars) amounts to
100(1 + 16/100) = 100 · 1.16, and in the third year, it is 100 · (1.16)2. In the tenth year,
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the expected revenue is 100 · (1.16)9. The total revenue expected during the decade is thus

100 + 100 · 1.16 + 100 · (1.16)2 + · · · + 100 · (1.16)9

If we used a calculator to add the 10 different numbers, we would find that the sum is
approximately $2132 million.

Finding the sum in Example 1 by adding 10 different numbers on a calculator would be
very tedious. When there are infinitely many terms, it is obviously impossible. There is an
easier method, as we now explain.

Consider the n numbers a, ak, ak2, . . . , akn−1. Each term is obtained by multiplying its
predecessor by a constant k. We wish to find the sum

sn = a + ak + ak2 + · · · + akn−2 + akn−1 (1)

of these numbers. We call this sum a (finite) geometric series with quotient k. The sum in
Example 1 occurs in the case when a = 100, k = 1.16, and n = 10.

To find the sum sn of the series, we use a trick. First multiply both sides of (1) by k

to obtain
ksn = ak + ak2 + ak3 + · · · + akn−1 + akn

Subtracting (1) from this equation yields

ksn − sn = akn − a (2)

because all the other n − 1 terms cancel. This is the point of the trick. (If k = 1, then all
terms in (1) are equal to a, and the sum is equal to sn = an.) For k �= 1, (2) implies that

sn = a
kn − 1

k − 1

In conclusion:

S U M M A T I O N F O R M U L A F O R A F I N I T E G E O M E T R I C S E R I E S

a + ak + ak2 + · · · + akn−1 = a
kn − 1

k − 1
(k �= 1) (3)

E X A M P L E 2 For the sum in Example 1 we have a = 100, k = 1.16, and n = 10. Hence, (3) yields

100 + 100 · 1.16 + · · · + 100 · (1.16)9 = 100
(1.16)10 − 1

1.16 − 1

Now it takes many fewer operations on the calculator than in Example 1 to show that the
sum is about 2132.
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Infinite Geometric Series

Consider the infinite sequence of numbers

1,
1

2
,

1

4
,

1

8
,

1

16
,

1

32
, . . .

Each term in the sequence is formed by halving its predecessor, so that the nth term is
1/2n−1. The sum of the n first terms is a finite geometric series with quotient k = 1/2 and
the first term a = 1. Hence, (3) gives

1 + 1

2
+ 1

22
+ · · · + 1

2n−1
= 1 − ( 1

2

)n

1 − 1
2

= 2 − 1

2n−1
(∗)

We now ask what is meant by the “infinite sum”

1 + 1

2
+ 1

22
+ 1

23
+ · · · + 1

2n−1
+ · · · (∗∗)

Because all the terms are positive, and there are infinitely many of them, you might be
inclined to think that the sum must be infinitely large. However, if we look at formula (∗),
we see that the sum of the n first terms is equal to 2 − 1/2n−1. This number is never larger
than 2, irrespective of our choice of n. As n increases, the term 1/2n−1 comes closer and
closer to 0, and the sum in (∗) tends to 2 as limit. This makes it natural to define the infinite
sum in (∗∗) as the number 2.

In general, we ask what meaning can be given to the “infinite sum”

a + ak + ak2 + · · · + akn−1 + · · · (4)

We use the same idea as in (∗∗), and consider the sum sn of the n first terms in (4). According
to (3),

sn = a
1 − kn

1 − k
(k �= 1)

What happens to this expression as n tends to infinity? The answer evidently depends on
kn, because only this term depends on n. In fact, kn tends to 0 if −1 < k < 1, whereas kn

does not tend to any limit if k > 1 or k ≤ −1. (If you are not yet convinced that this claim
is true, study the cases k = −2, k = −1, k = −1/2, k = 1/2, and k = 2.) It follows that
if |k| < 1, then the sum sn of the n first terms in (4) will tend to the limit a/(1 − k) as n

tends to infinity. In this case, we let the limit of (4) define the infinite sum, and say that the
infinite series in (4) converges. To summarize:

S U M M A T I O N F O R M U L A F O R A N I N F I N I T E G E O M E T R I C S E R I E S

a + ak + ak2 + · · · + akn−1 + · · · = a

1 − k
if |k| < 1 (5)
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If we extend to infinite sums the summation notation that was introduced in Section 3.1, we
can write (5) as

∞∑
n=1

akn−1 = a

1 − k
if |k| < 1 (6)

If |k| ≥ 1, we say that the infinite series (4) diverges. A divergent series has no (finite) sum.
Divergence is obvious if |k| > 1. When k = 1, then sn = na, which tends to +∞ if a > 0
or to −∞ if a < 0. When k = −1, then sn is a when n is odd, but 0 when n is even; again
there is no limit as n → ∞ (if a �= 0).

E X A M P L E 3 Find the sum of the infinite series

1 + 0.25 + (0.25)2 + (0.25)3 + (0.25)4 + · · ·

Solution: According to formula (5) with a = 1 and k = 0.25, we have

1 + 0.25 + (0.25)2 + (0.25)3 + (0.25)4 + · · · = 1

1 − 0.25
= 1

0.75
= 4

3

E X A M P L E 4 A rough estimate of the total oil and gas reserves under the Norwegian continental shelf
at the beginning of 1999 was 13 billion (13 · 109) tons (of oil equivalent). Output that year
was approximately 250 million (250 · 106) tons.

(a) When will the reserves be exhausted if output is kept at the same constant level?

(b) Suppose that output is reduced each year by 2% per year beginning in 1999. How long
will the reserves last in this case?

Solution:
(a) The number of years for which the reserves will last is given by

13 · 109

250 · 106
= 52

That is, the reserves will be exhausted around the year 2051.

(b) In 1999, output was a = 250 ·106. In 2000, it would be a−2a/100 = a ·0.98. In 2001,
it becomes a · 0.982, and so on. If this continues forever, the total amount extracted
will be

a + a · 0.98 + a · (0.98)2 + · · · + a · (0.98)n−1 + · · ·
This geometric series has quotient k = 0.98. According to (5), the sum is

s = a

1 − 0.98
= 50a

Since a = 250 · 106, s = 50 · 250 · 106 = 12.5 · 109, which is less than 13 · 109. The
reserves will last for ever, therefore, leaving 500 million (= 0.5 · 109) tons which will
never be extracted.
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General Series (Optional)
We briefly consider general infinite series that are not necessarily geometric,

a1 + a2 + a3 + · · · + an + · · · (7)

What does it mean to say that this infinite series converges? By analogy with the definition for
geometric series, we form the “partial” sum sn of the n first terms:

sn = a1 + a2 + · · · + an (8)

In particular, s1 = a1, s2 = a1 + a2, s3 = a1 + a2 + a3, and so on. As n increases, these partial
sums include more and more terms of the series. Hence, if sn tends toward a limit s as n tends to ∞,
it is reasonable to consider s as the sum of all the terms in the series. Then we say that the infinite
series is convergent with sum s. If sn does not tend to a finite limit as n tends to infinity, we say that
the series is divergent. The series then has no sum. (As with limits of functions, if sn → ±∞ as
n → ∞, this is not regarded as a limit.)

For geometric series, it was easy to determine when there is convergence because we found a
simple expression for sn. Usually, it will not be possible to find such a simple formula for the sum
of the first n terms in a given series, so it can be very difficult to determine whether it converges or
not. Nevertheless, there are several so-called convergence and divergence criteria that will give the
answer in many cases. These criteria are seldom used directly in economics.

Let us make a general observation: If the series (7) converges, then the nth term must tend to 0
as n tends to infinity. The argument is simple: If the series is convergent, then sn in (8) will tend to
a limit s as n tends to infinity. Now an = sn − sn−1, and by the definition of convergence, sn−1 will
also tend to s as n tends to infinity. It follows that an = sn − sn−1 must tend to s − s = 0 as n tends
to infinity. Expressed briefly,

a1 + a2 + · · · + an + · · · converges ⇒ lim
n→∞ an = 0 (9)

The condition in (9) is necessary for convergence, but not sufficient. That is, a series may satisfy the
condition limn→∞ an = 0 and yet diverge. This is shown by the following standard example:

E X A M P L E 5 The series
1 + 1

2 + 1
3 + 1

4 + · · · + 1
n

+ · · · (10)

is called the harmonic series. The nth term is 1/n, which tends to 0. But the series is still divergent.
To see this, we group the terms together in the following way:

1 + 1
2 + ( 1

3 + 1
4 ) + ( 1

5 + · · · + 1
8 ) + ( 1

9 + · · · + 1
16 ) + ( 1

17 + · · · + 1
32 ) + · · · (∗)

Between the first pair of parentheses there are two terms, one greater than 1/4 and the other equal
to 1/4, so their sum is greater than 2/4 = 1/2. Between the second pair of parentheses there are
four terms, three greater than 1/8 and the last equal to 1/8, so their sum is greater than 4/8 = 1/2.
Between the third pair of parentheses there are eight terms, seven greater than 1/16 and the last
equal to 1/16, so their sum is greater than 8/16 = 1/2. Between the fourth pair of parentheses there
are sixteen terms, fifteen greater than 1/32 and the last equal to 1/32, so their sum is greater than
16/32 = 1/2. This pattern repeats itself infinitely often. Between the nth pair of parentheses there
will be 2n terms, of which 2n − 1 are greater than 2−n−1 whereas the last is equal to 2−n−1, so their
sum is greater than 2n · 2−n−1 = 1/2. We conclude that the series in (∗) must diverge because its
sum is larger than that of an infinite number of terms all equal to 1

2 .3

3 “The determination of
∑

1/n occupied Leibniz all his life but the solution never came within his
grasp.” H.H. Goldstine (1977)
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One can prove in general (see Problem 11) that

∞∑
n=1

1

np
is convergent ⇐⇒ p > 1 (11)

P R O B L E M S F O R S E C T I O N 1 0 . 4

1. Find the sum sn of the finite geometric series 1 + 1

3
+ 1

32
+ · · · + 1

3n−1
. When n approaches

infinity, what is the limit of sn? Find the sum
∑∞

n=1(1/3n−1).

2. Find the sums of the following geometric series:

(a) 1
5 + ( 1

5 )2 + ( 1
5 )3 + ( 1

5 )4 + · · ·
(b) 0.1 + (0.1)2 + (0.1)3 + (0.1)4 + · · ·
(c) 517 + 517(1.1)−1 + 517(1.1)−2 + 517(1.1)−3 + · · ·
(d) a + a(1 + a)−1 + a(1 + a)−2 + a(1 + a)−3 + a(1 + a)−4 + · · · , (a > 0)

(e) 5 + 5 · 3

7
+ 5 · 32

72
+ · · · + 5 · 3n−1

7n−1
+ · · ·

3. Determine whether the following series are geometric, and find the sums of those geometric
series that do converge.

(a) 8 + 1 + 1/8 + 1/64 + · · · (b) −2 + 6 − 18 + 54 − · · ·
(c) 21/3 + 1 + 2−1/3 + 2−2/3 + · · · (d) 1 − 1/2 + 1/3 − 1/4 + · · ·

4. Examine the convergence of the following geometric series, and find their sums when they exist:

(a)
1

p
+ 1

p2
+ 1

p3
+ · · · (b) x + √

x + 1 + 1√
x

+ · · · (c)
∞∑

n=1

x2n

5. Find the sum
∞∑

k=0

b

(
1 + p

100

)−k

, p > 0.

⊂SM⊃6. Total world consumption of iron was approximately 794 · 106 tons in 1971. If consumption had
increased by 5% each year and the resources available for mining in 1971 were 249 · 109 tons,
how much longer would the world’s iron resources have lasted?

7. The world’s total consumption of natural gas was 1824 million tons oil equivalent (mtoe) in
1994. The reserves at the end of that year were estimated to be 128 300 mtoe. If consumption
had increased by 2% in each of the coming years, and no new sources were ever discovered,
how much longer would these reserves have lasted?

⊂SM⊃8. (a) Consider Example 10.3.2. Assume that immediately after one tree is felled, a new tree of
the same type is planted. If we assume that a new tree is planted at times t , 2t , 3t , etc., then
the present value of all the trees will be

f (t) = P(t)e−rt + P(t)e−2rt + · · ·
Find the sum of this infinite geometric series.
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(b) Prove that if f (t) has a maximum for some t∗ > 0, then
P ′(t∗)
P (t∗)

= r

1 − e−rt∗ .

(c) Examine the limit of P ′(t∗)/P (t∗) as r → 0.

9. Show that the following series diverge:

(a)
∞∑

n=1

n

1 + n
(b)

∞∑
n=1

(101/100)n (c)
∞∑

n=1

1

(1 + 1/n)n

10. Examine the convergence or divergence of the following series:

(a)
∞∑

n=1

(
100

101

)n

(b)
∞∑

n=1

1√
n

(c)
∞∑

n=1

1

n1.00000001

(d)
∞∑

n=1

1 + n

4n − 3
(e)

∞∑
n=1

(
−1

2

)n

(f)
∞∑

n=1

(√
3

)1−n

⊂SM⊃11. Use the results in Example 9.7.2 to prove (11). (Hint: Draw the graph of f (x) = x−p in [1, ∞),
and interpret each of the sums

∑∞
n=1 n−p and

∑∞
n=2 n−p geometrically as sums of an infinite

number of rectangles.)

10.5 Total Present Value
Suppose that three successive annual payments are to be made, with the amount $1000
falling due after 1 year, then $1500 after 2 years, and $2000 after 3 years. How much
must be deposited in an account today in order to have enough savings to cover these three
payments, given that the interest rate is 11% per year? We call this amount the present value
of the three payments.

In order to have $1000 after 1 year, we must deposit an amount x1 today, where

x1(1 + 0.11) = 1000, so that x1 = 1000

1 + 0.11
= 1000

1.11

In order to have $1500 after 2 years, we must deposit an amount x2 today, where

x2(1 + 0.11)2 = 1500, so that x2 = 1500

(1 + 0.11)2
= 1500

(1.11)2

Finally, to have $2000 after 3 years, we must deposit an amount x3 today, where

x3(1 + 0.11)3 = 2000, so that x3 = 2000

(1 + 0.11)3
= 2000

(1.11)3

So the total present value of the three payments, which is the total amount A that must be
deposited today in order to cover all three payments, is given by

A = 1000

1.11
+ 1500

(1.11)2
+ 2000

(1.11)3
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The total is approximately A ≈ 900.90 + 1217.43 + 1462.38 = 3580.71.
Suppose, in general, that n successive payments a1, . . . , an are to be made, with a1 being

paid after 1 year, a2 after 2 years, and so on. How much must be deposited into an account
today in order to have enough savings to cover all these future payments, given that the
annual interest is r? In other words, what is the present value of all these payments?

In order to have a1 after 1 year, we must deposit a1/(1+r) today, to have a2 after 2 years
we must deposit a2/(1 + r)2 today, and so on. The total amount Pn that must be deposited
today in order to cover all n payments is therefore

Pn = a1

1 + r
+ a2

(1 + r)2
+ · · · + an

(1 + r)n
(1)

Here Pn is the present value of the n instalments.
An annuity is a sequence of equal payments made at fixed periods of time over some

time span. If a1 = a2 = · · · = an = a in (1), then (1) represents the present value of an
annuity. In this case the sum in (1) is a finite geometric series with n terms. The first term is
a/(1+r) and the quotient is 1/(1+r). According to the summation formula for a geometric
series, (3) in the previous section, with k = (1 + r)−1, the sum is

Pn = a

(1 + r)

[1 − (1 + r)−n]

[1 − (1 + r)−1]
= a

r

[
1 − 1

(1 + r)n

]

(The second equality holds because the denominator of the middle expression reduces to r .)
Hence, we have the following:

P R E S E N T V A L U E O F A N A N N U I T Y

The present value of an annuity of a per payment period for n periods at the
rate of interest r per period, where each payment is at the end of the period, is
given by

Pn = a

1 + r
+ · · · + a

(1 + r)n
= a

r

[
1 − 1

(1 + r)n

]
, where r = p/100

(2)

This sum is illustrated below:

a
1 � r
a

(1 � r)2

a
(1 � r)n

a a a
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Formula (2) gives the present value of n future claims, each of a (say) dollars. If we want
to find how much has accumulated in the account after n periods, immediately after the last
deposit, then the future value Fn of the annuity is given by:

Fn = a + a(1 + r) + a(1 + r)2 + · · · + a(1 + r)n−1 (∗)

This different sum is illustrated below:

a a a
a

a (1 � r)

a (1 � r)2

a (1 � r)n�1

The summation formula for a geometric series yields:

Fn = a[1 − (1 + r)n]

1 − (1 + r)
= a

r
[(1 + r)n − 1]

We can also find the (undiscounted) future value by noticing that in the special case when
ai = a for all i, the terms on the right-hand side of (∗) repeat those of the right-hand side
of (1) when a1 = a2 = · · · = an = a, but taken in the reverse order and multiplied by the
interest factor (1 + r)n. Hence Fn = Pn(1 + r)n = a

r
[(1 + r)n − 1]. So:

F U T U R E V A L U E O F A N A N N U I T Y

An amount a is deposited in an account each period for n periods, earning interest
at r per period. The future (total) value of the account, immediately after the last
deposit, is

Fn = a

r
[(1 + r)n − 1] (3)

E X A M P L E 1 Compute the present and the future values of a deposit of $1000 in each of the coming
8 years if the annual interest rate is 6%.

Solution: To find the present value, we apply formula (2) with a = 1000, n = 8 and
r = 6/100 = 0.06. This gives

P8 = 1000

0.06

(
1 − 1

(1.06)8

)
≈ 6209.79

The future value is found by applying formula (3), which gives

F8 = 1000

0.06

[
(1.06)8 − 1

] ≈ 9897.47

Alternatively, F8 = P8(1.06)8 ≈ 6209.79(1.06)8 ≈ 9897.47.
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If r > 0 and we let n approach infinity in (2), then (1 + r)n approaches infinity and Pn

approaches a/r . So in the limit,

a

1 + r
+ a

(1 + r)2
+ · · · = a

r
(r > 0) (4)

This corresponds to the case where an investment pays a per period in perpetuity when the
interest rate is r .

E X A M P L E 2 Compute the present value of a series of deposits of $1000 at the end of each year in
perpetuity when the annual interest rate is 14%.

Solution: According to formula (4), we obtain

1000

1 + 0.14
+ 1000

(1 + 0.14)2
+ · · · = 1000

0.14
≈ 7142.86

Present Value of a Continuous Future Income Stream
We have discussed the present value of a series of future payments made at specific discrete
moments in time. It is often more natural to consider revenue as accruing continuously, like
the timber yield from a large growing forest.

Suppose that income is to be received continuously from time t = 0 to time t = T at the
rate of f (t) dollars per year at time t . We assume that interest is compounded continuously
at rate r per year.

Let P(t) denote the present discounted value (PDV) of all payments made over the time
interval [0, t]. This means that P(T ) represents the amount of money you would have to
deposit at time t = 0 in order to match what results from (continuously) depositing the
income stream f (t) over the time interval [0, T ]. If �t is any number, the present value of
the income received during the interval [t, t + �t] is P(t + �t) − P(t). If �t is a small
number, the income received during this interval is approximately f (t) �t , and the PDV of
this amount is approximately f (t)e−rt �t . Thus, P(t + �t) − P(t) ≈ f (t)e−rt �t and so

[P(t + �t) − P(t)]/�t ≈ f (t)e−rt

This approximation gets better the smaller is �t , and in the limit as �t → 0, we have
P ′(t) = f (t)e−rt . By the definition of the definite integral, P(T )−P(0) = ∫ T

0 f (t)e−rt dt .
Because P(0) = 0, we have the following:

P R E S E N T V A L U E O F A C O N T I N U O U S I N C O M E S T R E A M

The present (discounted) value (at time 0) of a continuous income stream at the
rate of f (t) dollars per year over the time interval [0, T ], with continuously
compounded interest at rate r per year, is given by

PDV =
∫ T

0
f (t)e−rt dt

(5)
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Equation (5) gives the value at time 0 of an income stream f (t) received during the time
interval [0, T ]. The value of this amount at time T , with continuously compounded interest
at rate r , is erT

∫ T

0 f (t)e−rt dt . Because the number erT is a constant, we can rewrite the

integral as
∫ T

0 f (t)er(T −t) dt . This is called the future discounted value (FDV) of the income
stream:

F U T U R E V A L U E O F A C O N T I N U O U S I N C O M E S T R E A M

The future (discounted) value (at time T ) of a continuous income stream at the
rate of f (t) dollars per year over the time interval [0, T ], with continuously
compounded interest at rate r per year, is given by

FDV =
∫ T

0
f (t)er(T −t) dt

(6)

An easy modification of (5) will give us the discounted value (DV) at any time s in [0, T ]
of an income stream f (t) received during the time interval [s, T ]. In fact, the DV at time s

of income f (t) received in the small time interval [t, t + dt] is f (t)e−r(t−s) dt . So we have
the following:

D I S C O U N T E D V A L U E O F A C O N T I N U O U S I N C O M E S T R E A M

The discounted value at any time s of a continuous income stream at the rate of
f (t) dollars per year over the time interval [s, T ], with continuously compounded
interest at rate r per year, is given by

DV =
∫ T

t=s

f (t)e−r(t−s) dt

(7)

E X A M P L E 3 Find the PDV and the FDV of a constant income stream of $1000 per year over the next
10 years, assuming an interest rate of r = 8% = 0.08 annually, compounded continuously.

Solution:

PDV =
∫ 10

0
1000e−0.08t dt =

10

0
1000

(
−e−0.08t

0.08

)
= 1000

0.08
(1 − e−0.8) ≈ 6883.39

FDV = e0.08·10PDV ≈ e0.8 · 6883.39 ≈ 15 319.27

P R O B L E M S F O R S E C T I O N 1 0 . 5

1. What is the present value of 15 annual deposits of $3500 if the first deposit is after one year and
the annual interest rate is 12%?
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2. (a) An account has been dormant for many years earning interest at the constant rate of 4% per
year. Now the amount is $100 000. How much was in the account 10 years ago?

(b) At the end of each year for 4 years you deposit $10 000 into an account earning interest at
a rate of 6% per year. How much is in the account at the end of the fourth year?

3. Suppose you are given the following options:

(i) $13 000 paid after 10 years, or

(ii) $1000 paid each year for 10 years, first payment today.

Which of these alternatives would you choose, if the annual interest rate is 6% per year for the
whole period?

4. An author is to be paid royalties for publishing a book. Two alternative offers are made:

(a) The author can be paid $21 000 immediately,

(b) There can be 5 equal annual payments of $4600, the first being paid at once.

Which of these offers will be more valuable if the interest rate is 6% per annum?

5. Compute the present value of a series of deposits of $1500 at the end of each year in perpetuity
when the interest rate is 8% per year.

6. A trust fund is being set up with a single payment of K . This amount is to be invested at a fixed
annual interest rate of r . The fund pays out a fixed annual amount. The first payment is to be
made one year after the trust fund was set up. What is the largest amount which can be paid out
each year if the fund is to last for ever?

7. The present discounted value of a payment D growing at a constant rate g when the discount
rate is r is given by

D

1 + r
+ D(1 + g)

(1 + r)2
+ D(1 + g)2

(1 + r)3
+ · · ·

where r and g are positive. What is the condition for convergence? Show that if the series
converges with sum P0, then P0 = D/(r − g).

8. Find the present and future values of a constant income stream of $500 per year over the next
15 years, assuming an interest rate of r = 6% = 0.06 annually, compounded continuously.

10.6 Mortgage Repayments
When a family takes out a home mortgage at a fixed interest rate, this means that, like an
annuity, equal payments are due each period—say, at the end of each month. The payments
continue until the loan is paid off after, say, 20 years. Each payment goes partly to pay
interest on the outstanding principal, and partly to repay principal (that is, to reduce the
outstanding balance). The interest part is largest in the beginning, because interest has to
be paid on the whole loan for the first period, and is smallest in the last period, because by
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then the outstanding balance is small. For the principal repayment, which is the difference
between the fixed monthly payment and the interest, it is the other way around.

E X A M P L E 1 A person borrows $50 000 at the beginning of a year and is supposed to pay it off in 5
equal instalments at the end of each year, with interest at 15% compounding annually. Find
the annual payment.

Solution: If the five repayments are each of amount $a, their present value in dollars is

a

1.15
+ a

(1.15)2
+ a

(1.15)3
+ a

(1.15)4
+ a

(1.15)5
= a

0.15

[
1 − 1

(1.15)5

]

according to formula (10.5.2). This sum must be equal to $50 000, so

a

0.15

[
1 − 1

(1.15)5

]
= 50 000 (∗)

This has the solution a ≈ 14 915.78. Alternatively, we can calculate the sum of the future
values of all repayments and equate it to the future value of the original loan. This yields
the equation

a + a(1.15) + a(1.15)2 + a(1.15)3 + a(1.15)4 = 50 000(1.15)5

which is equivalent to (∗), and so also has the solution a ≈ 14915.78.

To illustrate how the interest part and the principal repayment part of the yearly payment
vary from year to year, we construct the following table:

Year Payment Interest Principal Repayment Outst. Balance

1 14 915.78 7 500.00 7 415.78 42 584.22

2 14 915.78 6 387.63 8 528.15 34 056.07

3 14 915.78 5 108.41 9 807.37 24 248.70

4 14 915.78 3 637.31 11 278.47 12 970.23

5 14 915.78 1 945.55 12 970.23 0

Note that the interest payment each year is 15% of the outstanding balance from the previous
year. The remainder of each annual payment of $14 915.78 is the principal repayment that
year, which is subtracted from the outstanding balance left over from the previous year.

Figure 1 is a chart showing each year’s interest and principal repayments.
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1 2 3 4 5

Principal Repayment

Interest

5 000

10 000

15 000

20 000

0

Figure 1 Interest and principal repayment in Example 1

Suppose a loan of K dollars is repaid as an annuity over n periods, at the interest rate p%
per period, where the first payment a is due after one period, and the rest at equally spaced
periods. According to (10.5.2), the payment a each period must satisfy

K = a

r

[
1 − 1

(1 + r)n

]
= a

r
[1 − (1 + r)−n] (1)

Solving equation (1) for a yields

a = rK

1 − (1 + r)−n
(2)

where r = p/100. We could have used this formula in Example 1. Do so.

E X A M P L E 2 Suppose that the loan in Example 1 is being repaid by monthly payments at the end of
each month with interest at the nominal rate 15% per year compounding monthly. Find the
monthly payment.

Solution: The interest period is 1 month and the monthly rate is 15/12 = 1.25%, so that
r = 1.25/100 = 0.0125. Also, n = 5 · 12 = 60, so formula (2) gives:

a = 0.0125 · 50 000

1 − 1.0125−60
≈ 1189.50

The annuities considered so far were ordinary annuities where each payment is made at
the end of the payment period. If the payment each period is made at the beginning of the
period, the annuity is called an annuity due. This kind of annuity can be handled easily by
regarding it as an ordinary annuity, except that there is an immediate initial payment.

E X A M P L E 3 A person is assuming responsibility for a $335 000 loan which should be repaid in 15
equal repayments of $a, the first one immediately and the following after each of the coming
14 years. Find a if the annual interest rate is 14%.

Solution: The present value of the first payment is obviously a. The present value of the
following 14 repayments is found by applying formula (1) with r = 0.14 and n = 14. The
sum of the present values must be equal to 335 000:

a + a

0.14

[
1 − 1

(1 + 0.14)14

]
= 335 000

This reduces to a + 6.0020715a = 335 000, and solving for a gives a ≈ 47 843.
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Some lenders prefer to specify a fixed payment each period, and let the loan run for however
many periods it takes to pay off the debt. This way of paying off the loan functions essentially
as an annuity. The difference is that there will be a final adjustment in the last payment in
order for the present value of all the payments to be equal to the borrowed amount. In this
case it is convenient to use the formula obtained by solving equation (1) for n. The result is

rK

a
= 1 − 1

(1 + r)n
⇐⇒ 1

(1 + r)n
= 1 − rK

a
= a − rK

a
⇐⇒ (1 + r)n = a

a − rK

Taking the natural logarithm of each side yields n ln(1 + r) = ln
[
a/(a − rK)

]
, so:

The number of periods n needed to pay off a loan of amount K at the rate a per
period, when the interest rate is r per period, is given by

n = ln a − ln(a − rK)

ln(1 + r)

(3)

E X A M P L E 4 A loan of $50 000 is to be repaid by paying $20 000, which covers both interest and the
principal repayment, at the end of each of the coming years, until the loan is fully paid off.
When is the loan paid off, and what is the final payment if the annual rate is 15%?

Solution: We begin by computing the number n of annual payments of $20 000 which are
needed to pay off $50 000. According to (3), with r = 0.15, a = 20 000, and K = 50 000,
we obtain:

n = ln(20 000) − ln(20 000 − 0.15 · 50 000)

ln(1 + 0.15)
≈ 3.3629

Thus three payments of $20 000 are needed, with an additional payment in the fourth year.
Let us calculate the future value of the three payments of $20 000 three years after the loan
was made. This value is:

20 000 · (1.15)2 + 20 000 · 1.15 + 20 000 = 20 000

0.15

[
(1.15)3 − 1

] ≈ 69 450

The future value of the $50 000 loan after the same 3 years is 50 000 · (1.15)3 = 76 043.75.
Thus the remaining debt after the third payment is 76 043.75 − 69 450 = 6593.75. If the
remaining debt and the accumulated interest are paid one year later, the amount due is
6593.75 · 1.15 = 7582.81.
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Deposits within an Interest Period

Many bank accounts have an interest period of one year, or at least one month. If you deposit
an amount within an interest period, the bank will often use simple interest, not compound
interest. In this case, if you make a deposit within an interest period, then at the end of
the period the amount you deposited will be multiplied by the factor 1 + rt , where t is the
remaining fraction of the interest period.

E X A M P L E 5 At the end of each quarter, beginning on March 31, 1999, a person deposits $100 in an
account on which interest is paid annually at the rate 10% per year. How much is there in
the account on December 31, 2001?

Solution: The deposits during 1999 are illustrated in the following figure:

100 100 100 100

31/3 30/6 30/9 31/12

These four deposits are made within the year. In order to find the balance at the end of the
year (the interest period), we use simple (i.e. not compound) interest. This gives

100
(
1 + 0.10 · 3

4

) + 100
(
1 + 0.10 · 2

4

) + 100
(
1 + 0.10 · 1

4

) + 100 = 415

Doing the same for 2000 and 2001 as well, we replace the 12 original deposits by the amount
415.00 at the end of each of the years 1999, 2000, and 2001.

415 415 415

31/12/1999 31/12/2000 31/12/2001

The balance on 31/12/2001 is 415 · (1.10)2 +415 ·1.10 +415 = 1373.65. So on December
31, 2001, the person has $1373.65.

P R O B L E M S F O R S E C T I O N 1 0 . 6

1. A person borrows $80 000 at the beginning of one year, and is supposed to pay it off in 10 equal
instalments at the end of each year, with interest at 7% compounding annually. Find the annual
payment.

2. Suppose that the loan in Problem 1 is being repaid in equal instalments at the end of each month,
with interest at the nominal rate 7% compounded monthly. Find the monthly payment.

3. (a) If you deposit $8000 in an account each year for 6 years at the rate of interest 7%, how
much do you have immediately after the last deposit? How much do you have 4 years after
the last deposit?

(b) Ronald invests money in a project which triples his money in 20 years. Assuming annual
compounding of interest, what is the rate of interest? What if you assume continuous
compounding?
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HARDER PROBLEM

4. A construction firm wants to buy a building site and has the choice between three different
payment schedules:

(a) Pay $67 000 in cash.
(b) Pay $12 000 per year for 8 years, where the first instalment is to be paid at once.
(c) Pay $22 000 in cash and thereafter $7000 per year for 12 years, where the first instalment

is to be paid after 1 year.

Determine which schedule is least expensive if the interest rate is 11.5% and the firm has at
least $67 000 available to spend in cash. What happens if the interest rate is 12.5%?

10.7 Internal Rate of Return
Consider n+1 numbers a0, a1, . . . , an which represent the returns in successive years earned
by an investment project. Negative numbers represent losses, positive numbers represent
profits, so each ai is actually the net return. Also, we think of ai as associated with year i,
whereas a0 is associated with the present period. In most investment projects, a0 is a big
negative number, because a large expense precedes any positive returns. If we consider an
interest rate of p% per year and let r = p/100, then the net present value of the profits
accruing from the project is given by

A = a0 + a1

1 + r
+ a2

(1 + r)2
+ · · · + an

(1 + r)n

Several different criteria are used to compare alternative investment projects. One is
simply this: Choose the project whose profit stream has the largest present value. The
interest rate to use could be an accepted rate for capital investments.

A different criterion is based on the internal rate of return, defined as an interest rate
that makes the present value of all payments equal to 0.

As a simple example, suppose you invest an amount a which pays back b one year later.
Then the rate of return is the interest rate r that makes the present value of the investment
project equal to zero. That is, r must satisfy −a + (1 + r)−1b = 0, so r = (b/a) − 1. For
example, when a = 1000 and b = 1200, the rate of return is r = (1200/1000) − 1 = 0.2,
or 20% per year.

For a general investment project yielding returns a0, a1, . . . , an, the internal rate of return
is a number r such that

a0 + a1

1 + r
+ a2

(1 + r)2
+ · · · + an

(1 + r)n
= 0 (1)

If two investment projects both have a unique internal rate of return, then a criterion for
choosing between them is to prefer the project that has the higher internal rate of return.
Note that (1) is a polynomial equation of degree n in the discount factor (1 + r)−1. In
general, this equation does not have a unique positive solution r .
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E X A M P L E 1 An investment project has an initial outlay of $50 000, and at the end of the next two
years has returns of $30 000 and $40 000, respectively. Find the associated internal rate of
return.

Solution: In this case, equation (1) takes the form

−50 000 + 30 000

1 + r
+ 40 000

(1 + r)2
= 0

Put s = (1 + r)−1. Then the equation becomes

40 000s2 + 30 000s − 50 000 = 0 or 4s2 + 3s − 5 = 0

This has only one positive solution, s ≈ 0.804. Then r = 1/s − 1 ≈ 0.243. The internal
rate of return is therefore 24.3%.

NOTE 1 Suppose that a0 < 0 and a1, . . . , an are all > 0. Then (1) has a unique solution
r∗ satisfying 1 + r∗ > 0, that is, a unique internal rate of return r∗ > −1. Also, the internal
rate of return is positive if

∑n
i=0 ai > 0. You are asked to prove these results in Problem 3.

P R O B L E M S F O R S E C T I O N 1 0 . 7

1. An investment project has an initial outlay of $50 000 and at the end of each of the next two
years has returns of $30 000. Find the associated internal rate of return r .

2. Suppose that in (1) we have a0 < 0 and ai = a > 0 for i = 1, 2, . . . . Find an expression for
the internal rate of return in the limit as n → ∞.

3. Consider an investment project with an initial loss, so that a0 < 0, and thereafter no losses.
Suppose also that the sum of the later profits is larger than the initial loss. Prove the two claims
in Note 1. (Hint: Define f (r) as the expression on the left side of (1). Then study the signs of
f (r) and f ′(r) on the interval (0, ∞).)

4. An investment in a certain machine is expected to earn a profit of $400 000 each year. What is
the maximum price that should be paid for the machine if it has a lifetime of 7 years, the interest
rate is 17.5%, and the annual profit is earned at the end of each year?

HARDER PROBLEMS

⊂SM⊃5. An investment project has an initial outlay of $100 000, and at the end of each of the next 20
years has a return of $10 000. Show that there is a unique positive internal rate of return, and
find its approximate value. (Hint: Use s = (1 + r)−1 as a new variable. Prove that the equation
you obtain for s has a unique positive solution. Verify that s = 0.928 is an approximate root.)

6. A is obliged to pay B $1000 yearly for 5 years, the first payment in 1 year’s time. B sells this
claim to C for $4340 in cash. Find an equation that determines the rate of return p that C obtains
from this investment. Prove that it is a little less than 5%.
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10.8 A Glimpse at Difference Equations
Many of the quantities economists study (such as income, consumption, and savings) are
recorded at fixed time intervals (for example, each day, week, quarter, or year). Equations
that relate such quantities at different discrete moments of time are called difference equa-
tions. In fact difference equations can be viewed as the discrete time counterparts of the
differential equations in continuous time that were studied in Sections 9.8 and 9.9.

Let t = 0, 1, 2, . . . denote different discrete time periods or moments of time. We usually
call t = 0 the initial period. If x(t) is a function defined for t = 0, 1, 2, . . . , we often use
x0, x1, x2, . . . to denote x(0), x(1), x(2), . . . , and in general, we write xt for x(t).

A simple example of a first-order difference equation is

xt+1 = axt , t = 0, 1, . . . (1)

where a is a constant. This is a first-order equation because it relates the value of a function
in period t + 1 to the value of the same function in the previous period t only.

Supposex0 is given. Repeatedly applying (1) givesx1 = ax0, x2 = ax1 = a·ax0 = a2x0,
x3 = ax2 = a · a2x0 = a3x0 and so on. In general,

xt = x0a
t , t = 0, 1, . . . (2)

The function xt = x0a
t satisfies (1) for all t , as can be verified directly. For the given value

of x0, there is clearly no other function that satisfies the equation.

E X A M P L E 1 Find the solution of the following difference equation which has x0 = 100:

xt+1 = 0.2xt , t = 0, 1, . . .

From (2) we have xt = 100(0.2)t , t = 0, 1, . . ..

E X A M P L E 2 Let Kt denote the balance in an account at the beginning of period t when the interest
rate is r per period. (If the interest is p% per period, r = p/100.) Then the balance in the
account at time t + 1 is Kt+1 = Kt + rKt = (1 + r)Kt . Hence Kt satisfies the difference
equation

Kt+1 = (1 + r)Kt t = 0, 1, . . .

It follows immediately from (2) that

Kt = K0(1 + r)t t = 0, 1, . . .

as is well known to us already from Section 1.2 and the beginning of this chapter. In general,
this difference equation describes growth at the constant proportional rate r each period.
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E X A M P L E 3 (A Multiplier–Accelerator Model of Economic Growth) Let Yt denote national in-
come, It total investment, and St total saving—all in period t . Suppose that savings are
proportional to national income, and that investment is proportional to the change in income
from period t to t + 1. Then, for t = 0, 1, 2, . . . ,

(i) St = αYt (ii) It+1 = β(Yt+1 − Yt ) (iii) St = It

The last equation is the equilibrium condition that saving equals investment in each period.
Here α and β are positive constants, and we assume that β > α > 0. Deduce a difference
equation determining the path of Yt , given Y0, and solve it.

Solution: From (i) and (iii), It = αYt , and so It+1 = αYt+1. Inserting this into (ii) yields
αYt+1 = β(Yt+1 − Yt ), or (α − β)Yt+1 = −βYt . Thus,

Yt+1 = β

β − α
Yt =

(
1 + α

β − α

)
Yt , t = 0, 1, 2, . . . (∗)

Using (2) gives the solution

Yt =
(

1 + α

β − α

)t

Y0 , t = 0, 1, 2, . . .

Linear First-Order Equations with Constant Coefficients
Consider next the first-order linear difference equation

xt+1 = axt + b, t = 0, 1, 2, . . . (3)

where a and b are constants. The equation in (1) is the special case where b = 0.
Starting with a given x0, we can calculate xt algebraically for small t . Indeed

x1 = ax0 + b

x2 = ax1 + b = a(ax0 + b) + b = a2x0 + (a + 1)b

x3 = ax2 + b = a(a2x0 + (a + 1)b) + b = a3x0 + (a2 + a + 1)b

and so on. This makes the pattern clear. In general we have

xt = atx0 + (at−1 + at−2 + · · · + a + 1)b

It is straightforward to check directly that this satisfies (3). According to the summation
formula for a geometric series, 1 + a + a2 + · · · + at−1 = (1 − at )/(1 − a), for a �= 1.
Thus, for t = 0, 1, 2, . . . ,

xt+1 = axt + b ⇐⇒ xt = at
(
x0 − b

1 − a

)
+ b

1 − a
(a �= 1) (4)

For a = 1, we have 1 + a + · · · + at−1 = t and xt = x0 + tb for t = 1, 2, . . . .
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E X A M P L E 4 Solve the difference equation xt+1 = 1
3xt − 8.

Solution: Using (4) we obtain the solution

xt = ( 1
3

)t
(x0 + 12) − 12

Equilibrium States and Stability

Consider the solution of xt+1 = axt +b given in (4). If x0 = b/(1−a), then xt = b/(1−a)

for all t . The constant x∗ = b/(1 − a) is called an equilibrium (or stationary) state for
xt+1 = axt + b.

An alternative way of finding an equilibrium state x∗ is to seek a solution of xt+1 = axt+b

with xt = x∗ for all t . Such a solution must satisfy xt+1 = xt = x∗ and so x∗ = ax∗ + b.
Therefore, for a �= 1, we get x∗ = b/(1 − a) as before.

Suppose the constant a in (4) is less than 1 in absolute value—that is, −1 < a < 1.
Then at → 0 as t → ∞, so (4) implies that

xt → x∗ = b/(1 − a) as t → ∞
Hence, if |a| < 1, the solution converges to the equilibrium state as t → ∞. The equation
is then called globally asymptotically stable. If |a| > 1, then the absolute value of at

tends to ∞ as t → ∞. From (4), it follows that xt moves farther and farther away from the
equilibrium state, except when x0 = b/(1 − a). Illustrations of the different possibilities
are given in FMEA, Section 11.1.

E X A M P L E 5 The equation in Example 4 is stable because a = 1/3. The equilibrium state is −12. We
see from the solution given in that example that xt → −12 as t → ∞.

E X A M P L E 6 (Mortgage Repayments) A particular case of the difference equation (3) occurs when
a family borrows an amount K at time 0 as a home mortgage. Suppose there is a fixed
interest rate r per period (usually a month rather than a year). Suppose, too, that there are
equal repayments of amount a each period, until the mortgage is paid off after n periods
(for example, 360 months = 30 years). The outstanding balance or principal bt on the loan
in period t satisfies the difference equation bt+1 = (1 + r)bt − a, with b0 = K and bn = 0.
This difference equation can be solved by using (4), which gives

bt = (1 + r)t (K − a/r) + a/r

But bt = 0 when t = n, so 0 = (1 + r)n
(
K − a/r

) + a/r . Solving for K yields

K = a

r
[1 − (1 + r)−n] = a

n∑
t=1

(1 + r)−t (∗)
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The original loan, therefore, is equal to the present discounted value of n equal repayments
of amount a each period, starting in period 1. Solving for a instead yields

a = rK

1 − (1 + r)−n
= rK(1 + r)n

(1 + r)n − 1
(∗∗)

Formulas (∗) and (∗∗) are the same as those derived by a more direct argument in
Section 10.6.

P R O B L E M S F O R S E C T I O N 1 0 . 8

1. Find the solutions of the following difference equations.

(a) xt+1 = −2xt (b) 6xt+1 = 5xt (c) xt+1 = −0.3xt

2. Find the solutions of the following difference equations with the given values of x0:

(a) xt+1 = xt − 4, x0 = 0 (b) xt+1 = 1
2 xt + 2, x0 = 6

(c) 2xt+1 + 6xt + 5 = 0, x0 = 1 (d) xt+1 + xt = 8, x0 = 2

3. Suppose supply at price Pt is S(Pt ) = αPt −β and demand at price Pt+1 is D(Pt+1) = γ −δPt+1.
Solve the difference equation S(Pt ) = D(Pt+1). All constants are positive.

R E V I E W P R O B L E M S F O R C H A P T E R 1 0

1. (a) An amount $5000 earns interest at 3% per year. What will this amount have grown to after
10 years?

(b) How long does it take for the $5000 to double?

2. An amount of 8000 euros is invested at 5% per year.

(a) What is the balance in the account after 3 years?

(b) What is the balance after 13 years?

(c) How long does it take (approximately) for the balance to reach 32 000 euros?

3. Which is preferable for a borrower: (i) to borrow at the annual interest rate of 11% with interest
paid yearly; or (ii) to borrow at annual interest rate 10% with interest paid monthly?

4. Suppose the sum of £15 000 is invested in an account earning interest at an annual rate of 7%.
What is the balance after 12 years if interest is compounded continuously?

5. (a) How much has $8000 increased to after 3 years if the annual interest rate is 6%, with
continuous compounding?

(b) How long does it take before the $8000 has doubled?
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6. Find the sums of the following infinite series:

(a) 44 + 44 · 0.56 + 44 · (0.56)2+ · · · (b)
∞∑

n=0

20

(
1

1.2

)n

(c) 3 + 3 · 2

5
+ 3 · 22

52
+ · · · +3 · 2n−1

5n−1
+ · · · (d)

∞∑
j=−2

1

20j

7. (a) Find the present discounted value (PDV) of a constant income stream of a dollars per year
over the next T years, assuming an interest rate of r annually, compounded continuously.

(b) What is the limit of the PDV as T → ∞? Compare this result with (10.5.4).

⊂SM⊃8. (a) At the beginning of a year $5000 is deposited in an account earning 4% annual interest.
What is the balance after 4 years?

(b) At the end of each year for four years, $5000 is deposited in an account earning 4% annual
interest. What is the balance immediately after the fourth deposit?

(c) Suppose you had $10 000 in your account on 1st January 1996. You agreed to deposit a
fixed amount K each year for 8 years, the first deposit on 1st January 1999. What choice
of the fixed amount K will imply that you have a balance of $70 000 immediately after the
last deposit? The annual interest rate is 4%.

9. A business borrows 500 000 euros from a bank at the beginning of one year, and is supposed
to pay it off in 10 equal instalments at the end of each year, with interest at 7% compounding
annually.

(a) Find the annual payment. What is the total amount paid to the bank?

(b) What is the total amount if the business has to pay twice a year?

10. Lucy is offered the choice between the following three options:

(a) She gets $3200 each year for 10 years. First payment due after 1 year.

(b) She gets $7000 today, and thereafter $3000 each year for 5 years. First payment after 1 year.

(c) She gets $4000 each year for 10 years. First payment only due after 5 years.

The annual interest rate is 8%. Calculate the present values of the three options. What would
you advise Lucy to choose?

⊂SM⊃11. (a) With reference to Example 10.3.2, suppose that the market value of the tree is P(t) =
100e

√
t/2, so that its present value is f (t) = 100e

√
t/2e−rt . Find the optimal cutting time

t∗. (Note that t∗ decreases as r increases.) By studying the sign variation of f ′(t), show
that you have indeed found the maximum. What is t∗ if r = 0.05?

(b) Solve the same problem when P(t) = 200e−1/t and r = 0.04.

12. The revenue produced by a new oil well is $1 million per year initially (t = 0), which is
expected to rise uniformly to $5 million per year after 10 years. If we measure time in years
and let f (t) denote the revenue (in millions of dollars) per unit of time at time t , it follows that
f (t) = 1 + 0.4t . If F(t) denotes the total revenue that accumulates over the time interval [0, t],
then F ′(t) = f (t).

(a) Calculate the total revenue earned during the 10 year period (i.e. F(10)).

(b) Find the present value of the revenue stream over the time interval [0, 10], if we assume
continuously compounded interest at the rate r = 0.05 per year.
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13. Solve the following difference equations with the given values of x0:

(a) xt+1 = −0.1xt , x0 = 1 (b) xt+1 = xt − 2, x0 = 4 (c) 2xt+1 − 3xt = 2, x0 = 2



Essential Math. for Econ. Analysis, 4th edn EME4_C11.TEX, 16 May 2012, 14:24 Page 377

11
F U N C T I O N S O F
M A N Y V A R I A B L E S

Mathematics is not a careful march down a well-cleared highway,

but a journey into a strange wilderness, where the explorers often

get lost.

—W.S. Anglin (1992)

So far, this book has been concerned with functions of one variable almost exclusively. Yet

a realistic description of many economic phenomena requires considering a large number

of variables. For example, one consumer’s demand for a good like orange juice depends on

its price, on the consumer’s income, and on the prices of substitutes like other soft drinks, or

complements like some kinds of food.

Previous chapters have presented important properties of functions of one variable. For

functions of several variables, most of what economists need to know consists of relatively

simple extensions of properties presented in the previous chapters for functions of one variable.

Moreover, most of the difficulties already arise in the transition from one variable to two variables.

To help students see how to overcome these difficulties, Sections 11.1 to 11.3 deal exclusively

with functions of two variables. These have graphs in three dimensions, which it is possible

to represent even in two-dimensional figures—though with some difficulty. However, as the

previous example of the demand for orange juice suggests, there are many interesting economic

problems that can only be represented mathematically by functions of many variables. These

are discussed in Sections 11.4 to 11.7. The final Section 11.8 is devoted to the economically

important topic of elasticity.

11.1 Functions of Two Variables
We begin with the following definition, where D is a subset of the xy-plane.

F U N C T I O N S O F T W O V A R I A B L E S

A function f of two real variables x and y with domain D is a rule that assigns
a specified number f (x, y) to each point (x, y) in D.

(1)
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If f is a function of two variables, we often let a letter like z denote the value of f at
(x, y), so z = f (x, y). Then we call x and y the independent variables, or the arguments
of f , whereas z is called the dependent variable, because the value z (in general) depends
on the values of x and y. The domain of the function f is then the set of all possible pairs
of the independent variables, whereas the range is the set of corresponding values of the
dependent variable. In economics, x and y are often called the exogenous variables, whereas
z is the endogenous variable.

E X A M P L E 1 Consider the function f that, to every pair of numbers (x, y), assigns the number 2x +
x2y3. The function f is thus defined by

f (x, y) = 2x + x2y3

What are f (1, 0), f (0, 1), f (−2, 3), and f (a + 1, b)?

Solution: First, f (1, 0) is the value when x = 1 and y = 0. So f (1, 0) = 2·1+12 ·03 = 2.
Similarly, f (0, 1) = 2 ·0+02 ·13 = 0, and f (−2, 3) = 2(−2)+(−2)2 ·33 = −4+4 ·27 =
104. Finally, we find f (a + 1, b) by replacing x with a + 1 and y with b in the formula for
f (x, y), giving f (a + 1, b) = 2(a + 1) + (a + 1)2b3.

E X A M P L E 2 A study of the demand for milk by R. Frisch and T. Haavelmo found the relationship

x = A
m2.08

p1.5
(A is a positive constant)

where x is milk consumption, p is the relative price of milk, and m is income per family.
This equation defines x as a function of p and m. Note that milk consumption goes up
when income m increases, and goes down when the price of milk increases, which seems
reasonable.

E X A M P L E 3 A function of two variables appearing in many economic models is

F(x, y) = Axayb (A, a, and b are constants) (2)

Usually, one assumes that F is defined only for x > 0 and y > 0. Then F is generally
called a Cobb–Douglas function.1 Note that the function defined in the previous example
is a Cobb–Douglas function, because we have x = Ap−1.5m2.08.

The Cobb–Douglas function is most often used to describe certain production processes.
Then x and y are called input factors, while F(x, y) is the number of units produced, or the
output. Also, F is called a production function.

1 The function in (2) is named after two American researchers, C. W. Cobb and P. H. Douglas, who
applied it (with a + b = 1) in a paper that appeared in 1927 on the estimation of production
functions. The function should properly be called a “Wicksell function”, because the Swedish
economist Knut Wicksell (1851–1926) introduced such production functions before 1900.
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It is important to become thoroughly familiar with standard functional notation.

E X A M P L E 4 For the function F given in (2), find an expression for F(2x, 2y) and for F(tx, ty),
where t is an arbitrary positive number. Find also an expression for F(x + h, y) − F(x, y).
Give economic interpretations.

Solution: We find that

F(2x, 2y) = A(2x)a(2y)b = A2axa2byb = 2a2bAxayb = 2a+bF (x, y)

When F is a production function, this shows that if each of the input factors is doubled, then
the output is 2a+b times as large. For example, if a + b = 1, then doubling each factor of
production implies doubling the output. In the general case,

F(tx, ty) = A(tx)a(ty)b = Ataxatbyb = tatbAxayb = ta+bF (x, y) (∗)

Formulate this result in your own words. Because of property (∗), we call the function
F homogeneous of degree a + b. Homogeneous functions are discussed in Sections 12.6
and 12.7.

Finally, we see that

F(x + h, y) − F(x, y) = A(x + h)ayb − Axayb = Ayb[(x + h)a − xa] (∗∗)

This shows the change in output when the first input factor is changed by h units while the
other input factor is unchanged. For example, suppose A = 100, a = 1/2, and b = 1/4, in
which case F(x, y) = 100x1/2y1/4. Now, if we choose x = 16, y = 16, and h = 1, then
(∗∗) implies that

F(16 + 1, 16) − F(16, 16) = 100 · 161/4[171/2 − 161/2] = 100 · 2[
√

17 − 4] ≈ 24.6

Hence, if we increase the input of the first factor from 16 to 17, while keeping the input of
the second factor constant at 16 units, then we increase production by about 24.6 units.

Domains

For functions studied in economics, there are usually explicit or implicit restrictions on the
domain D in the xy-plane where the function is defined, as in (1). For instance, if f (x, y) is
a production function, we usually assume that the input quantities are nonnegative, so x ≥ 0
and y ≥ 0. In economics, it is often crucially important to be clear what are the domains of
the functions being used.

In the same way as for functions of one variable, we assume, unless otherwise stated,
that the domain of a function defined by a formula is the largest domain in which the formula
gives a meaningful and unique value.

Sometimes it is helpful to draw a graph of the domain D in the xy-plane.
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E X A M P L E 5 Determine the domains of the functions given by the following formulas, then draw the
sets in the xy-plane.

(a) f (x, y) = √
x − 1 + √

y (b) g(x, y) = 2

(x2 + y2 − 4)1/2
+

√
9 − (x2 + y2)

Solution:

(a) We must require that x ≥ 1 and y ≥ 0, for only then do
√

x − 1 and
√

y have any
meaning. The (unbounded) domain is indicated in Fig. 1.

(b) (x2 + y2 − 4)1/2 = √
x2 + y2 − 4 is only defined if x2 + y2 ≥ 4. Moreover, we must

have x2 + y2 �= 4; otherwise, the denominator is equal to 0. Furthermore, we must
require that 9 − (x2 + y2) ≥ 0, or x2 + y2 ≤ 9. All in all, therefore, we must have
4 < x2 + y2 ≤ 9. Because the graph of x2 + y2 = r2 consists of all the points on the
circle with centre at the origin and radius r , the domain is the set of points (x, y) that
lie outside (but not on) the circle x2 + y2 = 4, and inside or on the circle x2 + y2 = 9.
This set is shown in Fig. 2, where the solid circle is in the domain, but the dashed circle
is outside it.

x � 1, y � 0

1

y

x

4 � x2 � y2 � 9

1

1 2 3

y

x

Figure 1 Figure 2

P R O B L E M S F O R S E C T I O N 1 1 . 1

1. Let f (x, y) = x + 2y. Find f (0, 1), f (2, −1), f (a, a), and f (a + h, b) − f (a, b).

2. Let f (x, y) = xy2. Find f (0, 1), f (−1, 2), f (104, 10−2), f (a, a), f (a + h, b), and
f (a, b + k) − f (a, b).

3. Let f (x, y) = 3x2 − 2xy + y3. Find f (1, 1), f (−2, 3), f (1/x, 1/y),
p = [

f (x + h, y) − f (x, y)
]
/h, and q = [

f (x, y + k) − f (x, y)
]
/k.

4. (a) Let f (x, y) = x2 + 2xy + y2. Find f (−1, 2), f (a, a), and f (a + h, b) − f (a, b).

(b) Prove that f (2x, 2y) = 22f (x, y) and that f (tx, ty) = t2f (x, y) for all t .

5. Let F(K, L) = 10K1/2L1/3, for K ≥ 0 and L ≥ 0. Find F(1, 1), F(4, 27), F(9, 1/27),
F(3,

√
2), F(100, 1000), and F(2K, 2L).
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6. Examine for which (x, y) the functions given by the following formulas are defined, then draw
the domains of (b) and (c) in the xy-plane.

(a)
x2 + y3

y − x + 2
(b)

√
2 − (x2 + y2) (c)

√
(4 − x2 − y2)(x2 + y2 − 1)

7. Find the domains of the functions defined by the following formulas:

(a)
1

ex+y − 3
(b) ln(x − a)2 + ln(y − b)2 (c) 2 ln(x − a) + 2 ln(y − b)

11.2 Partial Derivatives with Two Variables
For a function y = f (x) of one variable, the derivative f ′(x) is a number which measures the
function’s rate of change as x changes. For functions of two variables, such as z = f (x, y),
we also want to examine how quickly the value of the function changes w.r.t. changes in
the values of the independent variables. For example, if f (x, y) is a firm’s profit when it
uses quantities x and y of two different inputs, we want to know whether and by how much
profit can increase as either x or y is varied.

Consider the function
z = x3 + 2y2 (∗)

Suppose first that y is held constant. Then 2y2 is constant. Really there is only one variable
now. Of course, the rate of change of z w.r.t. x is given by

dz

dx
= 3x2

On the other hand, we can keep x fixed in (∗) and examine how z varies as y varies. This
involves taking the derivative of z w.r.t. y while keeping x constant. The result is

dz

dy
= 4y

Obviously, there are many other variations we could study. For example, x and y could vary
simultaneously. But in this section, we restrict our attention to variations in either x or y.

When we consider functions of two variables, mathematicians (and economists) usually
write ∂z/∂x instead of dz/dx for the derivative of z w.r.t. x when y is held fixed. This
slight change of notation, replacing d by ∂ , is intended to remind the reader that only one
independent variable is changing, with the other(s) held fixed. In the same way, we write
∂z/∂y instead of dz/dy when y varies and x is held fixed. Hence, we have

z = x3 + 2y2 	⇒ ∂z

∂x
= 3x2 and

∂z

∂y
= 4y

In general, we introduce the following definitions:
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P A R T I A L D E R I V A T I V E S

If z = f (x, y), then

(i) ∂z/∂x denotes the derivative of f (x, y) w.r.t. x when y is held constant;

(ii) ∂z/∂y denotes the derivative of f (x, y) w.r.t. y when x is held constant.

(1)

When z = f (x, y), we also denote the derivative ∂z/∂x by ∂f/∂x, and this is called the
partial derivative of z (or f ) w.r.t. x. Often ∂z/∂x is pronounced “partial dz by dx”. In
the same way, ∂z/∂y = ∂f/∂y is the partial derivative of z (or f ) w.r.t. y. Note that ∂f/∂x

is the rate of change of f (x, y) w.r.t. x when y is constant, and correspondingly for ∂f/∂y.
Of course, because there are two variables, there are two partial derivatives.

It is usually easy to find the partial derivatives of a function z = f (x, y). To find ∂f/∂x,
just think of y as a constant and differentiate f (x, y) w.r.t. x as if f were a function only
of x. The rules for finding derivatives of functions of one variable can all be used when we
want to compute ∂f/∂x. The same is true for ∂f/∂y. Let us look at some further examples.

E X A M P L E 1 Find the partial derivatives of the following functions:

(a) f (x, y) = x3y + x2y2 + x + y2 (b) f (x, y) = xy

x2 + y2

Solution:
(a) We find

∂f

∂x
= 3x2y + 2xy2 + 1 (holding y constant)

∂f

∂y
= x3 + 2x2y + 2y (holding x constant)

(b) For this function the quotient rule gives

∂f

∂x
= y(x2 + y2) − 2xxy

(x2 + y2)
2 = y3 − x2y

(x2 + y2)
2 ,

∂f

∂y
= x3 − y2x

(x2 + y2)
2

Observe that the function in (b) is symmetric in x and y, in the sense that the function
value is unchanged if we interchange x and y. By interchanging x and y in the formula
for ∂f/∂x, therefore, we will find the correct formula for ∂f/∂y. (Find ∂f/∂y in the
usual way and check that the foregoing answer is correct.)

Several other forms of notation are often used to indicate the partial derivatives of z =
f (x, y). Some of the most common are

∂f

∂x
= ∂z

∂x
= z′

x = f ′
x(x, y) = f ′

1(x, y) = ∂f (x, y)

∂x

∂f

∂y
= ∂z

∂y
= z′

y = f ′
y(x, y) = f ′

2(x, y) = ∂f (x, y)

∂y
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Among these, f ′
1(x, y) and f ′

2(x, y) are the most satisfactory. Here the numerical subscript
refers to the position of the argument in the function. Thus, f ′

1 indicates the partial derivative
w.r.t. the first variable, and f ′

2 w.r.t. the second variable. This notation also reminds us that
the partial derivatives themselves are functions of x and y. Finally, f ′

1(a, b) and f ′
2(a, b)

are suitable designations of the values of the partial derivatives at point (a, b) instead of at
(x, y). For example, given the function f (x, y) = x3y + x2y2 + x + y2 in Example 1(a),
one has

f ′
1(x, y) = 3x2y + 2xy2 + 1 , f ′

1(a, b) = 3a2b + 2ab2 + 1

In particular, f ′
1(0, 0) = 1 and f ′

1(−1, 2) = 3(−1)22 + 2(−1)22 + 1 = −1.
The alternative notation f ′

x(x, y) and f ′
y(x, y) is often used, but especially in connection

with composite functions it is sometimes too ambiguous. For instance, what is the meaning
of f ′

x(x
2y, x − y)?

Remember that the numbers f ′
1(x, y) and f ′

2(x, y) measure the rate of change of f w.r.t. x
and y, respectively. For example, if f ′

1(x, y) > 0, then a small increase in x will lead to an
increase in f (x, y).

E X A M P L E 2 In Example 11.1.2 we studied the function x = Ap−1.5m2.08. Find the partial derivatives
of x w.r.t. p and m, and discuss their signs.

Solution: We find that ∂x/∂p = −1.5Ap−2.5m2.08 and ∂x/∂m = 2.08Ap−1.5m1.08. Be-
cause A, p, and m are positive, ∂x/∂p < 0 and ∂x/∂m > 0. These signs are in accordance
with the final remarks in the example.

Formal Definitions of Partial Derivatives

So far the functions have been given by explicit formulas and we have found the partial
derivatives by using the ordinary rules for differentiation. If these rules cannot be used,
however, we must resort to the formal definition of partial derivative. This is derived from
the definition of derivative for functions of one variable in the following rather obvious way.

If z = f (x, y), then with g(x) = f (x, y) (y fixed), the partial derivative of f (x, y)

w.r.t. x is simply g′(x). Now, by definition, g′(x) = limh→0[g(x + h) − g(x)]/h. Because
f ′

1(x, y) = g′(x), it follows that

f ′
1(x, y) = lim

h→0

f (x + h, y) − f (x, y)

h
(2)

In the same way,

f ′
2(x, y) = lim

k→0

f (x, y + k) − f (x, y)

k
(3)

If the limit in (2) (or (3)) does not exist, then we say that f ′
1(x, y) (or f ′

2(x, y)) does not
exist, or that z is not differentiable w.r.t. x or y at the point. For instance, the function
f (x, y) = |x| + |y| is not differentiable at the point (x, y) = (0, 0).

If h is small in absolute value, then from (2) we obtain the approximation

f ′
1(x, y) ≈ f (x + h, y) − f (x, y)

h
(4)
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Similarly, if k is small in absolute value,

f ′
2(x, y) ≈ f (x, y + k) − f (x, y)

k
(5)

These approximations can be interpreted as follows:

(A) The partial derivative f ′
1(x, y) is approximately equal to the change in

f (x, y) per unit increase in x, holding y constant.

(B) The partial derivative f ′
2(x, y) is approximately equal to the change in

f (x, y) per unit increase in y, holding x constant.

(6)

NOTE 1 The approximations in (6) must be used with caution. Roughly speaking, they
will not be too inaccurate provided that the partial derivatives do not vary too much over
the actual intervals.

E X A M P L E 3 Let Y = F(K, L) be the number of units produced when K units of capital and L units
of labour are used as inputs in a production process. What is the economic interpretation of
F ′

K(100, 50) = 5?

Solution: From (6), F ′
K(100, 50) = 5 means that, starting from K = 100 and holding

labour input fixed at 50, output increases by 5 units per unit increase in K .

Higher-Order Partial Derivatives

If z = f (x, y), then ∂f/∂x and ∂f/∂y are called first-order partial derivatives. These
partial derivatives are, in general, again functions of two variables. From ∂f/∂x, provided
this derivative is itself differentiable, we can generate two new functions by taking the
partial derivatives w.r.t. x and y. In the same way, we can take the partial derivatives of
∂f/∂y w.r.t. x and y. The four functions we obtain by differentiating twice in this way are
called second-order partial derivatives of f (x, y). They are expressed as

∂

∂x

(
∂f

∂x

)
= ∂2f

∂x2
,

∂

∂x

(
∂f

∂y

)
= ∂2f

∂x∂y
,

∂

∂y

(
∂f

∂x

)
= ∂2f

∂y∂x
,

∂

∂y

(
∂f

∂y

)
= ∂2f

∂y2

For brevity, we sometimes refer to the first- and second-order “partials”, suppressing the
word “derivatives”.

E X A M P L E 4 For the function in Example 1(a), we obtain

∂2f

∂x2
= 6xy + 2y2,

∂2f

∂y∂x
= 3x2 + 4xy = ∂2f

∂x∂y
,

∂2f

∂y2
= 2x2 + 2
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As with first-order partial derivatives, several other kinds of notation are also frequently used
for second-order partial derivatives. For example, ∂2f/∂x2 is also denoted by f ′′

11(x, y) or
f ′′

xx(x, y). In the same way, ∂2f/∂y∂x can also be written as f ′′
12(x, y) or f ′′

xy(x, y). Note
that f ′′

12(x, y) means that we differentiate f (x, y) first w.r.t. the first argument x and then
w.r.t. the second argument y. To find f ′′

21(x, y), we must differentiate in the reverse order.
In Example 4, these two “mixed” second-order partial derivatives (or “cross-partials”) are
equal. For most functions z = f (x, y), it will actually be the case that

∂2f

∂x∂y
= ∂2f

∂y∂x
(7)

Sufficient conditions for the equality in (7) are given in Theorem 11.6.1.
It is very important to note the exact meaning of the different symbols that have been

introduced. If we consider (7), for example, it would be a serious mistake to believe that the
two expressions are equal because ∂x∂y is the same as ∂y∂x. Here the expression on the left-
hand side is in fact the derivative of ∂f/∂y w.r.t. x, and the right-hand side is the derivative of
∂f/∂x w.r.t. y. It is a remarkable fact, and not a triviality, that the two are usually equal. As
another example, we observe that ∂2z/∂x2 is quite different from (∂z/∂x)2. For example,
if z = x2 + y2, then ∂z/∂x = 2x. Therefore, ∂2z/∂x2 = 2, whereas (∂z/∂x)2 = 4x2.

Analogously, we define partial derivatives of the third, fourth, and higher orders. For
example, we write ∂4z/∂x∂y3 = z

(4)
yyyx when we first differentiate z three times w.r.t. y and

then differentiate the result once more w.r.t. x.
Here is an additional example.

E X A M P L E 5 If f (x, y) = x3ey2
, find the first- and second-order partial derivatives at (x, y) = (1, 0).

Solution: To find f ′
1(x, y), we differentiate x3ey2

w.r.t. x while treating y as a constant.
When y is a constant, so is ey2

. Hence,

f ′
1(x, y) = 3x2ey2

and so f ′
1(1, 0) = 3 · 12e02 = 3

To find f ′
2(x, y), we differentiate f (x, y) w.r.t. y while treating x as a constant:

f ′
2(x, y) = x32yey2 = 2x3yey2

and so f ′
2(1, 0) = 0

To find the second-order partial f ′′
11(x, y), we must differentiate f ′

1(x, y) w.r.t. x once more,
while treating y as a constant. Hence,

f ′′
11(x, y) = 6xey2

and so f ′′
11(1, 0) = 6 · 1e02 = 6

To find f ′′
22(x, y), we must differentiate f ′

2(x, y) = 2x3yey2
w.r.t. y once more, while

treating x as a constant. Because yey2
is a product of two functions, each involving y, we

use the product rule to obtain

f ′′
22(x, y) = (2x3)(1 · ey2 + y2yey2

) = 2x3ey2 + 4x3y2ey2
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Evaluating this at (1, 0) gives f ′′
22(1, 0) = 2. Moreover,

f ′′
12(x, y) = ∂

∂y

[
f ′

1(x, y)
] = ∂

∂y
(3x2ey2

) = 3x22yey2 = 6x2yey2

and

f ′′
21(x, y) = ∂

∂x

[
f ′

2(x, y)
] = ∂

∂x
(2x3yey2

) = 6x2yey2

Hence, f ′′
12(1, 0) = f ′′

21(1, 0) = 0.

P R O B L E M S F O R S E C T I O N 1 1 . 2

1. Find ∂z/∂x and ∂z/∂y for the following:

(a) z = 2x + 3y (b) z = x2 + y3 (c) z = x3y4 (d) z = (x + y)2

2. Find ∂z/∂x and ∂z/∂y for the following:

(a) z = x2 + 3y2 (b) z = xy (c) z = 5x4y2 − 2xy5 (d) z = ex+y

(e) z = exy (f) z = ex/y (g) z = ln(x + y) (h) z = ln(xy)

3. Find f ′
1(x, y), f ′

2(x, y), and f ′′
12(x, y) for the following:

(a) f (x, y) = x7 − y7 (b) f (x, y) = x5 ln y (c) f (x, y) = (x2 − 2y2)5

4. Find all first- and second-order partial derivatives for the following:

(a) z = 3x + 4y (b) z = x3y2 (c) z = x5 − 3x2y + y6

(d) z = x/y (e) z = (x − y)/(x + y) (f) z =
√

x2 + y2

⊂SM⊃5. Find all the first- and second-order partial derivatives of:

(a) z = x2 + e2y (b) z = y ln x (c) z = xy2 − exy (d) z = xy

6. Let F(S, E) = 2.26 S0.44E0.48. (This is an estimated production function for a certain lobster
fishery where S denotes the stock of lobsters, E the harvesting effort, and F(S, E) the catch.)

(a) Find F ′
S(S, E) and F ′

E(S, E).

(b) Show that SF ′
S + EF ′

E = kF for a suitable constant k.

7. Prove that if z = (ax + by)2, then xz′
x + yz′

y = 2z.

8. Let z = 1
2 ln(x2 + y2). Show that ∂2z/∂x2 + ∂2z/∂y2 = 0.

9. If a household consumes x units of one good and y units of a second good, its satisfaction
is measured by the function s(x, y) = 2 ln x + 4 ln y. Suppose that the household presently
consumes 20 units of the first good and 30 units of the second.

(a) What is the approximate increase in satisfaction from consuming one extra unit of the first
good?

(b) What is the approximate increase in satisfaction from consuming one extra unit of the
second good?
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11.3 Geometric Representation
When studying functions of one variable, we saw how useful it was to represent the function
by its graph in a coordinate system in the plane. This section considers how to visualize
functions of two variables as having graphs which form surfaces in (three-dimensional)
space. We begin by introducing a coordinate system in space.

Recall how any point in a plane can be represented by a pair of real numbers by using
two mutually orthogonal coordinate lines: a rectangular coordinate system in the plane. In
a similar way, points in space can be represented by triples of real numbers using three
mutually orthogonal coordinate lines. In Fig. 1 we have drawn such a coordinate system.
The three lines that are orthogonal to each other and intersect at the point O in Fig. 1 are
called coordinate axes. They are usually called the x-axis, y-axis, and z-axis. We choose
units to measure the length along each axis, and select a positive direction on each of them
as indicated by the arrows.

x0

y0

z0

0

P � (x0 , y0 , z0)

y

z

x

�2

�4

3

P � (�2, 3,�4)

z

x
y

Figure 1 Figure 2

The equation x = 0 is satisfied by all points in a coordinate plane spanned by the y-axis and
the z-axis. This is called the yz-plane. There are two other coordinate planes: the xy-plane
on which z = 0; and the xz-plane on which y = 0. We often think of the xy-plane as
horizontal, with the z-axis passing vertically through it.

Each coordinate plane divides the space into two half-spaces. For example, the xy-plane
separates the space into the regions where z > 0, above the xy-plane, and z < 0, below
the xy-plane. The three coordinate planes together divide up the space into 8 octants. The
octant which has x ≥ 0, y ≥ 0, and z ≥ 0 is called the nonnegative octant.

Every point P in space now has an associated triple of numbers (x0, y0, z0) that describes
its location, as suggested in Fig. 1. Conversely, it is clear that every triple of numbers also
represents a unique point in space in this way. Note in particular that when z0 is negative,
the point (x0, y0, z0) lies below the xy-plane in which z = 0. In Fig. 2, we have constructed
the point P with coordinates (−2, 3, −4). The point P in Fig. 1 lies in the positive octant.

The Graph of a Function of Two Variables

Suppose z = f (x, y) is a function of two variables defined over a domain D in the xy-plane.
The graph of the function f is the set of all points (x, y, f (x, y)) in the space obtained
by letting (x, y) “run through” the whole of D. If f is a sufficiently “nice” function, the
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graph of f will be a connected surface in the space, like the graph in Fig. 3. In particular,
if (x0, y0) is a point in the domain D, we see how the point P = (x0, y0, f (x0, y0)) on the
surface is obtained by letting f (x0, y0) be the “height” of f at (x0, y0).

P � (x0 , y0 , f (x0 , y0))

f (x0 , y0)

(x0 , y0)

y

z

x

D

Figure 3 Graph of y = f (x, y)

A talented sculptor with plenty of time and resources could in principle construct this three-
dimensional graph of the function z = f (x, y). Even drawing a figure like Fig. 3, which
represents this graph in two dimensions, requires considerable artistic ability. (Using modern
computer graphics, however, complicated functions of two variables can have their graphs
drawn fairly easily, and these can be rotated or transformed to display the shape of the graph
better.)

We now describe a second kind of geometric representation that often does better when
we are confined to two dimensions (as we are in the pages of this book).

Level Curves

Map makers can describe some topographical features of the earth’s surface such as hills
and valleys even in a plane map. The usual way of doing so is to draw a set of level curves
or contours connecting points on the map that represent places on the earth’s surface with
the same elevation above sea level. For instance, there may be such contours corresponding
to 100 metres above sea level, others for 200, 300, and 400 metres above sea level, and
so on. Off the coast, or in places like the valley of the River Jordan, which drains into the
Dead Sea, there may be contours for 100 metres below sea level, etc. Where the contours
are closer together, that indicates a hill with a steeper slope. Thus, studying a contour map
carefully can give a good idea how the altitude varies on the ground.

The same idea can be used to give a geometric representation of an arbitrary function
z = f (x, y). The graph of the function in three-dimensional space is visualized as being
cut by horizontal planes parallel to the xy-plane. The resulting intersection between each
plane and the graph is then projected onto the xy-plane. If the intersecting plane is z = c,
then the projection of the intersection onto the xy-plane is called the level curve at height
c for f . This level curve will consist of points satisfying the equation

f (x, y) = c
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Figure 4 illustrates the construction of such a level curve.

z � f (x, y)

f (x, y) � c

z � c

y

z

x

Figure 4 The graph of z = f (x, y) and one of its level curves

E X A M P L E 1 Consider the function of two variables defined by the equation

z = x2 + y2 (∗)

What are the level curves? Draw both a set of level curves and the graph of the function.

Solution: The variable z can only assume values ≥ 0. Each level curve has the equation

x2 + y2 = c (∗∗)

for some c ≥ 0. We see that these are circles in the xy-plane centred at the origin and with
radius

√
c. See Fig. 5.

As for the graph of (∗), all the level curves are circles. For y = 0, we have z = x2.
This shows that the graph of (∗) cuts the xz-plane (where y = 0) in a parabola. Similarly,
for x = 0, we have z = y2, which is the graph of a parabola in the yz-plane. In fact, the
graph of (∗) is obtained by rotating the parabola z = x2 around the z-axis. The surface (of
revolution) is called a paraboloid, with its lowest part shown in Fig. 6. Five of the level
curves in the xy-plane are also indicated.

c � 5
c � 4
c � 3
c � 2
c � 1

y

x

y
x

z

Figure 5 Figure 6
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E X A M P L E 2 Suppose F(K, L) denotes a firm’s output when its input of capital is K and that of labour
is L. A level curve for the function is a curve in the KL-plane given by

F(K, L) = Y0 (Y0 is a constant)

This curve is called an isoquant (signifying “equal quantity"). For a Cobb–Douglas function
F(K, L) = AKaLb with a + b < 1 and A > 0, Figs. 7 and 8 respectively show a part of
the graph near the origin, and three of the isoquants.

L

Y

K

Y � c3
Y � c2
Y � c1

K

L
Figure 7 Figure 8

E X A M P L E 3 Show that all points (x, y) satisfying xy = 3 lie on a level curve for the function

g(x, y) = 3(xy + 1)2

x4y4 − 1

Solution: By substituting xy = 3 in the expression for g, we find

g(x, y) = 3(xy + 1)2

(xy)4 − 1
= 3(3 + 1)2

34 − 1
= 48

80
= 3

5

This shows that, for all (x, y) where xy = 3, the value of g(x, y) is a constant 3/5. Hence,
any point (x, y) satisfying xy = 3 is on a level curve (at height 3/5) for g. (In fact,
g(x, y) = 3(c + 1)2/(c4 − 1) whenever xy = c �= ±1, so this equation represents a level
curve for g for every value of c except c �= ±1.)

Geometric Interpretations of Partial Derivatives

Partial derivatives of the first order have an interesting geometric interpretation. Let z =
f (x, y) be a function of two variables, with its graph as shown in Fig. 9. Let us keep the
value of y fixed at y0. The points (x, y, f (x, y)) on the graph of f that have y = y0 are
those that lie on the curve Ky indicated in the figure. The partial derivative f ′

x(x0, y0) is
the derivative of z = f (x, y0) w.r.t. x at the point x = x0, and is therefore the slope of the
tangent line ly to the curve Ky at x = x0. In the same way, f ′

y(x0, y0) is the slope of the
tangent line lx to the curve Kx at y = y0.
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z � f (x, y)

x0

y0

lx
ly

KxKy P

y

z

x

z � 2
z � 4
z � 6
z � 8

1 2 3 4 5 6

3

4

5

2

1

y

x

P

Q

Figure 9 Figure 10

This geometric interpretation of the two partial derivatives can be explained another way.
Imagine that the graph of f describes the surface of a mountain, and suppose that we are
standing at point P with coordinates

(
x0, y0, f (x0, y0)

)
in three dimensions, where the

height is f (x0, y0) units above the xy-plane. The slope of the terrain at P varies as we
look in different directions. In particular, suppose we look in the direction parallel to the
positive x-axis. Then f ′

x(x0, y0) is a measure of the “steepness” in this direction. In the
figure, f ′

x(x0, y0) is negative, because moving from P in the direction given by the positive
x-axis will take us downwards. In the same way, we see that f ′

y(x0, y0) is a measure of the
“steepness” in the direction parallel to the positive y-axis. We see that f ′

y(x0, y0) is positive,
meaning that the slope is upward in this direction.

Let us now briefly consider the geometric interpretation of the “direct” second-order
derivatives f ′′

xx and f ′′
yy . Consider the curve Ky on the graph of f in the figure. It seems

that along this curve, f ′′
xx(x, y0) is negative, because f ′

x(x, y0) decreases as x increases. In
particular, f ′′

xx(x0, y0) < 0. In the same way, we see that moving along Kx makes f ′
y(x0, y)

decrease as y increases, so f ′′
yy(x0, y) < 0 along Kx . In particular, f ′′

yy(x0, y0) < 0. (The
mixed partials, f ′′

xy and f ′′
yx , do not have such easy geometric interpretations.)

E X A M P L E 4 Consider Fig. 10, which shows some level curves of a function z = f (x, y). On the
basis of this figure, answer the following questions:

(a) What are the signs of f ′
x(x, y) and f ′

y(x, y) at the points P and Q? Estimate also the
value of f ′

x(3, 1).

(b) What are the solutions of the equations: (i) f (3, y) = 4 and (ii) f (x, 4) = 6?

(c) What is the largest value that f (x, y) can attain when x = 2, and for which y value
does this maximum occur?

Solution:

(a) If you stand at P , you are on the level curve f (x, y) = 2. If you look in the direction
of the positive x-axis (along the line y = 4), then you will see the terrain sloping
upwards, because the (nearest) level curves will correspond to larger z values. Hence,
f ′

x > 0. If you stand at P and look in the direction of the positive y-axis (along
x = 2), the terrain will slope downwards. Thus, at P , we must have f ′

y < 0. At Q,
we find similarly that f ′

x < 0 and f ′
y > 0. To estimate f ′

x(3, 1), we use f ′
x(3, 1) ≈
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f (4, 1) − f (3, 1) = 2 − 4 = −2. (This approximation is actually far from exact. If
we keep y = 1 and decrease x by one unit, then f (2, 1) ≈ 4, which should give the
estimate f ′

x(3, 1) ≈ 4 − 4 = 0. The “map” is not sufficiently finely graded around Q.)

(b) Equation (i) has the solutions y = 1 and y = 4, because the line x = 3 cuts the level
curve f (x, y) = 4 at (3, 1) and at (3, 4). Equation (ii) has no solutions, because the
line y = 4 does not meet the level curve f (x, y) = 6 at all.

(c) The highest value of c for which the level curve f (x, y) = c has a point in common
with the line x = 2 is c = 6. The largest value of f (x, y) when x = 2 is therefore 6,
and we see from Fig. 10 that this maximum value is attained when y ≈ 2.2.

P R O B L E M S F O R S E C T I O N 1 1 . 3

1. Draw a three-dimensional coordinate system and mark the points

P = (3, 0, 0), Q = (0, 2, 0), R = (0, 0, −1), S = (3, −2, 4)

(For S, you should draw a box like those in Figs. 1 and 2.)

2. Describe geometrically the set of points (x, y, z) in three dimensions where

(a) y = 2, z = 3 (x varies freely) (b) y = x (z varies freely)

3. Show that x2 + y2 = 6 is a level curve of f (x, y) = √
x2 + y2 − x2 − y2 + 2.

4. Show that x2 − y2 = c is a level curve of f (x, y) = ex2
e−y2 + x4 − 2x2y2 + y4 for all values

of the constant c.

5. Explain why two level curves of the function z = f (x, y) corresponding to different values of
z cannot intersect.

6. Let f (x) represent a function of one variable. If we let g(x, y) = f (x), then we have defined
a function of two variables, but y is not present in its formula. Explain how the graph of g is
obtained from the graph of f . Illustrate with f (x) = x and also with f (x) = −x3.

7. Draw the graphs of the following functions in three-dimensional space, and draw a set of level
curves for each of them:

(a) z = 3 − x − y (b) z =
√

3 − x2 − y2

8. Figure 11 shows some level curves for the function z = f (x, y).

(a) What is f (2, 3)? Solve the equation f (x, 3) = 8 for x.

(b) Find the smallest value of z = f (x, y) if x = 2. What is the corresponding value of y?

(c) What are the signs of f ′
1(x, y) and f ′

2(x, y) at the points A, B, and C? Estimate the values
of these two partial derivatives at A.
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1 2 3 4 5 6 7

z = 10

z = 8

z = 6

z = 4

A

B

C

y

x

P

Q

z � 5
z � 4
z � 3
z � 2
z � 1

2x � 3y � 12
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Figure 11 Figure 12

⊂SM⊃9. Figure 12 shows some level curves for z = f (x, y), together with the line 2x + 3y = 12.

(a) What are the signs of f ′
x and f ′

y at the points P and Q?

(b) Find possible solutions of the equations (i) f (1, y) = 2 and (ii) f (x, 2) = 2.

(c) What is the largest value of f (x, y) among those (x, y) that satisfy 2x + 3y = 12?

HARDER PROBLEM

⊂SM⊃10. Suppose F(x, y) is a function about which nothing is known except that F(0, 0) = 0, as well
as that F ′

1(x, y) ≥ 2 for all (x, y), and F ′
2(x, y) ≤ 1 for all (x, y). What can be said about the

relative sizes of F(0, 0), F(1, 0), F(2, 0), F(0, 1), and F(1, 1)? Write down the inequalities
that have to hold between these numbers.

11.4 Surfaces and Distance
An equation such as f (x, y) = c in two variables x and y can be represented by a point set in
the plane, called the graph of the equation. (See Section 5.4.) In a similar way, an equation
g(x, y, z) = c in three variables x, y, and z can be represented by a point set in space, also
called the graph of the equation. This graph consists of all triples (x, y, z) satisfying the
equation, and will usually form what can be called a surface in space.

One of the simplest types of equation in three variables is

ax + by + cz = d (the general equation for a plane in space) (1)

(with a, b, and c not all 0). Assuming that a and b are not both 0, the graph of this equation
intersects the xy-plane when z = 0. Then ax + by = d, which is a straight line in the
xy-plane. In the same way we see that, provided at most one of a, b, and c is equal to zero,
the graph intersects the two other coordinate planes in straight lines.

Let us rename the coefficients and consider the equation

px + qy + rz = m (2)
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where p, q, r , m are all positive. This equation can be given an economic interpretation.
Suppose a household has a total budget of m to spend on three commodities, whose prices
are respectively p, q, and r per unit. If the household buys x units of the first, y units of
the second, and z units of the third commodity, then the total expense is px + qy + rz.
Hence, (2) is the household’s budget equation: Only triples (x, y, z) that satisfy (2) can be
bought if expenditure must equal m. Equation (2) represents a plane in space, called the
budget plane. Because in most cases one also has x ≥ 0, y ≥ 0, and z ≥ 0, the interesting
part of the plane is the triangle with vertices at P = (m/p, 0, 0), Q = (0, m/q, 0), and
R = (0, 0, m/r), as shown in Fig. 1.

If we allow the household to underspend, the budget set is defined as

B = { (x, y, z) : px + qy + rz ≤ m, x ≥ 0, y ≥ 0, z ≥ 0 }

This represents the three-dimensional body bounded by the three coordinate planes and the
budget plane. It generalizes the two-commodity budget set discussed in Example 4.4.7.

R � (0, 0, m�r)

P � (m�p, 0, 0)
Q � (0, m�q, 0)

z

px � qy � rz � m

Figure 1

Two rather interesting surfaces that have been drawn by a computer program appear in
Figs. 2 and 3. Figure 2 exhibits a surface which is called an ellipsoid. (Some readers may
recognize its shape as that of a rugby ball.)

y

z

x

z

y
x

Figure 2 x2/a2 + y2/b2 + z2/c2 = 1
where a > b = c

Figure 3 z = x4 − 3x2y2 + y4
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The Distance Formula
In Section 5.5 we gave the formula for the distance between two points in the plane. Now we derive
the corresponding formula for the distance between two points in three-dimensional space.

aP
b

R

c

Q

P � (x1 , y1 , z1)

Q � (x2 , y2 , z2)

�x2 � x1�

�z2 � z1�

�y2 � y1�

y

z

x

Figure 4 Figure 5

Consider a rectangular box with edges of length a, b, and c, as shown in Fig. 4. By Pythagoras’s
theorem, (PR)2 = a2 + b2, and (PQ)2 = (PR)2 + (RQ)2 = a2 + b2 + c2, so that the box has
diagonal of length PQ = √

a2 + b2 + c2.
Next we find the distance between two typical points P = (x1, y1, z1) and Q = (x2, y2, z2) in

space, as illustrated in Fig. 5. These two points lie precisely at the corners of a rectangular box with
edges of lengths a = |x2 − x1|, b = |y2 − y1|, and c = |z2 − z1|. Hence (PQ)2 = a2 + b2 + c2 =
|x2 − x1|2 + |y2 − y1|2 + |z2 − z1|2 = (x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2. This motivates the
following definition:

D E F I N I T I O N O F D I S T A N C E

The distance between (x1, y1, z1) and (x2, y2, z2) is

d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2
(3)

E X A M P L E 1 Calculate the distance d between the points (1, 2, −3) and (−2, 4, 5).

Solution: According to formula (3),

d =
√

(−2 − 1)2 + (4 − 2)2 + (5 − (−3))2 =
√

(−3)2 + 22 + 82 = √
77 ≈ 8.77

Let (a, b, c) be a point in space. The sphere with radius r and centre at (a, b, c) is the set of all points
(x, y, z) whose distance from (a, b, c) is equal to r . Using the distance formula, we obtain√

(x − a)2 + (y − b)2 + (z − c)2 = r

Squaring each side yields:

E Q U A T I O N F O R A S P H E R E

The equation for a sphere with centre at (a, b, c) and radius r is

(x − a)2 + (y − b)2 + (z − c)2 = r2
(4)
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E X A M P L E 2 Find the equation for the sphere with centre at (−2, −2, −2) and radius 4.

Solution: According to formula (4), the equation is

(x − (−2))2 + (y − (−2))2 + (z − (−2))2 = 42 or (x + 2)2 + (y + 2)2 + (z + 2)2 = 16

E X A M P L E 3 How do you interpret the expression (x + 4)2 + (y − 3)2 + (z + 5)2? As:

(i) The sphere with centre at the point (−4, 3, −5).

(ii) The distance between the points (x, y, z) and (−4, 3, −5).

(iii) The square of the distance between the points (x, y, z) and (−4, 3, −5).

Solution: Only (iii) is correct.

P R O B L E M S F O R S E C T I O N 1 1 . 4

1. Sketch graphs of the surfaces in space described by each of the following equations:

(a) x = a (b) y = b (c) z = c

2. Find the distance d between the points

(a) (−1, 2, 3) and (4, −2, 0) (b) (a, b, c) and (a + 1, b + 1, c + 1)

3. Find the equation for the sphere with centre at (2, 1, 1) and radius 5.

4. What is the geometric interpretation of the equation (x + 3)2 + (y − 3)2 + (z − 4)2 = 25?

5. The graph of z = x2 + y2 is a paraboloid (see Fig. 11.3.6). If the point (x, y, z) lies on this

paraboloid, interpret the expression (x − 4)2 + (y − 4)2 + (
z − 1

2

)2
.

11.5 Functions of More Variables
Many of the most important functions we study in economics, such as the gross domestic
product (GDP) of a country, depend on a very large number of variables. Mathematicians
and modern economists express this dependence by saying that GDP is a function of the
different variables.

Any ordered collection ofnnumbers (x1, x2, . . . , xn) is called ann-vector. To save space,
n-vectors are often denoted by bold letters. For example, we write x = (x1, x2, . . . , xn).

F U N C T I O N S O F N V A R I A B L E S

Given any set D of n-vectors, a function f of n variables x1, . . . , xn with
domain D is a rule that assigns a specified number f (x) = f (x1, . . . , xn) to
each n-vector x = (x1, . . . , xn) in D.

(1)
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E X A M P L E 1 (a) The demand for sugar in the United States in the period 1929–1935 was estimated
by T. W. Schultz, who found that it could be described approximately by the formula

x = 108.83 − 6.0294p + 0.164w − 0.4217t

Here x, the demand for sugar, is a function of three variables: p (the price of sugar), w

(a production index), and t (the date, where t = 0 corresponds to 1929).

(b) R. Stone estimated the following formula for the demand for beer in the UK:

x = 1.058 x0.136
1 x−0.727

2 x0.914
3 x0.816

4

Here the quantity demanded x is a function of four variables: x1 (the income of the
individual), x2 (the price of beer), x3 (a general price index for all other commodities),
and x4 (the strength of the beer).

The simpler of the functions in Example 1 is (a). The variables p, w, and t occur here only to
the first power, and they are only multiplied by constants, not by each other. Such functions
are called linear. In general,

f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · · + anxn + b (2)

(where a1, a2, . . . , an, and b are constants) is a linear function in n variables.2

Example 1(b) is a special case of the general Cobb–Douglas function

F(x1, x2, . . . , xn) = Ax
a1
1 x

a2
2 · · · xan

n (A, a1, . . . , an are constants; A > 0) (3)

defined for x1 > 0, x2 > 0, . . . , xn > 0. We use this function very often in this book.

NOTE 1 Taking the natural logarithm of each side of (3) gives

ln F = ln A + a1 ln x1 + a2 ln x2 + · · · + an ln xn (4)

This shows that the Cobb–Douglas function is log-linear (or ln-linear), because ln F is a
linear function of ln x1, ln x2, . . . , ln xn.

E X A M P L E 2 Suppose an economist interested in the price of apples records n observations in different
stores. Suppose the results are the n positive numbers x1, x2, . . . , xn. In statistics, several
different measures for their average value are used. Some of the most common are:

(a) the arithmetic mean: x̄A = 1

n
(x1 + x2 + · · · + xn)

(b) the geometric mean: x̄G = n
√

x1x2 . . . xn

(c) the harmonic mean: x̄H = 1
1

n

(
1

x1
+ 1

x2
+ · · · + 1

xn

)
2 This is rather common terminology, although many mathematicians would insist that f should

really be called affine if b �= 0, and linear only if b = 0.
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Note that x̄A is a linear function of x1, . . . , xn, whereas x̄G and x̄H are nonlinear functions.
(x̄G is log-linear.)

For example, if the results of 4 observations are x1 = 1, x2 = 2, x3 = 3, and x4 = 4,
then x̄A = (1 + 2 + 3 + 4)/4 = 2.5, x̄G = 4√1 · 2 · 3 · 4 = 4√24 ≈ 2.21, and x̄H =[
(1/1 + 1/2 + 1/3 + 1/4)/4

]−1 = 48/25 = 1.92. In this case x̄H < x̄G < x̄A. It turns out
that the corresponding weak inequalities

x̄H ≤ x̄G ≤ x̄A (5)

are valid in general. Problem 1.6.9 asks you to show (5) for the case n = 2. The harmonic
mean x̄H appears in the solutions to Problems 3, 4, and 5.

E X A M P L E 3 An individual must decide what quantities of n different commodities to buy during a
given time period. Consumer demand theory often assumes that the individual has a utility
function U(x1, x2, . . . , xn) representing preferences, and that this measures the satisfaction
the individual obtains by acquiring x1 units of good no. 1, x2 units of good no. 2, and so
on. This is an important economic example of a function of n variables, to which we return
several times.

One model of consumer demand is the linear expenditure system, which is based on
the particular utility function

U(x1, x2, . . . , xn) = a1 ln(x1 − c1) + a2 ln(x2 − c2) + · · · + an ln(xn − cn)

that depends on the 2n nonnegative parameters a1, a2, . . . , an and c1, c2, . . . , cn. Here,
each ci represents the quantity of the commodity numbered i that the consumer needs to
survive. (Some, or even all, of the constants ci could be equal to 0.) Because ln z is only
defined when z > 0, we see that all n inequalities x1 > c1, x2 > c2, . . . , xn > cn must be
satisfied if U(x1, x2, . . . , xn) is to be defined. Of course, the condition ai > 0 implies that
the consumer prefers more of the particular good i.

Continuity
The concept of continuity for functions of one variable may be generalized to functions
of several variables. Roughly speaking, a function of n variables is continuous if small
changes in any or all of the independent variables induce small changes in the function
value. Just as in the one-variable case, we have the following useful rule:

C O N T I N U I T Y

Any function of n variables that can be constructed from continuous functions by
combining the operations of addition, subtraction, multiplication, division, and
functional composition is continuous wherever it is defined.

If a function of one variable is continuous, it will also be continuous when considered as a
function of several variables. For example, f (x, y, z) = x2 is a continuous function of x,
y, and z. (Small changes in x, y, and z give at most small changes in x2.)
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E X A M P L E 4 Where are the functions given by the following formulas continuous?

(a) f (x, y, z) = x2y + 8x2y5z − xy + 8z (b) g(x, y) = xy − 3

x2 + y2 − 4

Solution:

(a) As the sum of products of positive powers, f is defined and continuous for all x, y,
and z.

(b) The function g is defined and continuous for all (x, y) except those that lie on the circle
x2 + y2 = 4. There the denominator is zero, and so g(x, y) is not defined.

Euclidean n-Dimensional Space

No concrete geometric interpretation is possible for functions of n variables in the general
case when n ≥ 3. Yet economists still use geometric language when dealing with functions
of n variables. It is usual to call the set of all possible n-vectors x = (x1, x2, . . . , xn) of
real numbers the Euclidean n-dimensional space, or n-space, and to denote it by �n.
For n = 1, 2, and 3, we have geometric interpretations of �n as a line, a plane, and a
three-dimensional space, respectively. But for n ≥ 4, there is no geometric interpretation.

If z = f (x1, x2, . . . , xn) = f (x) represents a function of n variables, we define the
graph of f as the set of all points

(
x, f (x)

)
in �n+1 for which x belongs to the domain of

f . We also call the graph a surface (or sometimes a hypersurface) in �n+1. For z = z0

(constant), the set of points in �n satisfying f (x) = z0 is called a level surface of f . When
f (x) is a linear function such as a1x1 + a2x2 + · · · + anxn + b, this surface, which would
be a plane if n = 3, is called a hyperplane when n > 3.

In both producer and consumer theory, it is usual to give level surfaces a different name.
If x = f (v) = f (v1, v2, . . . , vn) is the amount produced when the input quantities of
n different factors of production are respectively v1, v2, . . . , vn, the level surfaces where
f (v1, v2, . . . , vn) = x0 (constant) are called isoquants, as in Example 11.3.2. On the other
hand, if u = U(x) is a utility function that represents the consumer’s preferences, the level
surface where U(x1, x2, . . . , xn) = u0 is called an indifference surface.

P R O B L E M S F O R S E C T I O N 1 1 . 5

1. (a) Let f (x, y, z) = xy + xz + yz. Find f (−1, 2, 3) and f (a + 1, b + 1, c + 1) − f (a, b, c).

(b) Show that f (tx, ty, tz) = t2f (x, y, z) for all t .

2. (a) In a study of milk production, Hjelm and Sandquist found that

y = 2.90 x0.015
1 x0.250

2 x0.350
3 x0.408

4 x0.030
5

where y is the output of milk, and x1, . . . , x5 are the quantities of five different input factors.
(For instance, x1 is work effort and x3 is grass consumption.) If all the factors of production
were doubled, what would happen to y?

(b) Write the relation in log-linear form.
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⊂SM⊃3. A pension fund decides to invest $720 million in the shares of XYZ Inc., a company with a
volatile share price. Rather than invest all the funds at once and so risk paying an unduly high
price, it practises “dollar cost averaging” by investing $120 million per week in 6 successive
weeks. The prices it pays are $50 per share in the first week, then $60, $45, $40, $75, and finally
$80 in the sixth week.

(a) How many shares in total does it buy?

(b) Which is the most accurate statement of the average price: the arithmetic, the geometric,
or the harmonic mean?

4. An American bank A and a European bank E agree a currency swap. In n successive weeks
w = 1, 2, . . . , n, bank A will buy $100 million worth of euros from bank E, at a price pw per
euro determined by the spot exchange rate at the end of week w. After n weeks:

(a) How many euros will bank A have bought?

(b) What is the dollar price per euro it will have paid, on average?

HARDER PROBLEM

5. (a) It is observed that three machines A, B, and C produce, respectively, 60, 80, and 40 units of
a product during one workday lasting 8 hours (or 480 minutes). The average output is then
60 units per day. We see that A, B, and C use, respectively, 8, 6, and 12 minutes to make one
unit. If all machines were equally efficient and jointly produced 60 + 80 + 40 = 180 units
during a day, then how much time would be required to produce each unit? (Note that the
answer is not (8 + 6 + 12)/3.)

(b) Suppose that n machines A1, A2, . . . , An produce the same product simultaneously during
a time interval of length T . Given that the production times per unit are respectively t1, t2,
. . . , tn, find the total output Q. Show that if all the machines were equally efficient and
together had produced exactly the same total amount Q in the time span T , then the time
needed for each machine to produce one unit would be precisely the harmonic mean t̄H
of t1, t2, . . . , tn.

11.6 Partial Derivatives with More Variables
The last section gave several economic examples of functions involving many variables.
Accordingly, we need to extend the concept of partial derivative to functions with more than
two variables.

P A R T I A L D E R I V A T I V E S I N N V A R I A B L E S

If z = f (x) = f (x1, x2, . . . , xn), then ∂f/∂xi , for i = 1, 2, . . . , n, means the
partial derivative of f (x1, x2, . . . , xn) w.r.t. xi when all the other variables xj

(j �= i) are held constant.

(1)
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So provided they all exist, there are n partial derivatives of first order, one for each variable
xi , i = 1, . . . , n. Other notation used for the first-order partials of z = f (x1, x2, . . . , xn)

includes
∂f

∂xi

= ∂z

∂xi

= ∂z/∂xi = z′
i = f ′

i (x1, x2, . . . , xn)

E X A M P L E 1 Find the three first-order partials of f (x1, x2, x3) = 5x2
1 + x1x

3
2 − x2

2x2
3 + x3

3 .

Solution: We find that

f ′
1 = 10x1 + x3

2 , f ′
2 = 3x1x

2
2 − 2x2x

2
3 , f ′

3 = −2x2
2x3 + 3x2

3

As in (11.2.6) we have the following rough approximation:

The partial derivative ∂z/∂xi is approximately equal to the per unit change in

z = f (x1, x2, . . . , xn)

caused by an increase in xi , while holding constant all the other xj (j �= i).
In symbols, for h small one has

f ′
i (x1, . . . , xn) ≈

f (x1, . . . , xi−1, xi + h, xi+1, . . . , xn) − f (x1, . . . , xi−1, xi, xi+1, . . . , xn)

h

(2)

For each of the n first-order partials of f , we have n second-order partials:

∂

∂xj

(
∂f

∂xi

)
= ∂2f

∂xj ∂xi

= z′′
ij

Here both i and j may take any value 1, 2, . . . , n, so altogether there are n2 second-order
partials.

It is usual to display these second-order partials in an n × n square array as follows

f ′′(x) =

⎛
⎜⎜⎜⎜⎜⎝

f ′′
11(x) f ′′

12(x) . . . f ′′
1n(x)

f ′′
21(x) f ′′

22(x) . . . f ′′
2n(x)

...
...

. . .
...

f ′′
n1(x) f ′′

n2(x) . . . f ′′
nn(x)

⎞
⎟⎟⎟⎟⎟⎠ (The Hessian) (3)

Such rectangular arrays of numbers (or symbols) are called matrices, and (3) is called
the Hessian matrix of f at x = (x1, x2, . . . , xn). See Chapter 15 for more discussion of
matrices in general.

The n second-order partial derivatives f ′′
ii found by differentiating twice w.r.t. the same

variable are called direct second-order partials; the others, f ′′
ij where i �= j , are mixed or

cross partials.
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E X A M P L E 2 Find the Hessian matrix of f (x1, x2, x3) = 5x2
1 + x1x

3
2 − x2

2x2
3 + x3

3 . (See Example 1.)

Solution: We differentiate the first-order partials found in Example 1. The resulting Hessian
is ⎛

⎝ f ′′
11 f ′′

12 f ′′
13

f ′′
21 f ′′

22 f ′′
23

f ′′
31 f ′′

32 f ′′
33

⎞
⎠ =

⎛
⎝ 10 3x2

2 0
3x2

2 6x1x2 − 2x2
3 −4x2x3

0 −4x2x3 −2x2
2 + 6x3

⎞
⎠

Young’s Theorem

If z = f (x1, x2, . . . , xn), then the two second-order cross-partial derivatives z′′
ij and z′′

ji are
usually equal. That is,

∂

∂xj

(
∂f

∂xi

)
= ∂

∂xi

(
∂f

∂xj

)
This implies that the order of differentiation does not matter. The next theorem makes precise
a more general result.

T H E O R E M 1 1 . 6 . 1 ( Y O U N G ’ S T H E O R E M )

Suppose that all themth-order partial derivatives of the function f (x1, x2, . . . , xn)

are continuous. If any two of them involve differentiating w.r.t. each of the vari-
ables the same number of times, then they are necessarily equal.

The content of this result can be explained as follows: Let m = m1 +· · ·+mn, and suppose
that f (x1, x2, . . . , xn) is differentiated m1 times w.r.t. x1, m2 times w.r.t. x2, . . . , and mn

times w.r.t. xn. (Some of the integers m1, . . . , mn can be zero, of course.) Suppose that
the continuity condition is satisfied for these mth-order partial derivatives. Then we end up
with the same result no matter what is the order of differentiation, because each of the final
partial derivatives is equal to

∂mf

∂x
m1
1 ∂x

m2
2 . . . ∂x

mn
n

In particular, for the case when m = 2,

∂2f

∂xj ∂xi

= ∂2f

∂xi∂xj

(i = 1, 2, . . . , n; j = 1, 2, . . . , n)

if both these partials are continuous. A proof of Young’s theorem is given in most advanced
calculus books. Problem 11 shows that the mixed partial derivatives are not always equal.

Formal Definitions of Partial Derivatives

In Section 11.2, we gave a formal definition of partial derivatives for functions of two
variables. This was done by modifying the definition of the (ordinary) derivative for a
function of one variable. The same modification works for a function of n variables.
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Indeed, if z = f (x1, . . . , xn), then with g(xi) = f (x1, . . . , xi−1, xi, xi+1, . . . , xn), we
have ∂z/∂xi = g′(xi). (Here we think of all the variables xj other than xi as constants.) If
we use the definition of g′(xi) (see (6.2.1), we obtain

∂z

∂xi

= lim
h→0

f (x1, . . . , xi + h, . . . , xn) − f (x1, . . . , xi, . . . , xn)

h
(4)

(The approximation in (2) holds because the fraction on the right in (4) is close to the limit
if h �= 0 is small enough.) If the limit in (4) does not exist, then we say that ∂z/∂xi does
not exist, or that z is not differentiable w.r.t. xi at the point.

Virtually all the functions we consider have continuous partial derivatives everywhere in
their domains. If z = f (x1, x2, . . . , xn) has continuous partial derivatives of first order in a
domain D, we call f continuously differentiable in D. In this case, f is also called a C1

function on D. If all partial derivatives up to order k exist and are continuous, f is called
a Ck function.

P R O B L E M S F O R S E C T I O N 1 1 . 6

1. Calculate F ′
1(1, 1, 1), F ′

2(1, 1, 1), and F ′
3(1, 1, 1) for F(x, y, z) = x2exz + y3exy .

⊂SM⊃2. Calculate all first-order partials of the following functions:

(a) f (x, y, z) = x2 + y3 + z4 (b) f (x, y, z) = 5x2 − 3y3 + 3z4

(c) f (x, y, z) = xyz (d) f (x, y, z) = x4/yz

(e) f (x, y, z) = (x2 + y3 + z4)6 (f) f (x, y, z) = exyz

3. Let x and y be the populations of two cities and d the distance between them. Suppose that the
number of travellers T between the cities is given by

T = kxy/dn (k and n are positive constants)

Find ∂T /∂x, ∂T /∂y, and ∂T /∂d , and discuss their signs.

4. Let g be defined for all (x, y, z) by

g(x, y, z) = 2x2 − 4xy + 10y2 + z2 − 4x − 28y − z + 24

(a) Calculate g(2, 1, 1), g(3, −4, 2), and g(1, 1, a + h) − g(1, 1, a).

(b) Find all partial derivatives of the first and second order.

5. Let π(p, r, w) = 1
4 p2(1/r + 1/w). Find the partial derivatives of π w.r.t. p, r , and w.

6. Find all first- and second-order partials of w(x, y, z) = 3xyz + x2y − xz3.

7. If f (x, y, z) = p(x) + q(y) + r(z), what are f ′
1, f ′

2, and f ′
3?

8. Find the Hessian matrices of: (a) f (x, y, z) = ax2 + by2 + cz2 (b) g(x, y, z) = Axaybzc
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9. Prove that if w =
(

x − y + z

x + y − z

)h

, then

x
∂w

∂x
+ y

∂w

∂y
+ z

∂w

∂z
= 0

⊂SM⊃10. Calculate the first-order partial derivatives of the following function

f (x, y, z) = xyz
x > 0, y > 0, z > 0

(You might find it easier first to take the natural logarithm of both sides.)

HARDER PROBLEM

⊂SM⊃11. Define the function f (x, y) = xy(x2 − y2)/(x2 + y2) when (x, y) �= (0, 0), and f (0, 0) = 0.
Find expressions for f ′

1(0, y) and f ′
2(x, 0), then show that f ′′

12(0, 0) = 1 and f ′′
21(0, 0) = −1.

Check that Young’s theorem is not contradicted. (f ′′
12 and f ′′

21 are discontinuous at (0, 0).)

11.7 Economic Applications
This section considers several economic applications of partial derivatives.

E X A M P L E 1 Consider an agricultural production function Y = F(K, L, T ), where Y is the number
of units produced, K is capital invested, L is labour input, and T is the area of agricultural
land that is used. Then ∂Y/∂K = F ′

K is called the marginal product of capital. It is the
rate of change of output Y w.r.t. K when L and T are held fixed. Similarly, ∂Y/∂L = F ′

L

and ∂Y/∂T = F ′
T are the marginal products of labour and of land, respectively. For

example, if K is the value of capital equipment measured in dollars, and ∂Y/∂K = 5, then
increasing capital input by h units would increase output by approximately 5h units.

Suppose, in particular, that F is the Cobb–Douglas function

F(K, L, T ) = AKaLbT c (A, a, b, and c are positive constants)

Find the marginal products, and the second-order partials. Discuss their signs.

Solution: The marginal products are

F ′
K = AaKa−1LbT c, F ′

L = AbKaLb−1T c, F ′
T = AcKaLbT c−1

Assuming K , L, and T are all positive, the marginal products are positive. Thus, an increase
in capital, labour, or land will increase the number of units produced.

The mixed second-order partials (or cross-partials) are

F ′′
KL = AabKa−1Lb−1T c, F ′′

KT = AacKa−1LbT c−1, F ′′
LT = AbcKaLb−1T c−1
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Check for yourself that F ′′
LK , F ′′

T K , and F ′′
T L give, respectively, the same results. Note that

these partials are positive. We call each pair of factors complementary, because more of one
increases the marginal product of the other.

The direct second-order partials are

F ′′
KK = Aa(a−1)Ka−2LbT c, F ′′

LL = Ab(b−1)KaLb−2T c, F ′′
T T = Ac(c−1)KaLbT c−2

For instance, F ′′
KK is the partial derivative of the marginal product of capital (F ′

K ) w.r.t. K .
If a < 1, then F ′′

KK < 0, and there is a diminishing marginal product of capital—that is,
a small increase in the capital invested will lead to a decrease in the marginal product of
capital. We can interpret this to mean that, although small increases in capital cause output
to rise (F ′

K > 0), this rise occurs at a decreasing rate (F ′′
KK < 0). Similarly for labour (if

b < 1), and for land (if c < 1).

E X A M P L E 2 Let x be an index of the total amount of goods produced and consumed in a society,
and let z be a measure of the level of pollution. If u(x, z) measures the total well-being
of the society (not a very easy function to estimate!), what signs do you expect u′

x(x, z)

and u′
z(x, z) to have? Can you guess what economists usually assume about the sign of

u′′
xz(x, z)?

Solution: It is reasonable to expect that well-being increases as the amount of goods
increases, but decreases as the level of pollution increases. Hence, we will usually have
u′

x(x, z) > 0 and u′
z(x, z) < 0. According to (11.6.2), u′′

xz = (∂/∂z)(u′
x) is approximately

equal to the change in u′
x per unit increase in x, the level of pollution. Moreover, u′

x ≈ the
increase in welfare per unit increase in x. It is often assumed that u′′

xz < 0. This implies
that the increase in welfare obtained by an extra unit of x will decrease when the level
of pollution increases. (An analogy: When a confirmed nonsmoker sits in a smoke-filled
room, the extra satisfaction from one more piece of cake will decrease if the concentration
of smoke increases too much.) Because of Young’s theorem 11.6.1, the inequality u′′

xz < 0
also implies that u′′

zx < 0. Thus the increase in welfare obtained from being exposed to
one unit less pollution (which is approximately −u′

z) increases with consumption x. This
accords with the (controversial) view that, as people can afford to consume more, they also
become less tolerant of pollution.

P R O B L E M S F O R S E C T I O N 1 1 . 7

1. The demand for money M in the United States for the period 1929–1952 has been estimated as

M = 0.14Y + 76.03(r − 2)−0.84 (r > 2)

where Y is the annual national income, and the interest rate is r% per year. Find ∂M/∂Y and
∂M/∂r and discuss their signs.

⊂SM⊃2. If a and b are constants, compute the expression KY ′
K + LY ′

L for the following:

(a) Y = AKa + BLa (b) Y = AKaLb (c) Y = K2L2

aL3 + bK3
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3. The demand for a product depends on the price p of the product and on the price q charged by
a competing producer. It is

D(p, q) = a − bpq−α

where a, b, and α are positive constants with α < 1. Find D′
p(p, q) and D′

q(p, q), and comment
on the signs of the partial derivatives.

4. Let F(K, L, M) = AKaLbMc. Show that

KF ′
K + LF ′

L + MF ′
M = (a + b + c)F

5. Let D(p, q) and E(p, q) be the demands for two commodities when the prices per unit are p

and q, respectively. Suppose the commodities are substitutes in consumption, such as butter
and margarine. What are the normal signs of the partial derivatives of D and E w.r.t. p and q?

6. Find ∂U/∂xi when U(x1, x2, . . . , xn) = 100 − e−x1 − e−x2 − · · · − e−xn .

HARDER PROBLEM

⊂SM⊃7. Calculate the expression KY ′
K + LY ′

L for the CES function Y = Aeλt
[
aK−� + bL−�

]−μ/�
.

11.8 Partial Elasticities
Section 7.7 introduced the concept of elasticity for functions of one variable. Here we study
the corresponding concept for functions of several variables. This enables us to distinguish
between, for instance, the price and income elasticities of demand, as well as between
different price elasticities.

Two Variables
If z = f (x, y), we define the partial elasticity of z w.r.t. x and y by

Elx z = x

z

∂z

∂x
, Ely z = y

z

∂z

∂y
(1)

Often economists just refer to the elasticity rather than the partial elasticity. Thus, Elx z is
the elasticity of z w.r.t. x when y is held constant, and Ely z is the elasticity of z w.r.t. y when
x is held constant. The number Elx z is (approximately) the percentage change in z caused
by a 1% increase in x when y is held constant, and Ely z has a corresponding interpretation.

As in Section 7.7, when all the variables are positive, elasticities can be expressed as
logarithmic derivatives. Accordingly,

Elx z = ∂ ln z

∂ ln x
, Ely z = ∂ ln z

∂ ln y
(2)

E X A M P L E 1 Find the (partial) elasticity of z w.r.t. x when (a) z = Axayb (b) z = xyex+y .
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Solution: (a) When finding the elasticity of Axayb w.r.t. x, the variable y, and thus Ayb,
is held constant. From Example 7.7.1 we obtain Elx z = a. In the same way, Ely z = b.

(b) It is convenient here to use formula (2). Assuming all variables are positive, taking
appropriate natural logarithms gives ln z = ln x + ln y +x +y = ln x + ln y +eln x +y.
Hence Elx z = ∂ ln z/∂ ln x = 1 + eln x = 1 + x.

E X A M P L E 2 The demand D1 for potatoes in the United States for the period 1927 to 1941 was
estimated to be D1 = Ap−0.28m0.34, where p is the price of potatoes and m is mean income.
The demand for apples was estimated to be D2 = Bq−1.27m1.32, where q is the price of
apples.

Find the price elasticities of demand, Elp D1 and Elq D2, as well as the income elasticities
of demand Elm D1 and Elm D2, and comment on their signs.

Solution: According to Example 1(a), Elp D1 = −0.28. If the price of potatoes in-
creases by 1%, demand decreases by approximately 0.28%. Furthermore, Elq D2 = −1.27,
Elm D1 = 0.34, and Elm D2 = 1.32.

Both price elasticities Elp D1 and Elq D2 are negative, so demand decreases when the
price increases in both cases—as seems reasonable. Both income elasticities Elm D1 and
Elm D2 are positive, so demand increases when mean income increases—as seems reason-
able. Note that the demand for apples is more sensitive to both price and income increases
than is the demand for potatoes. This also seems reasonable, since at that time potatoes were
a more essential commodity than apples for most consumers.

n Variables

If z = f (x1, x2, . . . , xn) = f (x), we define the (partial) elasticity of z (or of f ) w.r.t. xi

as the elasticity of z w.r.t. xi when all the other variables are held constant. Thus,

Eli z = xi

f (x)

∂f (x)

∂xi

= xi

z

∂z

∂xi

= ∂ ln z

∂ ln xi

(3)

(Of course, the last characterization is only valid when all variables are positive.) The
number Eli z is approximately equal to the percentage change in z caused by a 1% increase
in xi , keeping all the other xj (j �= i) constant. Among other forms of notation commonly
used instead of Eli z, we mention

Eli f (x), Elxi
z, ẑi (pronounced “z hat i”), εi, and ei

E X A M P L E 3 Suppose D = Ax
a1
1 x

a2
2 · · · xan

n is defined for all x1 > 0, x2 > 0, . . . , xn > 0, where
A > 0 and a1, a2, . . . , an are constants. Find the elasticity of D w.r.t. xi , for i = 1, . . . , n.

Solution: Because all the factors except x
ai

i are constant, we can apply (7.7.2) to obtain
Eli D = ai .
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As a special case of this example, suppose that Di = Amαp
−β

i p
γ

j , where m is income,
pi is the own price, and pj is the price of a substitute good. Then α is the income elasticity
of demand defined as in Example 2. On the other hand, −β is the elasticity of demand w.r.t.
changes in its own price pi , so it is called the own-price elasticity of demand. However,
because own-price elasticities of demand are usually negative, one often describes β rather
than −β as being the own-price elasticity of demand. Finally, γ is the elasticity of demand
w.r.t. the price of the specified substitute. By analogy with the cross-partial derivatives
defined in Section 11.6, it is called a cross-price elasticity of demand.

Note that the proportion of income spent on good i is

piDi

m
= Amα−1p

1−β

i p
γ

j

When the income elasticity α < 1, this proportion is a decreasing function of income.
Economists describe a good with this property as a necessity. On the other hand, when
α > 1, the proportion of income spent on good i rises with income, in which case economists
describe good i as a luxury. Referring back to Example 2, these definitions imply that during
the period 1927–1941, which includes the years of the Great Depression, potatoes were a
necessity, but apples a (relative) luxury.

Problem 4 below considers this distinction between necessities and luxuries for more
general demand functions.

P R O B L E M S F O R S E C T I O N 1 1 . 8

1. Find the partial elasticities of z w.r.t. x and y in the following cases:

(a) z = xy (b) z = x2y5 (c) z = xnexyney (d) z = x + y

2. Let z = (axd
1 + bxd

2 + cxd
3 )g , where a, b, c, d, and g are constants. Find

∑3
i=1 Eli z.

3. Let z = x
p

1 · · · xp
n exp(a1x1 + · · · + anxn), where a1, . . . , an, and p are constants. Find the

partial elasticities of z w.r.t. x1, . . . , xn.

⊂SM⊃4. Let D(p, m) indicate a typical consumer’s demand for a particular commodity, as a function of
its price p and the consumer’s own income m. Show that the proportion pD/m of income spent
on the commodity increases with income if Elm D > 1 (in which case the good is a “luxury”,
whereas it is a “necessity” if Elm D < 1).

R E V I E W P R O B L E M S F O R C H A P T E R 1 1

1. Let f (x, y) = 3x − 5y. Calculate f (0, 1), f (2, −1), f (a, a), and f (a + h, b) − f (a, b).

2. Let f (x, y) = 2x2−3y2. Calculate f (−1, 2), f (2a, 2a), f (a, b+k)−f (a, b), and f (tx, ty)−
t2f (x, y).

3. Let f (x, y, z) = √
x2 + y2 + z2. Calculate f (3, 4, 0), f (−2, 1, 3), and f (tx, ty, tz) for t ≥ 0.
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4. Let Y = F(K, L) = 15K1/5L2/5 denote the number of units produced when K units of capital
and L units of labour are used as inputs.

(a) Compute F(0, 0), F(1, 1), and F(32, 243).

(b) Find an expression for F(K + 1, L) − F(K, L), and give an economic interpretation.

(c) Compute F(32 + 1, 243) − F(32, 243), and compare the result with what you get by
calculating F ′

K(32, 243).

(d) Show that F(tK, tL) = tkF (K, L) for a constant k.

5. In a paper by Henderson and Tugwell the annual herring catch is given by the function Y (K, S) =
0.06157K1.356S0.562 of the catching effort K and the herring stock S.

(a) Find ∂Y/∂K and ∂Y/∂S.

(b) If K and S are both doubled, what happens to the catch?

6. For which pairs of numbers (x, y) are the functions given by the following formulas defined?

(a) 3xy3 − 45x4 − 3y (b)
√

1 − xy (c) ln(2 − (x2 + y2))

7. For which pairs of numbers (x, y) are the functions given by the following formulas defined?

(a)
1√

x + y − 1
(b)

√
x2 − y2 +

√
x2 + y2 − 1 (c)

√
y − x2 −

√√
x − y

8. Complete the following implications:

(a) z = (x2y4 + 2)5 	⇒ ∂z

∂x
=

(b) F(K, L) = (
√

K + √
L)2 	⇒ √

K
∂F

∂K
=

(c) F(K, L) = (Ka + La)1/a 	⇒ KF ′
K(K, L) + LF ′

L(K, L) =

(d) g(t, w) = 3t

w
+ wt2 	⇒ ∂2g

∂w∂t
=

(e) g(t1, t2, t3) = (t2
1 + t2

2 + t2
3 )1/2 	⇒ g′

3(t1, t2, t3) =
(f) f (x, y, z) = 2x2yz − y3 + x2z2 	⇒ f ′

1(x, y, z) = , f ′′
13(x, y, z) =

9. Let f be defined for all (x, y) by f (x, y) = (x − 2)2(y + 3)2.

(a) Calculate f (0, 0), f (−2, −3), and f (a + 2, b − 3).

(b) Find f ′
x and f ′

y .

10. Verify that the points (−1, 5) and (1, 1) lie on the same level curve for the function

g(x, y) = (2x + y)3 − 2x + 5/y

11. For each c �= 0, verify that x −y = c is a level curve for F(x, y) = ln(x2 −2xy +y2)+e2x−2y .
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⊂SM⊃12. (a) If f (x, y) = x4 + 2y2 − 4x2y + 4y, find f ′
1(x, y) and f ′

2(x, y).

(b) Find all pairs (x, y) which solve both equations f ′
1(x, y) = 0 and f ′

2(x, y) = 0.

13. Find the partial elasticities of z w.r.t. x and y in the following cases:

(a) z = x3y−4 (b) z = ln(x2 + y2) (c) z = ex+y (d) z = (x2 + y2)1/2

14. (a) If F(x, y) = e2x(1 − y)2, find ∂F/∂y.

(b) If F(K, L, M) = (ln K)(ln L)(ln M), find F ′
L and F ′′

LM .

(c) If w = xxyxzx , with x, y, and z positive, find w′
x using logarithmic differentiation.

HARDER PROBLEMS

15. Compute ∂p+qz/∂yq∂xp at (0, 0) for the following:

(a) z = ex ln(1 + y) (b) z = ex+y(xy + y − 1)

16. Show that, if u = Axayb, then u′′
xy/u

′
xu

′
y can be expressed as a function of u alone. Use this to

prove that
1

u′
x

∂

∂x

(
u′′

xy

u′
xu

′
y

)
= 1

u′
y

∂

∂y

(
u′′

xy

u′
xu

′
y

)
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Logic merely sanctions the

conquests of the intuition.

—J. Hadamard (1945)

Comparative statics is a particular technique that features very prominently in economic analy-

sis. The question it addresses is how economic quantities such as demand and supply, which

are determined as endogenous variables that satisfy an equation system, respond to changes

in exogenous parameters like price. More generally, what happens to the solution of an optim-

ization problem when the parameters of the problem change? Or to the solution of equations

that describe an equilibrium of demand and supply? Simple examples will be studied in this

chapter and the next two; more demanding problems are treated in FMEA.

Section 12.5 discusses the concept of elasticity of substitution, which is often used by econo-

mists to characterize the “curvature” of level curves.

Homogeneous and homothetic functions are important in economics. They are studied in

Sections 12.6 and 12.7. The last sections of the chapter consider linear approximations, then

differentials, and finally systems of equations, together with some properties that result from

differentiating such systems.

12.1 A Simple Chain Rule
Many economic models involve composite functions. These are functions of one or several
variables in which the variables are themselves functions of other basic variables. For ex-
ample, many models of economic growth regard output as a function of capital and labour,
both of which are functions of time. How does output vary with time?

More generally, what happens to the value of a composite function as its basic variables
change? This is the general problem we discuss in this and the next section.

Suppose z is a function of x and y, with

z = F(x, y)
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where x and y both are functions of a variable t , with

x = f (t), y = g(t)

Substituting for x and y in z = F(x, y) gives the composite function

z = F(f (t), g(t))

This reduces z to a function of t alone. A change in t will in general lead to changes in
both f (t) and g(t), and as a result, z changes. How does z change when t changes? For
example, will a small increase in t lead to an increase or a decrease in z? Such questions
would become much easier to answer if we could find an expression for dz/dt , the rate of
change of z w.r.t. t . This is given by the following rule:

T H E C H A I N R U L E

When z = F(x, y) with x = f (t) and y = g(t), then

dz

dt
= F ′

1(x, y)
dx

dt
+ F ′

2(x, y)
dy

dt

(1)

It is important to understand the precise content of (1). It gives the derivative of z = F(x, y)

w.r.t. t when x and y are both differentiable functions of t . This derivative is called the
total derivative of z w.r.t. t . According to (1), one contribution to the total derivative
occurs because the first variable in F(x, y), namely x, depends on t . This contribution is
F ′

1(x, y) dx/dt . A second contribution arises because the second variable inF(x, y), namely
y, also depends on t . This contribution is F ′

2(x, y) dy/dt . The total derivative dz/dt is the
sum of the two contributions.

E X A M P L E 1 Find dz/dt when z = F(x, y) = x2 + y3 with x = t2 and y = 2t .

Solution: In this case F ′
1(x, y) = 2x, F ′

2(x, y) = 3y2, dx/dt = 2t , and dy/dt = 2. So
formula (1) gives

dz

dt
= 2x · 2t + 3y2 · 2 = 4tx + 6y2 = 4t3 + 24t2

where the last equality comes from substituting the appropriate functions of t for x and y

respectively. In a simple case like this, we can verify the chain rule by substituting x = t2

and y = 2t in the formula for F(x, y) and then differentiating w.r.t. t . The result is

z = x2 + y3 = (t2)
2 + (2t)3 = t4 + 8t3 �⇒ dz

dt
= 4t3 + 24t2

as before.
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E X A M P L E 2 Find dz/dt when z = F(x, y) = xe2y with x = √
t and y = ln t .

Solution: Here F ′
1(x, y) = e2y , F ′

2(x, y) = 2xe2y , dx/dt = 1/2
√

t , and dy/dt = 1/t .
Now y = ln t implies that e2y = e2 ln t = (eln t )2 = t2, so formula (1) gives

dz

dt
= e2y 1

2
√

t
+ 2xe2y 1

t
= t2 1

2
√

t
+ 2

√
t t2 1

t
= 5

2
t3/2

As in Example 1, we can verify the chain rule directly by substituting x = √
t and y = ln t

in the formula for F(x, y), implying that z = xe2y = √
t · t2 = t5/2, whose derivative is

dz/dt = 5
2 t3/2.

Here are some rather typical examples of ways in which economists use (1).

E X A M P L E 3 LetD = D(p, m)denote the demand for a commodity as a function of pricep and income
m. Suppose that price p and income m vary continuously with time t , so that p = p(t) and
m = m(t). Then demand can be determined as a function D = D(p(t), m(t)) of t alone.
Find an expression for Ḋ/D, the relative rate of growth of D.

Solution: Using (1) we obtain

Ḋ = ∂D(p, m)

∂p
ṗ + ∂D(p, m)

∂m
ṁ

where we have denoted time derivatives by “dots”. The first term on the right-hand side
gives the effect on demand that arises because the price p is changing, and the second term
gives the effect of the change in m. Denoting the price elasticity of demand by εDp = Elp D

and the income elasticity of demand by εDm = Elm D, we can write the relative rate of
growth of D as

Ḋ

D
= p

D

∂D(p, m)

∂p

ṗ

p
+ m

D

∂D(p, m)

∂m

ṁ

m
= εDp

ṗ

p
+ εDm

ṁ

m

So the relative rate of growth is found by multiplying the relative rates of change of price
and income by their respective elasticities, then adding.

E X A M P L E 4 Let u(x, z) denote the “total well-being” of a society, where x is an index of the total
amount of goods produced and consumed, and z is a measure of the level of pollution.
Assume that u′

x(x, z) > 0 and u′
z(x, z) < 0. (See Example 11.7.2.) Suppose the level of

pollution z is some increasing function z = h(x) of x, with h′(x) > 0. Then total well-being
becomes a function

U(x) = u(x, h(x))

of x alone. Find a necessary condition for U(x) to have a maximum at x = x∗ > 0, and
give this condition an economic interpretation.
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Solution: A necessary condition for U(x) to have a maximum at x∗ > 0 is that U ′(x∗) = 0.
In order to find U ′(x), we use the chain rule (1):

U ′(x) = u′
x(x, h(x)) · 1 + u′

z(x, h(x))h′(x)

So U ′(x∗) = 0 requires that

u′
x(x

∗, h(x∗)) = −u′
z(x

∗, h(x∗))h′(x∗) (∗)

To illustrate this condition, consider increasing x∗ by a small amount ξ , which can be
positive or negative. By (11.2.6), our gain is approximately u′

x(x
∗, h(x∗))ξ . On the other

hand, the level of pollution increases by about h′(x∗)ξ units. But we lose u′
z(x

∗, h(x∗)) in
well-being per unit increase in pollution. So in all we lose about u′

z(x
∗, h(x∗))h′(x∗)ξ from

this increase in x∗. Equation (∗) just states that what we gain directly from increasing x∗

by any small amount ξ can be neither greater nor less than what we lose indirectly through
increased pollution: otherwise a small change ξ in the right direction would increase well-
being slightly.

We note finally that all the general rules for differentiating functions of one variable turn
out to be just special cases of the chain rule (1) (see Problem 5).

Higher-Order Derivatives
Sometimes we use the second derivative of a composite function. A general formula for d2z/dt2,
based on formula (1), is suggested in Problem 7. Here we derive a special case of interest in optim-
ization theory.

E X A M P L E 5 Suppose
z = F(x, y) where x = x0 + th, y = y0 + tk

Keeping (x0, y0) and (h, k) fixed, z becomes a function only of t . So we can write z = g(t). Find
expressions for g′(t) and g′′(t). (The function g records what happens to F as one moves away from
(x0, y0) in the direction (h, k) or, when t < 0, in the reverse direction (−h, −k). See Fig. 13.3.2.)

Solution: With x = x0 + th and y = y0 + tk, we have g(t) = F(x, y). Using (1) we get

g′(t) = F ′
1(x, y)

dx

dt
+ F ′

2(x, y)
dy

dt
= F ′

1(x0 + th, y0 + tk)h + F ′
2(x0 + th, y0 + tk)k

To find the second derivative g′′(t), we have to differentiate a second time w.r.t. t . This yields

g′′(t) = d

dt
F ′

1(x, y)h + d

dt
F ′

2(x, y)k (∗)

To evaluate the derivatives on the right-hand side, we must use the chain rule (1) again. This gives

d

dt
F ′

1(x, y) = F ′′
11(x, y)

dx

dt
+ F ′′

12(x, y)
dy

dt
= F ′′

11(x, y)h + F ′′
12(x, y)k

d

dt
F ′

2(x, y) = F ′′
21(x, y)

dx

dt
+ F ′′

22(x, y)
dy

dt
= F ′′

21(x, y)h + F ′′
22(x, y)k

Assuming that F ′′
12 = F ′′

21, inserting these expressions into (∗) gives

g′′(t) = F ′′
11(x, y)h2 + 2F ′′

12(x, y)hk + F ′′
22(x, y)k2

where x = x0 + th, y = y0 + tk.
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A Rough Argument for the Chain Rule
In order to show that the chain rule is valid, none of the earlier rules for derivatives can be applied.
Instead, we must go all the way back to the definition of derivative. Letting ϕ(t) denote F(f (t), g(t)),
we must examine the limit as �t → 0 of the Newton quotient

ϕ(t + �t) − ϕ(t)

�t
= F(f (t + �t), g(t + �t)) − F(f (t), g(t))

�t
(∗)

Because x = f (t) and y = g(t), we define �x = f (t + �t) − f (t) and �y = g(t + �t) − g(t),
so that f (t + �t) = x + �x, g(t + �t) = y + �y. Substituting the last two expressions into (∗),
then subtracting and adding F(x, y + �y), we obtain

ϕ(t + �t) − ϕ(t)

�t
= F(x + �x, y + �y) − F(x, y + �y) + F(x, y + �y) − F(x, y)

�t

whose right-hand side, provided that neither �x nor �y is 0, can be expressed as

F(x + �x, y + �y) − F(x, y + �y)

�x

�x

�t
+ F(x, y + �y) − F(x, y)

�y

�y

�t
(∗∗)

We focus on the special case when �x and �y are indeed nonzero for all �t close to 0.1 Now, as
�t → 0, so �x/�t → dx/dt = f ′(t), and �y/�t → dy/dt = g′(t). In particular, �x → 0
and �y → 0. From the formal definition of partial derivatives (see (2) and (3) of Section 11.2), we
see that [F(x + �x, y + �y) − F(x, y + �y)]/�x tends to F ′

1(x, y + �y) as �x → 0, and that
[F(x, y +�y)−F(x, y)]/�y tends to F ′

2(x, y) as �y → 0. Also, as �t → 0, both �x and �y tend
to 0, and so, because F ′

1 is a continuous function, F ′
1(x, y + �y) → F ′

1(x, y). Finally, combining
(∗) and (∗∗), then taking limits throughout as �t → 0, we obtain

ϕ′(t) = lim
�t→0

ϕ(t + �t) − ϕ(t)

�t
= F ′

1(x, y)
dx

dt
+ F ′

2(x, y)
dy

dt

as required.

P R O B L E M S F O R S E C T I O N 1 2 . 1

1. In the following cases, find dz/dt by using the chain rule (1):

(a) F(x, y) = x + y2, x = t2, y = t3.

(b) F(x, y) = xpyq, x = at, y = bt

(c) Check the answers by first substituting the expressions for x and y and then differentiating.

2. Find dz/dt when:

(a) F(x, y) = x ln y + y ln x, x = t + 1, y = ln t

(b) F(x, y) = ln x + ln y, x = Aeat , y = Bebt

3. (a) If z = F(t, y) and y = g(t), find a formula for dz/dt . Consider in particular the case
where z = t2 + yey and y = t2.

(b) If Y = F(K, L) and K = g(L), find a formula for dY/dL.

1 This is a “rough” argument because this assumption is not always valid, even when F , f , and g

are all C1 functions.
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4. Let Y = 10KL−√
K −√

L. Suppose too that K = 0.2t +5 and L = 5e0.1t . Find (dY/dt)t=0.

⊂SM⊃5. What do you get if you apply the chain rule (1) when F(x, y) is as follows?

(a) x + y (b) x − y (c) x · y (d) x/y (e) G(x)

Here x = f (t), y = g(t), and G(x) are all differentiable functions.

HARDER PROBLEMS

⊂SM⊃6. Consider Example 4 and let u(x, z) = ln(xα + zα) − α ln z. Let z = h(x) = 3
√

ax4 + b, with
the constants α, a, and b all positive. Find the optimal x∗ in this case.

⊂SM⊃7. Suppose that z = F(x, y), x = g(t), and y = h(t). Modify the solution to Example 5 in order
to prove that

d2z

dt2
= ∂z

∂x

d2x

dt2
+ ∂z

∂y

d2y

dt2
+ ∂2z

∂x2

(
dx

dt

)2

+ 2
∂2z

∂x∂y

(
dx

dt

) (
dy

dt

)
+ ∂2z

∂y2

(
dy

dt

)2

under appropriate assumptions on F , g, and h.

12.2 Chain Rules for Many Variables
Economists often need even more general chain rules than the simple one for two variables
presented in the previous section. Problem 7, for example, considers the example of a
railway company whose fares for peak and off-peak fares are set by a regulatory authority.
The costs it faces for running enough trains to carry all the passengers depend on demand
for both kinds of journey. These demands are obviously affected by both peak and off-peak
fares because some passengers will choose when to travel based on the fare difference. The
general chain rule we are about to present allows us to work out how these costs change
when either fare is increased.

Consider the general problem of this kind where

z = F(x, y), x = f (t, s), y = g(t, s)

In this case, z is a function of both t and s, with

z = F(f (t, s), g(t, s))

Here it makes sense to look for both partial derivatives ∂z/∂t and ∂z/∂s. If we keep s fixed,
then z is a function of t alone, and we can therefore use the chain rule (1) from the previous
section. In the same way, by keeping t fixed, we can differentiate z w.r.t. s. The result is the
following:
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T H E C H A I N R U L E

If z = F(x, y) with x = f (t, s) and y = g(t, s), then

(a)
∂z

∂t
= F ′

1(x, y)
∂x

∂t
+ F ′

2(x, y)
∂y

∂t

(b)
∂z

∂s
= F ′

1(x, y)
∂x

∂s
+ F ′

2(x, y)
∂y

∂s

(1)

E X A M P L E 1 Find ∂z/∂t and ∂z/∂s when z = F(x, y) = x2 + 2y2, with x = t − s2 and y = ts.

Solution: We obtain

F ′
1(x, y) = 2x, F ′

2(x, y) = 4y,
∂x

∂t
= 1,

∂x

∂s
= −2s,

∂y

∂t
= s,

∂y

∂s
= t

Formula (1) therefore gives:

∂z

∂t
= 2x · 1 + 4y · s = 2(t − s2) + 4tss = 2t − 2s2 + 4ts2

∂z

∂s
= 2x · (−2s) + 4y · t = 2(t − s2)(−2s) + 4tst = −4ts + 4s3 + 4t2s

Check these answers by first expressing z as a function of t and s, then differentiating.

E X A M P L E 2 Find z′
t (1, 0) if z = ex2 + y2exy , with x = 2t + 3s and y = t2s3.

Solution: We obtain

∂z

∂x
= 2xex2 + y3exy,

∂z

∂y
= 2yexy + xy2exy,

∂x

∂t
= 2,

∂y

∂t
= 2ts3

Using somewhat more concise notation, formula (1) gives

z′
t (t, s) = ∂z

∂x

∂x

∂t
+ ∂z

∂y

∂y

∂t
= (2xex2 + y3exy) · 2 + (2yexy + xy2exy) · 2ts3

When t = 1 and s = 0, then x = 2 and y = 0, so z′
t (1, 0) = 4e4 · 2 = 8e4.

The General Case

In consumer demand theory economists typically assume that a household’s utility depends
on the number of units of each good it is able to consume. The number of units consumed
will depend in turn on the prices of these goods and on the household’s income. Thus the
household’s utility is related, indirectly, to all the prices and to income. How does utility
respond to an increase in one of the prices, or to an increase in income? The following
general chain rule extends to this kind of problem.
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Suppose that

z = F(x1, . . . , xn) with x1 = f1(t1, . . . , tm), . . . , xn = fn(t1, . . . , tm) (2)

Substituting for all the variables xi as functions of the variables tj into the function F

expresses z as a composite function

z = F(f1(t1, . . . , tm), . . . , fn(t1, . . . , tm))

of t1, . . . , tm. In vector notation, z = F(x(t)). An obvious generalization of (1) is as follows:

T H E G E N E R A L C H A I N R U L E

When (2) is true, then

∂z

∂tj
= ∂z

∂x1

∂x1

∂tj
+ ∂z

∂x2

∂x2

∂tj
+ · · · + ∂z

∂xn

∂xn

∂tj
, j = 1, 2, . . . , m

(3)

This is an important formula that every economist should understand. A small change in
a basic variable tj sets off a chain reaction. First, every xi depends on tj in general, so it
changes when tj is changed. This affects z in turn. The contribution to the total derivative
of z w.r.t. tj that results from the change in xi is (∂z/∂xi)(∂xi/∂tj ). Formula (3) shows that
∂z/∂tj is the sum of all these contributions.

E X A M P L E 3 Example 11.7.1 considered an agricultural production function Y = F(K, L, T ), where
Y is the size of the harvest, K is capital invested, L is labour, and T is the area of agricultural
land used to grow the crop. Suppose that K , L, and T are all functions of time. Then,
according to (3), one has

dY

dt
= ∂F

∂K

dK

dt
+ ∂F

∂L

dL

dt
+ ∂F

∂T

dT

dt

In the special case when F is the Cobb–Douglas function F(K, L, T ) = AKaLbT c, then

dY

dt
= aAKa−1LbT c dK

dt
+ bAKaLb−1T c dL

dt
+ cAKaLbT c−1 dT

dt
(∗)

Denoting time derivatives by “dots”, and dividing each term in (∗) by Y = AKaLbT c, we
get

Ẏ

Y
= a

K̇

K
+ b

L̇

L
+ c

Ṫ

T

The relative rate of change of output is, therefore, a weighted sum of the relative rates of
change of capital, labour, and land. The weights are the respective powers a, b, and c.
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P R O B L E M S F O R S E C T I O N 1 2 . 2

1. Use (1) to find ∂z/∂t and ∂z/∂s for the following cases:

(a) z = F(x, y) = x + y2, x = t − s, y = ts

(b) z = F(x, y) = 2x2 + 3y3 , x = t2 − s, y = t + 2s3

⊂SM⊃2. Using (1), find ∂z/∂t and ∂z/∂s for the following cases:

(a) z = xy2, x = t + s2, y = t2s (b) z = x − y

x + y
, x = et+s , y = ets

3. (a) If z = F(u, v, w) where u = r2, v = −2s2, and w = ln r + ln s, find ∂z/∂r and ∂z/∂s.

(b) If z = F(x) and x = f (t1, t2), find ∂z/∂t1 and ∂z/∂t2 .

(c) If x = F(s, f (s), g(s, t)), find ∂x/∂s and ∂x/∂t .

(d) If z = F(u, v, w) where u = f (x, y), v = x2h(y) and w = 1/y, find ∂z/∂x and ∂z/∂y.

4. Use the general chain rule (3) to find ∂w/∂t for the following cases:

(a) w = xy2z3, with x = t2, y = s, z = t

(b) w = x2 + y2 + z2, with x = √
t + s, y = ets , z = s3

5. Find expressions for dz/dt when

(a) z = F(t, t2, t3) (b) z = F(t, f (t), g(t2))

6. (a) Suppose Z = G + Y 2 + r2, where Y and r are both functions of G. Find ∂Z/∂G.

(b) Suppose Z = G + I (Y, r), where I is a differentiable function of two variables, and Y , r

are both functions of G. Find ∂Z/∂G.

7. Each week a suburban railway company has a long-run cost C = aQ1 +bQ2 +cQ2
1 of providing

Q1 passenger kilometres of service during rush hours and Q2 passenger kilometres during off-
peak hours. As functions of the regulated fares p1 and p2 per kilometre for the rush hours and
off-peak hours respectively, the demands for the two kinds of service are Q1 = Ap

−α1
1 p

β1
2 and

Q2 = Bp
α2
1 p

−β2
2 , where the constants A, B, α1, α2, β1, β2 are all positive. Assuming that the

company runs enough trains to meet the demand, find expressions for the partial derivatives of
C w.r.t. p1 and p2.

⊂SM⊃8. (a) If u = ln(x3 + y3 + z3 − 3xyz), show that

(i) x
∂u

∂x
+ y

∂u

∂y
+ z

∂u

∂z
= 3 (ii) (x + y + z)

(
∂u

∂x
+ ∂u

∂y
+ ∂u

∂z

)
= 3

(b) If z = f (x2y), show that x
∂z

∂x
= 2y

∂z

∂y
.

9. (a) Find a formula for ∂u/∂r when u = f (x, y, z, w) and x, y, z, and w all are functions of
two variables r and s.

(b) Suppose u = xyzw, where x = r + s, y = r − s, z = rs, w = r/s. Find ∂u/∂r when
(r, s) = (2, 1).
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12.3 Implicit Differentiation along a Level Curve
Economists often need to differentiate functions that are defined implicitly by an equation.
Section 7.2 considered some simple cases; it is a good idea to review those examples now.
Here we study the problem from a more general point of view.

Let F be a function of two variables, and consider the equation

F(x, y) = c (c is a constant)

The equation represents a level curve for F . (See Section 11.3.) Suppose this equation
defines y implicitly as a function y = f (x) of x in some interval I , as illustrated in Fig. 1.
This means that

F(x, f (x)) = c for all x in I (∗)

If f is differentiable, what is the derivative of y = f (x)? If the graph of f looks like the
one given in Fig. 1, the geometric problem is to find the slope of the graph at each point
like P .

F (x, y) � c

y

x

P

I

Figure 1 What is the slope at P ?

To find an expression for the slope, introduce the auxiliary function u defined for all x in I

by u(x) = F(x, f (x)). Then u′(x) = F ′
1(x, f (x)) · 1 + F ′

2(x, f (x)) · f ′(x) according to
the chain rule. Now, (∗) states that u(x) = c for all x in I . The derivative of a constant is 0,
so we have u′(x) = F ′

1(x, f (x)) + F ′
2(x, f (x)) · f ′(x) = 0. If we replace f (x) by y and

solve for f ′(x) = y ′, we reach the conclusion:

S L O P E O F A L E V E L C U R V E

F(x, y) = c �⇒ y′ = −F ′
1(x, y)

F ′
2(x, y)

(F ′
2(x, y) 
= 0) (1)

This is an important result. Before applying this formula for y ′, however, recall that the pair
(x, y) must satisfy the equation F(x, y) = c. On the other hand, note that there is no need
to solve the equation F(x, y) = c explicitly for y before applying (1) in order to find y ′.
(See Example 3.)
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The same argument with x and y interchanged gives an analogous result to (1). Thus, if
x is a continuously differentiable function of y which satisfies F(x, y) = c, then

F(x, y) = c ⇒ dx

dy
= − ∂F/∂y

∂F/∂x

(
∂F

∂x

= 0

)
(2)

E X A M P L E 1 Use (1) to find y ′ when xy = 5.

Solution: We put F(x, y) = xy. Then F ′
1(x, y) = y and F ′

2(x, y) = x. Hence (1) gives

y ′ = −F ′
1(x, y)

F ′
2(x, y)

= −y

x

This confirms the result in Example 7.1.1.

E X A M P L E 2 For the curve given by
x3 + x2y − 2y2 − 10y = 0

find the slope and the equation for the tangent at the point (x, y) = (2, 1).

Solution: Let F(x, y) = x3 + x2y − 2y2 − 10y. Then the given equation is equivalent to
F(x, y) = 0, which is a level curve for F . First, we check that F(2, 1) = 0, so (x, y) =
(2, 1) is a point on the curve. Also, F ′

1(x, y) = 3x2 + 2xy and F ′
2(x, y) = x2 − 4y − 10.

So (1) implies that

y ′ = − 3x2 + 2xy

x2 − 4y − 10

For x = 2 and y = 1 in particular, one has y ′ = 8/5. Then the point–slope formula for
a line implies that the tangent at (2, 1) must have the equation y − 1 = (8/5)(x − 2), or
5y = 8x − 11. See Fig. 2, in which the curve has been drawn by a computer program. Note
that, for many values of x, there is more than one corresponding value of y such that (x, y)

lies on the curve. For instance, (2, 1) and (2, −4) both lie on the curve. Find y′ at (2, −4).
(Answer: y ′ = 0.4.)

x 3 � x 2y � 2y2 � 10y � 0

�2�3�4�5 �1 1 2 3 4 5

3

�3

4

�4

5

�5

2

�2

1

�1

y

x

Figure 2 The graph of the equation in Example 2.
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E X A M P L E 3 Assume that the equation

exy2 − 2x − 4y = c

implicitly defines y as a differentiable function y = f (x) of x. Find a value of the constant
c such that f (0) = 1, and find y′ at (x, y) = (0, 1).

Solution: When x = 0 and y = 1, the equation becomes 1 − 4 = c, so c = −3. Let
F(x, y) = exy2 − 2x − 4y. Then F ′

1(x, y) = y2exy2 − 2, and F ′
2(x, y) = 2xyexy2 − 4.

Thus, from (1) we have

y′ = −F ′
1(x, y)

F ′
2(x, y)

= − y2exy2 − 2

2xyexy2 − 4

When x = 0 and y = 1, we find y ′ = −1/4. (Note that in this example it is impossible to
solve exy2 − 2x − 4y = −3 explicitly for y. Even so, we have managed to find an explicit
expression for the derivative of y w.r.t. x.)

Here is an important economic example using a function defined implicitly by an
equation.

E X A M P L E 4 We generalize Example 7.2.2, and assume that D = f (t, P ) is the demand for a com-
modity that depends on the price P before tax, as well as on the sales tax per unit, denoted
by t . Suppose that S = g(P ) is the supply function. At equilibrium, when supply is equal
to demand, the equilibrium price P = P(t) depends on t . Indeed, P = P(t) must satisfy
the equation

f (t, P ) = g(P ) (∗)

for all t in some relevant interval. Suppose that (∗) defines P implicitly as a differentiable
function of t . Find an expression for dP/dt , then discuss its sign.

Solution: Let F(t, P ) = f (t, P ) − g(P ). Then equation (∗) becomes F(t, P ) = 0, so
formula (1) yields

dP

dt
= − F ′

t (t, P )

F ′
P (t, P )

= − f ′
t (t, P )

f ′
P (t, P ) − g′(P )

= f ′
t (t, P )

g′(P ) − f ′
P (t, P )

(∗∗)

It is reasonable to assume that g′(P ) > 0 (meaning that supply increases if price increases)
and that f ′

t (t, P ) and f ′
P (t, P ) are both < 0 (meaning that demand decreases if either the

tax or the price increases). Then (∗∗) tells us that dP/dt < 0, implying that the pre-tax
price faced by suppliers decreases as the tax increases. Thus the suppliers, as well as the
consumers, are adversely affected if the tax on their product rises.

Of course, we can also derive formula (∗∗) by implicit differentiation of (∗) w.r.t. t . This
procedure gives

f ′
t (t, P ) · 1 + f ′

P (t, P )
dP

dt
= g′(P )

dP

dt

Solving this equation for dP/dt yields (∗∗) again.
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A Formula for the Second Derivative

Sometimes we need to know whether a level curve F(x, y) = c is the graph of a function
y = f (x) that is convex or concave. One way to find out is to calculate y ′′, which is the
derivative of y ′ = −F ′

1(x, y)/F ′
2(x, y). Write G(x) = F ′

1(x, y) and H(x) = F ′
2(x, y),

where y is a function of x. Our aim now is to differentiate the quotient y ′ = −G(x)/H(x)

w.r.t. x. According to the rule for differentiating quotients,

y ′′ = −G′(x)H(x) − G(x)H ′(x)

[H(x)]2
(∗)

Keeping in mind that y is a function of x, both G(x) and H(x) are composite functions. So
we differentiate them both by using the chain rule, thereby obtaining

G′(x) = F ′′
11(x, y) · 1 + F ′′

12(x, y) · y ′

H ′(x) = F ′′
21(x, y) · 1 + F ′′

22(x, y) · y ′

Assuming that F is a C2 function, Young’s Theorem (Theorem 11.6.1) implies that F ′′
12 =

F ′′
21. Replace y ′ in both the preceding equations by the quotient −F ′

1/F
′
2, and then insert

the results into (∗). After some algebraic simplification, this yields the formula

F(x, y) = c ⇒ y′′ = − 1

(F ′
2)

3
[F ′′

11(F
′
2)

2 − 2F ′′
12F

′
1F

′
2 + F ′′

22(F
′
1)

2] (3)

Occasionally (3) is used in theoretical arguments, but generally it is easier to find y ′′ by
direct differentiation, as in the examples in Section 7.1.

E X A M P L E 5 Use (3) to find y ′′ when
xy = 5

Solution: With F(x, y) = xy we have F ′
1 = y, F ′

2 = x, F ′′
11 = 0, F ′′

12 = 1, and F ′′
22 = 0.

According to (3), we obtain

y′′ = − 1

x3
(−2 · 1 · y · x) = 2y

x2

which is the same result we found in Example 7.1.4.

For those who are already familiar with 3×3 determinants, which this book discusses in Section 16.2,
the result in (3) can be expressed in the following more memorable form:

F(x, y) = c �⇒ y ′′ = d2y

dx2
= 1

(F ′
2)

3

∣∣∣∣∣∣∣
0 F ′

1 F ′
2

F ′
1 F ′′

11 F ′′
12

F ′
2 F ′′

21 F ′′
22

∣∣∣∣∣∣∣ (4)

This is valid only if F ′
2 
= 0, obviously.
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P R O B L E M S F O R S E C T I O N 1 2 . 3

1. Use formula (1) with F(x, y) = 2x2 + 6xy + y2 and c = 18 to find y ′ when y is defined
implicitly by 2x2 + 6xy + y2 = 18. Compare with the result in Problem 7.1.5.

⊂SM⊃2. Use formula (1) to find y ′ for the following level curves. Also find y ′′ using (3).

(a) x2y = 1 (b) x − y + 3xy = 2 (c) y5 − x6 = 0

⊂SM⊃3. A curve in the xy-plane is given by the equation 2x2 + xy + y2 − 8 = 0.

(a) Find y ′, y ′′, and the equation for the tangent at the point (2, 0).

(b) Which points on the curve have a horizontal tangent?

4. The equation 3x2 − 3xy2 + y3 + 3y2 = 4 defines y implicitly as a function h(x) of x in a
neighbourhood of the point (1, 1). Find h′(1).

5. Suppose the demand D(P, r) for a certain commodity (like a luxury car) depends on its price
P and the interest rate r . What signs should one expect the partial derivatives of D w.r.t. P and
r to have? Suppose the supply S is constant, so that in equilibrium, D(P, r) = S. Differentiate
implicitly to find dP/dr , and comment on its sign. (Problem 7.2.3 considers a special case.)

6. Let D = f (R, P ) denote the demand for a commodity when the price is P and R is advertising
expenditure. What signs should one expect the partial derivatives f ′

R and f ′
P to have? If the

supply is S = g(P ), equilibrium in the market requires that f (R, P ) = g(P ). What is dP/dR?
Discuss its sign.

7. Let f be a differentiable function of one variable, and let a and b be two constants. Suppose
that the equation x − az = f (y − bz) defines z as a differentiable function of x and y. Prove
that z satisfies az′

x + bz′
y = 1.

12.4 More General Cases
Consider the equation F(x, y, z) = c, where c is a constant. In general, this equation
determines a surface in three-dimensional space consisting of all the triples (x, y, z) that
satisfy the equation. This we called the graph of the equation. Suppose that z = f (x, y)

defines implicitly a function that, for all (x, y) in some domain A, satisfies the equation
F(x, y, z) = c. Then

F(x, y, f (x, y)) = c for all (x, y) in A

Suppose F and f are differentiable. Because the function g(x, y) = F(x, y, f (x, y)) is
equal to the constant c for all (x, y) ∈ A, the partial derivatives g′

x and g′
y must both be 0.

However, g(x, y) is a composite function of x and y whose partial derivatives can be found
by using the general chain rule (12.2.3.) Therefore,

g′
x = F ′

x · 1 + F ′
z · z′

x = 0, g′
y = F ′

y · 1 + F ′
z · z′

y = 0
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This implies the following expressions for the partial derivatives of z = f (x, y):

F(x, y, z) = c �⇒ z′
x = −F ′

x

F ′
z

, z′
y = −F ′

y

F ′
z

(F ′
z 
= 0) (1)

Using (1) allows formulas for z′
x and z′

y to be found even if it is impossible to solve the
equation F(x, y, z) = c explicitly for z as a function of x and y.

E X A M P L E 1 The equation x − 2y − 3z + z2 = −2 defines z as a twice differentiable function of x

and y about the point (x, y, z) = (0, 0, 2). Find z′
x and z′

y , and then z′′
xx , z′′

xy , and z′′
yy . Find

also the numerical values of all these partial derivatives at (0, 0).

Solution: Let F(x, y, z) = x − 2y − 3z + z2 and c = −2. Then F ′
x = 1, F ′

y = −2, and
F ′

z = 2z − 3. Whenever z 
= 3/2, we have F ′
z 
= 0, so formula (1) gives

z′
x = − 1

2z − 3
, z′

y = − −2

2z − 3
= 2

2z − 3

For x = 0, y = 0, and z = 2 in particular, we obtain z′
x = −1 and z′

y = 2.
We find z′′

xx by differentiating the expression for z′
x partially w.r.t. x. Keeping in mind

that z is a function of x and y, we get z′′
xx = (∂/∂x)(−(2z − 3)−1) = (2z − 3)−22z′

x . Using
the expression for z′

x found above, we have

z′′
xx = −2

(2z − 3)3

Correspondingly,

z′′
xy = ∂

∂y
z′
x = ∂

∂y
[−(2z − 3)−1] = (2z − 3)−22z′

y = 4

(2z − 3)3

and

z′′
yy = ∂

∂y
z′
y = ∂

∂y
[2(2z − 3)−1] = −2(2z − 3)−22z′

y = −8

(2z − 3)3

For x = y = 0 and z = 2, we get z′′
xx = −2, z′′

xy = 4, and z′′
yy = −8.

E X A M P L E 2 A firm produces Q = f (L) units of a commodity using L units of labour. We assume
that f ′(L) > 0 and f ′′(L) < 0, so f is strictly increasing and strictly concave. (It might be
a good idea to look at Problem 3(a) where a special case is considered.)

(a) If the firm gets P euros per unit produced and pays w euros for a unit of labour, write
down the profit function, and find the first-order condition for profit maximization at
L∗ > 0.

(b) By implicit differentiation of the first-order condition, examine how changes in P and
w influence the optimal choice of L∗.
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Solution: (a) The profit function is π(L) = Pf (L)−wL, so π ′(L) = Pf ′(L)−w. Thus
an optimal L∗ must satisfy

Pf ′(L∗) − w = 0 (∗)

(b) If we define F(P, w, L∗) = Pf ′(L∗) − w, then (∗) is equivalent to F(P, w, L∗) = 0.
According to formula (1),

∂L∗

∂P
= − F ′

P

F ′
L∗

= − f ′(L∗)
Pf ′′(L∗)

,
∂L∗

∂w
= − F ′

w

F ′
L∗

= − −1

Pf ′′(L∗)
= 1

Pf ′′(L∗)

The sign assumptions on f ′ and f ′′ imply that ∂L∗/∂P > 0 and ∂L∗/∂w < 0. Thus, the
optimal labour input goes up if the price P increases, while it goes down if labour costs
increase. This makes economic sense. (Actually, economists would usually prefer to use
implicit differentiation rather than relying on formula (1).)

E X A M P L E 3 (Gains from Search) Suppose you intend to buy x0 units of a particular commodity
like flour. Right now, there is the opportunity to buy it at a price of p0 per unit. But you
expect that searching among other sellers will yield a lower price. Let p(t) denote the lowest
price per unit you expect to find after searching the market for t hours. It is reasonable to
assume that ṗ(t) < 0. Moreover, since it is usually harder to find lower prices as the search
progresses, we assume that p̈(t) > 0. Suppose your hourly wage is w. By searching for
t hours, you save p0 − p(t) dollars for each unit you buy. Since you are buying x0 units,
total savings are [p0 − p(t)]x0. On the other hand, searching for t hours costs you wt in
forgone wages. So the expected profit from searching for t hours is

π(t) = [p0 − p(t)]x0 − wt

A necessary first-order condition for t = t∗ > 0 to maximize profit is that

π̇(t∗) = −ṗ(t∗)x0 − w = 0 (∗)

This condition is also sufficient, because π̈(t) = −p̈(t)x0 < 0 for all t .
Here is an economic interpretation of the condition −ṗ(t∗)x0 = w: Suppose you search

for an extra hour. The gain expected from finding a lower price is [p(t∗) − p(t∗ + 1)]x0,
which is approximately −ṗ(t∗)x0. On the other hand you lose an hour’s wage. So the first-
order condition says that you should search until the marginal gain from searching for an
extra hour is just offset by the hourly wage.

The optimal search time t∗ depends on x0 and w. Economists typically want to know
how t∗ changes as x0 or w changes. We see that equation (∗) is similar to equation (∗) in
Example 2 (with x0 = −P , p = f , and t∗ = L∗). It follows immediately that

∂t∗

∂x0
= − ṗ(t∗)

p̈(t∗)x0
> 0,

∂t∗

∂w
= − 1

p̈(t∗)x0
< 0

where the signs are as indicated because ṗ(t∗) < 0, p̈(t∗) > 0, and x0 > 0. Thus, the
optimal search time rises as the quantity to be bought increases, and falls as the wage
rate rises.
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These qualitative results can easily be obtained by a geometric argument. Figure 1 illus-
trates the optimal search time t∗. It is the value of t at which the tangent to the curve
R = [p0 − p(t)]x0 has slope w, and so is parallel to the line C = wt . If x0 increases, the
R curve is magnified vertically but not horizontally, so t∗ moves to the right. On the other
hand, if w increases, the straight line C = wt will rotate anti-clockwise about the origin, so
the optimal t∗ will decrease.

 C � wt  R � (p 0 � p (t))x 0
π

tt*

Figure 1 Optimal search

The General Case

The foregoing can be extended to any number of variables. The proof of the following result
is a direct extension of the argument we gave for (1), so is left to the reader. Assuming that
∂F/∂z 
= 0, we have

F(x1, . . . , xn, z) = c �⇒ ∂z

∂xi

= −∂F/∂xi

∂F/∂z
, i = 1, 2, . . . , n (2)

P R O B L E M S F O R S E C T I O N 1 2 . 4

1. Use formula (1) to find ∂z/∂x for the following:

(a) 3x + y − z = 0 (b) xyz + xz3 − xy2z5 = 1 (c) exyz = 3xyz

2. Find z′
x , z′

y , and z′′
xy when x3 + y3 + z3 − 3z = 0.

⊂SM⊃3. (a) Assume in Example 2 that f (L) = √
L. Write down equation (∗) in this case and find an

explicit expression for L∗ as a function of P and w. Find the partial derivatives of L∗ w.r.t.
P and w. Then verify the signs obtained in Example 2.

(b) Suppose the profit function is replaced by π(L) = Pf (L) − C(L, w), where C(L, w) is
the cost function. What is the first-order condition for L∗ to be optimal in this case? Find
the partial derivatives of L∗ w.r.t. P and w.

4. The equation xy + yz + zx = k, where k is a positive constant, defines z as a positive-valued
function of x and y, for x > 0 and y > 0. Find the partial derivatives of z w.r.t. x and y.
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5. Replace S = g(P ) in the model of Problem 12.3.6 by S = g(w, P ), where w is an index for
how favourable the weather has been. Assume g′

w(w, P ) > 0. (We are studying the market for
an agricultural crop.) Equilibrium now requires f (R, P ) = g(w, P ). Assume that this equation
defines P implicitly as a differentiable function of R and w. Find an expression for P ′

w , and
comment on its sign.

⊂SM⊃6. (a) The function F is defined for all x and y by F(x, y) = xey−3 + xy2 − 2y. Show that the
point (1, 3) lies on the level curve F(x, y) = 4, and find the equation for the tangent line
to the curve at the point (1, 3).

(b) The Nerlove–Ringstad production function y = y(K, L) is defined implicitly by

y1+c ln y = AKαLβ

where A, α, and β are positive constants. Find the marginal productivities of y w.r.t. both
K (capital) and L (labour)—that is, find ∂y/∂K and ∂y/∂L. (Hint: Take the logarithm of
each side and then differentiate implicitly.)

12.5 Elasticity of Substitution

Economists are often interested in the slope of the tangent to a level curve at a particular
point. Often, the level curve is downwards sloping, but economists prefer a positive answer.
So we change the sign of the slope defined by (12.3.1), and use a special name:

Ryx = F ′
1(x, y)

F ′
2(x, y)

(the marginal rate of substitution of y for x) (1)

The marginal rate of substitution has the standard abbreviation MRS. Note that Ryx =
−y ′ ≈ −�y/�x when we move along the level curve F(x, y) = c. If �x = −1 in
particular, then Ryx ≈ �y. Thus, Ryx is approximately the quantity of y we must substitute
(add) per unit of x removed, if we are to stay on the same level curve.

E X A M P L E 1 Let F(K, L) = 100 be an isoquant for a production function, where K is capital input,
L is labour input, and 100 is the output. Look at Fig. 1. At all the points P , Q, and R, 100
units are used. At P a little capital input and a lot of labour input are used. The slope of the
isoquant at P is approximately −4, so the MRS at P is approximately 4. This means that
for each 4 units of labour that are taken away, adding only one unit of capital will ensure
that output remains at (approximately) 100 units. Provided that units are chosen so that
capital and labour have the same price, at P capital is more “valuable” than labour. At Q

the MRS is approximately 1, so capital and labour are equally “valuable”. Finally, at R, the
MRS is approximately 1/5, so at this point approximately 5 units of capital are required to
compensate for the loss of one unit of labour.
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 F (K, L) � 100

P

Q

R

L

K

 F (x, y) � c

y

y

xx

P

Q

R

Figure 1 What is the MRS at P , Q, and R?
(See Example 1.)

Figure 2 Ryx decreases as we
move from P to R along the curve

Consider a level curve F(x, y) = c for a function F of two variables, as shown in Fig. 2.
The marginal rate of substitution Ryx varies along the curve. At point P , the MRS Ryx is
a large positive number. At Q, the number Ryx is about 1, and at R it is about 0.2. As we
move along the level curve from left to right, Ryx will be strictly decreasing with values in
some positive interval I . For each value of Ryx in I , there is a corresponding point (x, y)

on the level curve F(x, y) = c, and thus a corresponding value of y/x. The fraction y/x is
therefore a function of Ryx , and we define the following:

E L A S T I C I T Y O F S U B S T I T U T I O N

When F(x, y) = c, the elasticity of substitution between y and x is

σyx = ElRyx

(y

x

) (2)

Thus, σyx is the elasticity of the fraction y/x w.r.t. the marginal rate of substitution. Roughly
speaking, σyx is the percentage change in the fraction y/x when we move along the level
curve F(x, y) = c far enough so that Ryx increases by 1%. Note that σyx is symmetric
in x and y. In fact, Rxy = 1/Ryx , and so the logarithmic formula for elasticities implies
that σxy = σyx . Also, Problem 3 asks you to work with a (symmetric) expression for the
elasticity of substitution in terms of the first- and second-order partial derivatives of F .

E X A M P L E 2 Calculate σKL for the Cobb–Douglas function F(K, L) = AKaLb.

Solution: The marginal rate of substitution of K for L is

RKL = F ′
L

F ′
K

= bAKaLb−1

aAKa−1Lb
= b

a

K

L

Thus, K/L = (a/b)RKL. The elasticity of the last expression w.r.t. RKL is 1. Hence,
σKL = 1 for the Cobb–Douglas function.
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E X A M P L E 3 Find the elasticity of substitution for the CES function

F(K, L) = A(aK−� + bL−�)−μ/�

where A, a, b, μ, and � are constants, A > 0, a > 0, b > 0, μ 
= 0, � > −1, and � 
= 0.

Solution: Here

F ′
K = A(−μ/�)(aK−� + bL−�)(−μ/�)−1a(−�)K−�−1

F ′
L = A(−μ/�)(aK−� + bL−�)(−μ/�)−1b(−�)L−�−1

Hence,

RKL = F ′
L

F ′
K

= b

a

L−�−1

K−�−1
= b

a

(
K

L

)�+1

and therefore
K

L
=

(
a

b

)1/(�+1)

(RKL)1/(�+1)

Recalling that the elasticity of Axb w.r.t. x is b, definition (2) implies that

σKL = ElRKL

(
K

L

)
= 1

� + 1

We have thus shown that the function F has constant elasticity of substitution 1/(� + 1).
This, of course, is the reason why F is called the CES function (where CES stands for
“constant elasticity of substitution”).

Note that the elasticity of substitution for the CES function tends to 1 as � → 0, which
is precisely the elasticity of substitution for the Cobb–Douglas function in the previous
example. This accords with the result in Example 7.12.5.

P R O B L E M S F O R S E C T I O N 1 2 . 5

1. Calculate the elasticity of substitution between y and x for F(x, y) = 10x2 + 15y2.

2. (a) Find the marginal rate of substitution of y for x in

F(x, y) = xa + ya (a is a constant, a 
= 0 and a 
= 1)

(b) Calculate the elasticity of substitution between y and x.

⊂SM⊃3. The elasticity of substitution defined in (2) can be expressed in terms of the partial derivatives
of the function F :

σyx = −F ′
1F

′
2(xF ′

1 + yF ′
2)

xy[(F ′
2)

2F ′′
11 − 2F ′

1F
′
2F

′′
12 + (F ′

1)
2F ′′

22]
, F (x, y) = c

Use this formula to derive the result in Example 2.



Essential Math. for Econ. Analysis, 4th edn EME4_C12.TEX, 16 May 2012, 14:24 Page 431

S E C T I O N 1 2 . 6 / H O M O G E N E O U S F U N C T I O N S O F T W O V A R I A B L E S 431

12.6 Homogeneous Functions of Two Variables
If F(K, L) denotes the number of units produced when K units of capital and L units of
labour are used as inputs, economists often ask: What happens to production if we double
the inputs of both capital and labour? Will production rise by more or less than a factor
of 2? To answer such and related questions, we introduce the following new concept of
homogeneity for functions of two variables.

A function f of two variables x and y defined in a domain D is said to be homogeneous
of degree k if, for all (x, y) in D,

f (tx, ty) = tkf (x, y) for all t > 0 (1)

Multiplying both variables by a positive factor t will thus multiply the value of the function
by the factor tk .

The degree of homogeneity of a function can be an arbitrary number—positive, zero, or
negative. Earlier we determined the degree of homogeneity for several particular functions.
For instance, we found in Example 11.1.4 that the Cobb–Douglas function F defined by
F(x, y) = Axayb is homogeneous of degree a + b. Here is an even simpler example:

E X A M P L E 1 Show that f (x, y) = 3x2y − y3 is homogeneous of degree 3.

Solution: If we replace x by tx and y by ty in the formula for f (x, y), we obtain

f (tx, ty) = 3(tx)2(ty) − (ty)3 = 3t2x2ty − t3y3 = t3(3x2y − y3) = t3f (x, y)

Thus f is homogeneous of degree 3. If we let t = 2, then

f (2x, 2y) = 23f (x, y) = 8f (x, y)

After doubling both x and y, the value of this function increases by a factor of 8.

Note that the sum of the exponents in each term of the polynomial in Example 1 is equal
to 3. In general, a polynomial is homogeneous of degree k if and only if the sum of the
exponents in each term is k. Other types of polynomial with different sums of exponents in
different terms, such as f (x, y) = 1 + xy or g(x, y) = x3 + xy, are not homogeneous of
any degree. (See Problem 6.)

Homogeneous functions of two variables have some important properties of interest to
economists. The first is Euler’s theorem, which says that

f (x, y) is homogeneous of degree k ⇐⇒ xf ′
1(x, y) + yf ′

2(x, y) = kf (x, y) (2)

It is easy to demonstrate that when f is homogeneous of degree k, then the right-hand
side of (2) is true. Indeed, differentiating each side of (1) w.r.t. t , using the chain rule to
differentiate the left-hand side, gives

xf ′
1(tx, ty) + yf ′

2(tx, ty) = ktk−1f (x, y)
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Putting t = 1 gives xf ′
1(x, y) + yf ′

2(x, y) = kf (x, y) immediately. Theorem 12.7.1 in the
next section also proves the converse, and considers the case of n variables.

We note three other interesting general properties of functions f (x, y) that are homo-
geneous of degree k:

f ′
1(x, y) and f ′

2(x, y) are both homogeneous of degree k − 1 (3)

f (x, y) = xkf (1, y/x) = ykf (x/y, 1) (for x > 0, y > 0) (4)

x2f ′′
11(x, y) + 2xyf ′′

12(x, y) + y2f ′′
22(x, y) = k(k − 1)f (x, y) (5)

To prove (3), keep t and y constant and differentiate equation (1) partially w.r.t. x. Then
tf ′

1(tx, ty) = tkf ′
1(x, y), so f ′

1(tx, ty) = tk−1f ′
1(x, y), thus showing that f ′

1(x, y) is
homogeneous of degree k − 1. The same argument shows that f ′

2(x, y) is homogeneous
of degree k − 1.

We can prove the two equalities in (4) by replacing t in (1) first by 1/x and then by 1/y,
respectively.

Finally, to show (5) (assuming that f (x, y) is twice continuously differentiable), we
note first that because f ′

1(x, y) and f ′
2(x, y) are both homogeneous of degree k − 1, Euler’s

theorem in (2) can be applied to f ′
1 and f ′

2. It implies that

xf ′′
11(x, y) + yf ′′

12(x, y) = (k − 1)f ′
1(x, y)

xf ′′
21(x, y) + yf ′′

22(x, y) = (k − 1)f ′
2(x, y)

(6)

Let us now multiply the first of these equations by x, the second by y, and then add. Because
f is C2, Young’s theorem implies that f ′′

12 = f ′′
21, so the result is

x2f ′′
11(x, y) + 2xyf ′′

12(x, y) + y2f ′′
22(x, y) = (k − 1)[xf ′

1(x, y) + yf ′
2(x, y)]

By Euler’s theorem, however, xf ′
1(x, y) + yf ′

2(x, y) = kf (x, y). So (5) is verified.

E X A M P L E 2 Check properties (2) to (5) for the function f (x, y) = 3x2y − y3.

Solution: We find that f ′
1(x, y) = 6xy and f ′

2(x, y) = 3x2 − 3y2. Hence,

xf ′
1(x, y) + yf ′

2(x, y) = 6x2y + 3x2y − 3y3 = 3(3x2y − y3) = 3f (x, y)

Example 1 showed that f is homogeneous of degree 3, so this confirms (2).
Obviously f ′

1 and f ′
2 are polynomials that are homogeneous of degree 2, which confirms

(3). As for (4), in this case it takes the form

3x2y − y3 = x3[3(y/x) − (y/x)3] = y3[3(x/y)2 − 1]

Finally, to show (5), first calculate the second-order partial derivatives, f ′′
11(x, y) = 6y,

f ′′
12(x, y) = 6x, and f ′′

22(x, y) = −6y. Hence,

x2f ′′
11(x, y) + 2xyf ′′

12(x, y) + y2f ′′
22(x, y) = 6x2y + 12x2y − 6y3 = 6(3x2y − y3)

= 3 · 2f (x, y)

which confirms (5) as well.



Essential Math. for Econ. Analysis, 4th edn EME4_C12.TEX, 16 May 2012, 14:24 Page 433

S E C T I O N 1 2 . 6 / H O M O G E N E O U S F U N C T I O N S O F T W O V A R I A B L E S 433

E X A M P L E 3 Suppose that the production function Y = F(K, L) is homogeneous of degree 1. Show
that

Y/L = f (K/L), where f (K/L) = F(K/L, 1)

(Thus, when a production function involving capital K and labour L is homogeneous of
degree 1, one can express the output–labour ratio Y/L as a function of the capital–labour ratio
K/L.) Find the form of f when F is the Cobb–Douglas function AKaLb with a + b = 1.

Solution: Because F is homogeneous of degree 1,

Y = F(K, L) = F(L(K/L), L · 1) = LF(K/L, 1) = Lf (K/L)

(Really, this is just a special case of (4).) When F(K, L) = AKaL1−a , then f (K/L) =
F(K/L, 1) = A(K/L)a . With k = K/L, we have f (k) = Aka .

Geometric Aspects of Homogeneous Functions

Homogeneous functions in two variables have some interesting geometric properties. Let
f (x, y) be homogeneous of degree k. Consider a ray in the xy-plane from the origin (0, 0)

through the point (x0, y0) 
= (0, 0). An arbitrary point on this ray is of the form (tx0, ty0)

for some positive number t . If we let f (x0, y0) = c, then f (tx0, ty0) = tkf (x0, y0) = tkc.
Above any ray in the xy-plane through a point (x0, y0), the relevant portion of the graph
of f therefore consists of the curve z = tkc, where t measures the distance along the ray
from the origin, and c = f (x0, y0). A function that is homogeneous of degree k is therefore
completely determined if its value is known at one point on each ray through the origin.
(See Fig 1.)

In particular, let k = 1 so that f (x, y) is homogeneous of degree 1. The curve z = tkc

lying vertically above each relevant ray through the origin is then the straight line z = tc.
Because of this, it is often said that the graph of a homogeneous function of degree 1 is
generated by straight lines through the origin. Fig. 2 illustrates this.

(x0 , y0) (tx0 , ty0)

z

y

x

c
tkc

z � f (x, y)

z

y

x

Figure 1 Figure 2 f is homogeneous of degree 1

We have seen how, for a function f (x, y) of two variables, it is often convenient to consider
its level curves in the xy-plane instead of its 3-dimensional graph. What can we say about
the level curves of a homogeneous function? It turns out that for a homogeneous function,
even if only one of its level curves is known, then so are all its other level curves. To see
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this, consider a function f (x, y) that is homogeneous of degree k, and let f (x, y) = c

be one of its level curves, as illustrated in Fig. 3. We now explain how to construct the
level curve through an arbitrary point A not lying on f (x, y) = c: First, draw the ray
through the origin and the point A. This ray intersects the level curve f (x, y) = c at a
point D with coordinates (x1, y1). The coordinates of A will then be of the form (tx1, ty1)

for some value of t . (In the figure, t ≈ 1.7.) In order to construct a new point on the
same level curve as A, draw a new ray through the origin. This ray intersects the original
level curve f (x, y) = c at (x2, y2). Now use the value of t found earlier to determine the
new point B with coordinates (tx2, ty2). This new point B is on the same level curve as A

because f (tx2, ty2) = tkf (x2, y2) = tkc = tkf (x1, y1) = f (tx1, ty1). By repeating this
construction for different rays through the origin that intersect the level curve f (x, y) = c,
we can find as many points as we wish on the new level curve f (x, y) = f (tx1, ty1).

 f (x, y) � c

C

D

A

B

y

x

(x2 , y2)

(x1 , y1)

(tx2 , ty2)

(tx1 , ty1)

Figure 3 Level curves for a homogeneous function

The foregoing argument shows that a homogeneous function f (x, y) is entirely deter-
mined by any one of its level curves and by its degree of homogeneity. The shape of each
level curve of a homogeneous function is often determined by specifying its elasticity of
substitution, as defined in (12.5.2).

Another point worth noticing in connection with Fig. 3 is that the tangents to the level
curves along each ray are parallel. We keep the assumption that f is homogeneous of
degree k. If the level curve is f (x, y) = c, its slope is −f ′

1(x, y)/f ′
2(x, y). At the point A

in Fig. 3 the slope is

−f ′
1(tx1, ty1)

f ′
2(tx1, ty1)

= − tk−1f ′
1(x1, y1)

tk−1f ′
2(x1, y1)

= −f ′
1(x1, y1)

f ′
2(x1, y1)

(∗)

where we have used equation (3), expressing the fact that the partial derivatives of f are
homogeneous of degree k−1. The equalities in (∗) state that the two level curves through A

and D have the same slopes at those points. It follows that, at every point along a ray from
the origin the slope of the corresponding level curve will be the same. Stated differently,
after removing the minus signs, (∗) shows that the marginal rate of substitution of y for x

is a homogeneous function of degree 0.
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P R O B L E M S F O R S E C T I O N 1 2 . 6

1. Show that f (x, y) = x4 + x2y2 is homogeneous of degree 4 by using (1).

2. Find the degree of homogeneity of x(p, r) = Ap−1.5r2.08.

⊂SM⊃3. Show that f (x, y) = xy2 + x3 is homogeneous of degree 3. Verify that the four properties (2)
to (5) all hold.

4. See whether the function f (x, y) = xy/(x2 + y2) is homogeneous, and check Euler’s theorem.

5. Prove the CES function F(K, L) = A(aK−� + bL−�)−1/� is homogeneous of degree one.
Express F(K, L)/L as a function of k = K/L. (See Example 3.)

6. Show that f (x, y) = x3 + xy is not homogeneous of any degree. (Hint: Let x = y = 1. Apply
(1) with t = 2 and t = 4 to get a contradiction.)

7. Use the equations (6) with k = 1 to show that if f (x, y) is homogeneous of degree 1 for x > 0
and y > 0, then f ′′

11(x, y)f ′′
22(x, y) − [f ′′

12(x, y)]2 ≡ 0.

8. If f (x, y) is homogeneous of degree 2 with f ′
1(2, 3) = 4 and f ′

2(4, 6) = 12, find f (6, 9).

HARDER PROBLEM

⊂SM⊃9. Prove that if F(x, y) is homogeneous of degree 1, then the elasticity of substitution can be
expressed as σyx = F ′

1F
′
2/FF ′′

12. (Hint: Use Euler’s theorem (2), together with (6) and the
result in Problem 12.5.3.)

12.7 Homogeneous and Homothetic Functions
Suppose that f is a function of n variables defined in a domain D. Suppose also that
whenever (x1, x2, . . . , xn) ∈ D and t > 0, the point (tx1, tx2, . . . , txn) also lies in D. (A
set D with this property is called a cone.) We say that f is homogeneous of degree k on
D if

f (tx1, tx2, . . . , txn) = tkf (x1, x2, . . . , xn) for all t > 0 (1)

The constant k can be any number—positive, zero, or negative.

E X A M P L E 1 Test the homogeneity of f (x1, x2, x3) = x1 + 2x2 + 3x3

x2
1 + x2

2 + x2
3

.

Solution: Here f is defined on the set D of all points in three-dimensional space excluding
the origin. This set is a cone. Also,

f (tx1, tx2, tx3) = tx1 + 2tx2 + 3tx3

(tx1)2 + (tx2)2 + (tx3)2
= t (x1 + 2x2 + 3x3)

t2(x2
1 + x2

2 + x2
3 )

= t−1f (x1, x2, x3)

Hence, f is homogeneous of degree −1.
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Euler’s theorem can be generalized to functions of n variables:

T H E O R E M 1 2 . 7 . 1 ( E U L E R ’ S T H E O R E M )

Suppose f is a differentiable function of n variables in an open domain D, where
x = (x1, x2, . . . , xn) ∈ D and t > 0 imply tx ∈ D. Then f is homogeneous of
degree k in D if and only if the following equation holds for all x in D:

n∑
i=1

xif
′
i (x) = kf (x) (2)

Proof: Suppose f is homogeneous of degree k, so (1) holds. Differentiating this equa-
tion w.r.t. t (with x fixed) yields

∑n
i=1 xif

′
i (tx) = ktk−1f (x). Setting t = 1 gives (2)

immediately.

To prove the converse, assume that (2) is valid for all x in D. Keep x fixed and define the function
g for all t > 0 by g(t) = t−kf (tx) − f (x). Then differentiating w.r.t. t gives

g′(t) = −kt−k−1f (tx) + t−k

n∑
i=1

xif
′
i (tx) (∗)

Because tx lies in D, equation (2) must also be valid when each xi is replaced by txi . Therefore, we
get

∑n
i=1(txi)f

′
i (tx) = kf (tx). Applying this to the last term of (∗) implies that, for all t > 0, one

has g′(t) = −kt−k−1f (tx)+ t−k−1kf (tx) = 0. It follows that g(t) must be a constant C. Obviously,
g(1) = 0, so C = 0, implying that g(t) ≡ 0. According to the definition of g, this proves that
f (tx) = tkf (x). Thus, f is indeed homogeneous of degree k.

An interesting version of the Euler equation (2) is obtained by dividing each term of the
equation by f (x), provided this number is not 0. Recalling the definition of the partial
elasticity (Eli f (x) = (xi/f (x))f ′

i (x)), we have

El1 f (x) + El2 f (x) + · · · + Eln f (x) = k (3)

Thus, the sum of the partial elasticities of a function of n variables that is homogeneous of
degree k must be equal to k.

The results in (3) to (5) in the previous section can also be generalized to functions of
n variables. The proofs are similar, so they can be left to the interested reader. We simply
state the general versions of (3) and (5):

If f (x) is homogeneous of degree k, then:

f ′
i (x) is homogeneous of degree k − 1, i = 1, 2, . . . , n (4)

n∑
i=1

n∑
j=1

xixjf
′′
ij (x) = k(k − 1)f (x) (5)



Essential Math. for Econ. Analysis, 4th edn EME4_C12.TEX, 16 May 2012, 14:24 Page 437

S E C T I O N 1 2 . 7 / H O M O G E N E O U S A N D H O M O T H E T I C F U N C T I O N S 437

Economic Applications
Let us consider some typical examples of homogeneous functions in economics.

E X A M P L E 2 Let f (v) = f (v1, . . . , vn) denote the output of a production process when the input
quantities are v1, . . . , vn. It is often assumed that if all the input quantities are scaled by a
factor t , then t times as much output as before is produced, so that

f (tv) = tf (v) for all t > 0 (∗)

This implies that f is homogeneous of degree 1. Production functions with this property
are said to exhibit constant returns to scale.

For any fixed input vector v, consider the function ϕ(t) = f (tv)/t . This indicates the
average returns to scale—i.e. the average output per unit input when all inputs are rescaled
together. For example when t = 2, all inputs are doubled. When t = 3

4 , all inputs are
reduced proportionally by 1

4 .
Now, when (∗) holds, then ϕ(t) = f (v), independent of t . Also, a production function

that is homogeneous of degree k < 1 has decreasing returns to scale because ϕ(t) =
tk−1f (v) and so ϕ′(t) < 0. On the other hand, a production function has increasing returns
to scale if k > 1 because then ϕ′(t) > 0.

E X A M P L E 3 The general Cobb–Douglas function F(v1, . . . , vn) = Av
a1
1 · · · van

n is often used as an
example of a production function. Prove that it is homogeneous, and examine when it has
constant/decreasing/increasing returns to scale. Also show that formula (3) is confirmed.

Solution: Here

F(tv) = A(tv1)
a1 . . . (tvn)

an = Ata1v
a1
1 . . . tanvan

n = ta1+···+anF (v)

So F is homogeneous of degree a1 +· · ·+an. Thus it has constant, decreasing, or increasing
returns to scale according as a1 + · · · + an is = 1, < 1, or > 1. Because Eli F = ai ,
i = 1, . . . , n, we get

∑n
i=1 Eli F = ∑n

i=1 ai , which confirms (3) in this case.

E X A M P L E 4 Consider a market with three commodities with quantities denoted by x, y, and z, whose
prices per unit are respectively p, q, and r . Suppose that the demand for one of the com-
modities by a consumer with income m is given by D(p, q, r, m). Suppose that the three
prices and income m are all multiplied by some t > 0. (Imagine, for example, that the prices
of all commodities rise by 10%. Or that all prices and incomes have been converted into
euros from, say, German marks.) Then the consumer’s budget constraint px +qy + rz ≤ m

becomes tpx + tqy + trz ≤ tm, which is exactly the same constraint. The multiplicative
constant t is irrelevant to the consumer. It is therefore natural to assume that the consumer’s
demand remains unchanged, with

D(tp, tq, tr, tm) = D(p, q, r, m)

Requiring this equation to be valid for all t > 0 means that the demand function D is
homogeneous of degree 0. In this case, it is often said that demand is not influenced by
“money illusion”; a consumer with 10% more money to spend should realize that nothing
has really changed if all prices have also risen by 10%.
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As a specific example of a function that is common in demand analysis, consider

D(p, q, r, m) = mpb

pb+1 + qb+1 + rb+1
(b is a constant)

Here

D(tp, tq, tr, tm) = (tm)(tp)b

(tp)b+1 + (tq)b+1 + (tr)b+1
= D(p, q, r, m)

since t cancels out. So the function is homogeneous of degree 0.

Sometimes we encounter nonhomogeneous functions of several variables that are, however,
homogeneous when regarded as functions of some of the variables only, with the other
variables fixed. For instance, the (minimum) cost of producing y units of a single output is
often expressed as a function C(w, y) of y and the vector w = (w1, . . . , wn) of prices of n

different input factors. Then, if all input prices double, one expects cost to double. So econo-
mists usually assume that C(tw, y) = tC(w, y) for all t > 0—i.e. that the cost function is
homogeneous of degree 1 in w (for each fixed y). See Problem 6 for a prominent example.

Homothetic Functions
Let f be a function of n variables x = (x1, . . . , xn) defined in a cone K . Then f is called
homothetic provided that

x, y ∈ K, f (x) = f (y), t > 0 �⇒ f (tx) = f (ty) (6)

For instance, if f is some consumer’s utility function, (6) requires that whenever there is
indifference between the two commodity bundles x and y, then there is also indifference
after they have both been magnified or shrunk by the same proportion. (If this consumer is
indifferent between 2 litres of soda and 3 litres of juice, she is also indifferent between 4
litres of soda and 6 litres of juice.)

A homogeneous function f of any degree k is homothetic. In fact, it is easy to prove a
more general result.

H strictly increasing and

f is homogeneous of degree k
�⇒ F(x) = H(f (x)) is homothetic (7)

Indeed, suppose that F(x) = F(y), or equivalently, that H(f (x)) = H(f (y)). Because H

is strictly increasing, this implies that f (x) = f (y). Because f is homogeneous of degree k,
it follows that if t > 0, then

F(tx) = H(f (tx)) = H(tkf (x)) = H(tkf (y)) = H(f (ty)) = F(ty)

This proves that F(x) is homothetic. Hence, any strictly increasing function of a homo-
geneous function is homothetic. It is actually quite common to take this property as the
definition of a homothetic function, usually with k = 1.2

2 Suppose that F(x) is any continuous homothetic function defined on the cone K of vectors x
satisfying xi ≥ 0, i = 1, . . . , n. Suppose too that F(tx0) is a strictly increasing function of t for
each fixed x0 
= 0 in K . Then one can prove that there exists a strictly increasing function H such
that F(x) = H(f (x)), where the function f (x) is homogeneous of degree 1.
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The next example shows that not all homothetic functions are homogeneous.

E X A M P L E 5 Show that the function F(x, y) = xy + 1, which is obviously not homogeneous, is
nevertheless homothetic.

Solution: Define H(u) = u+1. Then H is strictly increasing. The function f (x, y) = xy

is homogeneous of degree 2, and F(x, y) = xy + 1 = H(f (x, y)). According to (7), F is
homothetic. (You can also use definition (6) to show directly that F is homothetic.)

Suppose that F(x) = F(x1, x2, . . . , xn) is a differentiable production function, defined for
all (x1, . . . , xn) satisfying xi ≥ 0, i = 1, . . . , n. The marginal rate of substitution of
factor j for factor i is defined by

hji(x) = ∂F (x)

∂xi

/
∂F (x)

∂xj

, i, j = 1, 2, . . . , n (8)

We claim that if F is a strictly increasing transformation of a homogeneous function (as
in (7)), these marginal rates of substitution are homogeneous of degree 0.3 To prove this,
suppose that F(x) = H(f (x)), where H is strictly increasing and f (x) is homogeneous of
degree k. Then ∂F (x)/∂xi = H ′(f (x))(∂f (x)/∂xi), implying that

∂F (x)

∂xi

/
∂F (x)

∂xj

= ∂f (x)

∂xi

/
∂f (x)

∂xj

, i, j = 1, 2, . . . , n

because the factor H ′ can be cancelled. But f is homogeneous of degree k, so we can use
(4) to show that, for all t > 0,

hji(tx) = ∂f (tx)

∂xi

/
∂f (tx)

∂xj

= tk−1 ∂f (x)

∂xi

/
tk−1 ∂f (x)

∂xj

= hji(x), i, j = 1, 2, . . . , n (9)

Formula (9) shows precisely that the marginal rates of substitution are homogeneous of
degree 0. This generalizes the result for two variables mentioned at the end of Section 12.6.

P R O B L E M S F O R S E C T I O N 1 2 . 7

⊂SM⊃1. Examine which of the following functions are homogeneous, and find the degree of homogeneity
for those that are:

(a) f (x, y, z) = 3x + 4y − 3z (b) g(x, y, z) = 3x + 4y − 2z − 2

(c) h(x, y, z) =
√

x + √
y + √

z

x + y + z
(d) G(x, y) = √

xy ln
x2 + y2

xy

(e) H(x, y) = ln x + ln y (f) p(x1, . . . , xn) = ∑n
i=1 xn

i

⊂SM⊃2. Examine the homogeneity of the following functions:

(a) f (x1, x2, x3) = (x1x2x3)
2

x4
1 + x4

2 + x4
3

(
1

x1
+ 1

x2
+ 1

x3

)

(b) x(v1, v2, . . . , vn) = A
(
δ1v

−�

1 + δ2v
−�

2 + · · · + δnv
−�
n

)−μ/�
(The CES function.)

3 Because of footnote 2, the same must be true if F is any homothetic function with the property
that F(tx) is an increasing function of the scalar t for each fixed vector x.
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3. Examine the homogeneity of the three means x̄A, x̄G, and x̄H , as defined in Example 11.5.2.

4. D. W. Katzner has considered a utility function u(x) = u(x1, . . . , xn) with continuous partial
derivatives that for some constant a satisfy

n∑
i=1

xi

∂u

∂xi

= a (for all x1 > 0, . . . , xn > 0)

Show that the function v(x) = u(x) − a ln(x1 + · · · + xn) is homogeneous of degree 0. (Hint:
Use Euler’s theorem.)

⊂SM⊃5. Which of the following functions f (x, y) are homothetic?

(a) (xy)2 + 1 (b)
2(xy)2

(xy)2 + 1
(c) x2 + y3 (d) ex2y

HARDER PROBLEMS

6. Suppose that f (x) and g(x) are homogeneous of degree r and s, respectively. Examine whether
the following functions h are homogeneous. Determine the degree of homogeneity in each case.

(a) h(x) = f (xm
1 , xm

2 , . . . , xm
n ) (b) h(x) = (g(x))p (c) h = f + g

(d) h = fg (e) h = f/g

⊂SM⊃7. The translog cost function C(w, y), where w is the vector of factor prices and y is the level of
output, is defined implicitly by

ln C(w, y) = a0 + c1 ln y +
n∑

i=1

ai ln wi + 1

2

n∑
i,j=1

aij ln wi ln wj + ln y

n∑
i=1

bi ln wi

Prove that this translog (short for “transcendental logarithmic”) function is homogeneous of
degree 1 in w, for each fixed y, provided that all the following conditions are met:

∑n
i=1 ai = 1;∑n

i=1 bi = 0;
∑n

j=1 aij = 0 for all i; and
∑n

i=1 aij = 0 for all j .

12.8 Linear Approximations
Section 7.4 discussed the linear approximation f (x) ≈ f (a) + f ′(a)(x − a) for a function
of one variable. We will find a similar approximation for functions f of two variables.

For fixed values of x0, y0, x, and y, define the function g(t) by

g(t) = f (x0 + t (x − x0), y0 + t (y − y0))

We see that g(0) = f (x0, y0) and g(1) = f (x, y). Generally, g(t) is the value of f at the
point (x0 + t (x − x0), y0 + t (y − y0)) = ((1 − t)x0 + tx, (1 − t)y0 + ty), which lies on
the line joining (x0, y0) to (x, y). According to the chain rule,

g′(t) = f ′
1(x0+t (x−x0), y0+t (y−y0))(x−x0)+f ′

2(x0+t (x−x0), y0+t (y−y0))(y−y0)



Essential Math. for Econ. Analysis, 4th edn EME4_C12.TEX, 16 May 2012, 14:24 Page 441

S E C T I O N 1 2 . 8 / L I N E A R A P P R O X I M A T I O N S 441

Putting t = 0 and using the approximation g(1) ≈ g(0) + g′(0), we obtain the result:

L I N E A R A P P R O X I M A T I O N

The linear approximation to f (x, y) about (x0, y0) is

f (x, y) ≈ f (x0, y0) + f ′
1(x0, y0)(x − x0) + f ′

2(x0, y0)(y − y0)
(1)

NOTE 1 The usefulness of approximation (1) depends on the size of the error. Taylor’s
formula with remainder, presented for the case of one variable in Section 7.6, is extended
to n variables in FMEA. One implication of the extended formula is that, as x → x0 and
y → y0, so approximation (1) will get better, in the sense that the error will tend to 0.

E X A M P L E 1 Find the linear approximation to f (x, y) = ex+y(xy − 1) about (0, 0).

Solution: Here f (0, 0) = −1, f ′
1(x, y) = ex+y(xy−1)+ex+yy and f ′

2(x, y) = ex+y(xy−
1) + ex+yx. So f ′

1(0, 0) = −1 and f ′
2(0, 0) = −1. Hence, (1) gives

ex+y(xy − 1) ≈ −1 − x − y

For x and y close to 0, the complicated function z = ex+y(xy − 1) is approximated by the
simple linear function z = −1 − x − y.

Formula (1) can be used to find approximate numerical values of a function near any point
where the function and its derivatives are easily evaluated. Consider the following example.

E X A M P L E 2 Let f (x, y) = xy3 −2x3. Then f (2, 3) = 38. Using (1), find an approximate numerical
value for f (2.01, 2.98).

Solution: Here f ′
1(x, y) = y3 − 6x2 and f ′

2(x, y) = 3xy2, so f ′
1(2, 3) = 3 and f ′

2(2, 3) =
54. Putting x0 = 2, y0 = 3, x = 2 + 0.01, and y = 3 − 0.02, we obtain

f (2.01, 2.98) ≈ f (2, 3)+f ′
1(2, 3) ·0.01+f ′

2(2, 3) · (−0.02) = 38+3(0.01)+54(−0.02)

which equals 36.95. The exact value is f (2.01, 2.98) = 36.95061792. The error in the
approximation is therefore a bit greater than −0.0006.

The linear approximation in (1) can be generalized to functions of several variables. (See
Problem 8.)

L I N E A R A P P R O X I M A T I O N

The linear approximation to z = f (x) = f (x1, . . . , xn) about x0 = (x0
1 , . . . , x0

n)

is given by

f (x) ≈ f (x0) + f ′
1(x

0)(x1 − x0
1 ) + · · · + f ′

n(x
0)(xn − x0

n)

(2)
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Tangent Planes

In (1) the function f (x, y) is approximated by the linear function

z = f (x0, y0) + f ′
1(x0, y0)(x − x0) + f ′

2(x0, y0)(y − y0)

The graph of this linear function is a plane which passes through the point P = (x0, y0, z0),
with z0 = f (x0, y0), on the graph of z = f (x, y). This plane is called the tangent plane
to z = f (x, y) at P :

T A N G E N T P L A N E

At the point (x0, y0, z0) with z0 = f (x0, y0), the tangent plane to the graph of
z = f (x, y) has the equation

z − z0 = f ′
1(x0, y0)(x − x0) + f ′

2(x0, y0)(y − y0)

(3)

The tangent plane is illustrated in Fig. 1.

z � f (x, y)

Tangent plane

P

(x0 , y0)

z

y

x

Figure 1 The graph of z = f (x, y) and the tangent plane at P

Does it deserve its name? Look back at Fig. 11.3.9, where lx and ly are the tangents at P to the
two curves Kx and Ky that lie on the surface. Since the slope of the line lx is f ′

2(x0, y0), the
points (x, y, z) which lie on lx are characterized by x = x0 and z−z0 = f ′

2(x0, y0)(y −y0).
But we see from (3) that these points also lie in the tangent plane. In the same way we see
that the line ly also lies in the tangent plane. Because the plane which is the graph of (3) is
the only one that contains both tangent lines lx and ly , it makes good sense to use the term
“tangent plane”.

E X A M P L E 3 Find the tangent plane at P = (x0, y0, z0) = (1, 1, 5) to the graph of

f (x, y) = x2 + 2xy + 2y2
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Solution: Because f (1, 1) = 5, P lies on the graph of f . We find that f ′
1(x, y) = 2x +2y

and f ′
2(x, y) = 2x + 4y. Hence, f ′

1(1, 1) = 4 and f ′
2(1, 1) = 6. Thus, (3) yields

z − 5 = 4(x − 1) + 6(y − 1) or z = 4x + 6y − 5

P R O B L E M S F O R S E C T I O N 1 2 . 8

1. Find the linear approximation about (0, 0) for the following:

(a) f (x, y) = (x + 1)5(y + 1)6 (b) f (x, y) = √
1 + x + y (c) f (x, y) = ex ln(1 + y)

2. Find the linear approximation about (x0, y0) for f (x, y) = Axayb.

3. Suppose that g∗(μ, ε) = [(1 + μ)(1 + ε)α]1/(1−β) − 1, with α and β as constants. Show that if
μ and ε are close to 0, then

g∗(μ, ε) ≈ 1

1 − β
μ + α

1 − β
ε

4. Let f (x, y) = 3x2y + 2y3. Then f (1, −1) = −5. Use the approximation (1) to estimate the
value of f (0.98, −1.01). How large is the error caused by this approximation?

5. (a) With f (x, y) = 3x2 + xy − y2, compute f (1.02, 1.99) exactly.

(b) Let f (1.02, 1.99) = f (1 + 0.02, 2 − 0.01) and use (1) to find an approximate numerical
value for f (1.02, 1.99). How large is the error?

6. Suppose you have been told that a differentiable function v of two variables satisfies v(1, 0) =
−1, v′

1(1, 0) = −4/3, and v′
2(1, 0) = 1/3. Find an approximate value for v(1.01, 0.02)

⊂SM⊃7. Find the tangent planes to the following surfaces at the indicated points:

(a) z = x2 + y2 at (1, 2, 5) (b) z = (y − x2)(y − 2x2) at (1, 3, 2)

HARDER PROBLEMS

⊂SM⊃8. Define
g(t) = f (x0

1 + t (x1 − x0
1 ), . . . , x0

n + t (xn − x0
n))

Use the approximation g(1) ≈ g(0) + g′(0) to derive (2).

9. Let f (x, y) be any differentiable function. Prove that f is homogeneous of degree 1 if and only
if the tangent plane at any point on its graph passes through the origin.
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12.9 Differentials
Suppose that z = f (x, y) is a differentiable function of two variables. Let dx and dy

denote arbitrary real numbers (not necessarily small). Then we define the differential of
z = f (x, y) at (x, y), denoted by dz or df , so that

z = f (x, y) �⇒ dz = f ′
1(x, y) dx + f ′

2(x, y) dy (1)

When x is changed to x + dx and y is changed to y + dy, then the actual change in the
value of the function is the increment

�z = f (x + dx, y + dy) − f (x, y)

If dx and dy are small in absolute value, then �z can be approximated by dz:

�z ≈ dz = f ′
1(x, y) dx + f ′

2(x, y) dy (when |dx| and |dy| are small) (2)

The approximation in (2) follows from (1) in the previous section. We first replace x −x0 by
dx and y −y0 by dy, and thus x by x0 +dx and y by y0 +dy. Finally, in the formula which
emerges, replace x0 by x and y0 by y. The approximation (2) can be given a geometric
interpretation, as illustrated in Fig. 1. The error that arises from replacing �z by dz results
from “following the tangent plane” from P to the point S, rather than “following the graph”
to the point R.

z � f (x, y)

Δz

Q � (x � dx, y � dy)

dz
P

R

S

(x, y)

z

x

y

Figure 1 The geometric interpretation of �z and the differential dz

Here is an analytical argument. By definition, the tangent plane at P = (x, y, f (x, y)) is
the set of points (X, Y, Z) satisfying the linear equation

Z − f (x, y) = f ′
1(x, y)(X − x) + f ′

2(x, y)(Y − y)

Letting X = x + dx and Y = y + dy, we obtain

Z = f (x, y) + f ′
1(x, y) dx + f ′

2(x, y) dy = f (x, y) + dz

The length of the line segment QS in the figure is therefore f (x, y) + dz.



Essential Math. for Econ. Analysis, 4th edn EME4_C12.TEX, 16 May 2012, 14:24 Page 445

S E C T I O N 1 2 . 9 / D I F F E R E N T I A L S 445

NOTE 1 In the literature on mathematics for economists, a common definition of the differential
dz = f ′

1(x, y) dx + f ′
2(x, y) dy requires that dx and dy be “infinitesimals”, or “infinitely small”.

In this case, it is often claimed, �z becomes equal to dz. Imprecise ideas of this sort have caused
confusion over the centuries since Leibniz first introduced them, and they have largely been abandoned
in mathematics. However, in nonstandard analysis, a respectable branch of modern mathematics, a
modified version of Leibniz’s ideas about infinitesimals can be made precise. There have even been
some interesting applications of nonstandard analysis to theoretical economics.

E X A M P L E 1 Let z = f (x, y) = xy. Then

�z = f (x + dx, y + dy) − f (x, y) = (x + dx)(y + dy) − xy = y dx + x dy + dx dy

In this case dz = f ′
1(x, y) dx + f ′

2(x, y) dy = y dx + x dy, so �z − dz = dx dy. The
error term is dx dy, and the approximation is illustrated in Fig. 2. If dx and dy are very
small—for example, about 10−3—then the error term dx dy is “very, very small”—about
10−6 in this example.

x

y xy

dy xdy

dx

dxdy

ydx

Figure 2 The difference �z − dz = dx dy

E X A M P L E 2 Let Y = F(K, L) be a production function with K and L as capital and labour inputs,
respectively. Then F ′

K and F ′
L are the marginal products of capital and labour. If dK and

dL are arbitrary increments in K and L, respectively, the differential of Y = F(K, L) is

dY = F ′
K dK + F ′

L dL

The increment �Y = F(K + dK, L + dL) − F(K, L) in Y can be approximated by dY

provided dK and dL are small in absolute value, and so

�Y = F(K + dK, L + dL) − F(K, L) ≈ F ′
K dK + F ′

L dL

NOTE 2 If z = f (x, y), we can always find the differential dz = df by first finding the
partial derivatives f ′

1(x, y) and f ′
2(x, y), and then using the definition of dz. Conversely,

once we know the differential of a function f of two variables, then we have the partial
derivatives: Suppose that dz = A dx + B dy for all dx and dy. By definition, dz =
f ′

1(x, y) dx+f ′
2(x, y) dy for all dx and dy. Putting dx = 1 and dy = 0 yields A = f ′

1(x, y).
In the same way, putting dx = 0 and dy = 1 yields B = f ′

2(x, y). So

dz = A dx + B dy �⇒ ∂z

∂x
= A and

∂z

∂y
= B (3)
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Rules for Differentials

Section 7.4 developed several rules for working with differentials of functions of one vari-
able. The same rules apply to functions of several variables. Indeed, suppose that f (x, y)

and g(x, y) are differentiable, with differentials df = f ′
1 dx+f ′

2 dy and dg = g′
1 dx+g′

2 dy,
respectively. If d( ) denotes the differential of whatever is inside the parentheses, then the
following rules are exactly the same as (7.4.4):

d(af + bg) = a df + b dg

d(fg) = g df + f dg

d

(
f

g

)
= g df − f dg

g2
, g 
= 0

(4)

These rules are also quite easy to prove. For example, the formula for d(fg) is proved as
follows (keeping in mind that (fg)(x, y) = f (x, y) · g(x, y)):

d(fg) = ∂

∂x
[f (x, y) · g(x, y)] dx + ∂

∂y
[f (x, y) · g(x, y)] dy

= (f ′
x · g + f · g′

x) dx + (f ′
y · g + f · g′

y) dy

= g(f ′
x dx + f ′

y dy) + f (g′
x dx + g′

y dy) = g df + f dg

There is also a chain rule for differentials. Suppose that z = F(x, y) = g(f (x, y)), where
g is a differentiable function of one variable. Then

dz = F ′
x dx + F ′

y dy = g′(f (x, y))f ′
x dx + g′(f (x, y))f ′

y dy

= g′(f (x, y))(f ′
x dx + f ′

y dy) = g′(f (x, y)) df

because F ′
x = g′f ′

x , F ′
y = g′f ′

y , and df = f ′
x dx + f ′

y dy. Briefly formulated:

z = g(f (x, y)) �⇒ dz = g′(f (x, y)) df (5)

E X A M P L E 3 Find an expression for dz in terms of dx and dy for the following:

(a) z = Axa + Byb (b) z = exu with u = u(x, y) (c) z = ln(x2 + y)

Solution:

(a) dz = A d(xa) + B d(yb) = Aaxa−1 dx + Bbyb−1 dy

(b) dz = exu d(xu) = exu(x du + u dx) = exu{x[u′
1(x, y) dx + u′

2(x, y) dy] + u dx}
= exu{[xu′

1(x, y) + u] dx + xu′
2(x, y) dy}

(c) dz = d ln(x2 + y) = d(x2 + y)

x2 + y
= 2x dx + dy

x2 + y



Essential Math. for Econ. Analysis, 4th edn EME4_C12.TEX, 16 May 2012, 14:24 Page 447

S E C T I O N 1 2 . 9 / D I F F E R E N T I A L S 447

Invariance of the Differential

Suppose that

z = F(x, y), x = f (t, s), y = g(t, s)

where F , f , and g are all differentiable functions. Thus, z is a composite function of t and
s together. Suppose that t and s are changed by dt and ds, respectively. The differential of
z is then

dz = z′
t dt + z′

s ds

Using the expressions for z′
t and z′

s obtained from the chain rule (12.2.1), we find that

dz = [F ′
1(x, y)x ′

t + F ′
2(x, y)y ′

t ] dt + [F ′
1(x, y)x ′

s + F ′
2(x, y)y ′

s] ds

= F ′
1(x, y)(x ′

t dt + x ′
s ds) + F ′

2(x, y)(y ′
t dt + y ′

s ds)

= F ′
1(x, y) dx + F ′

2(x, y) dy

where dx and dy denote the differentials of x = f (t, s) and y = g(t, s), respectively, as
functions of t and s.

Note especially that the final expression for dz is precisely the definition of the differential
of z = F(x, y) when x and y are changed by dx and dy, respectively. Thus, the differential
of z has the same form whether x and y are free variables, or depend on other variables t

and s. This property is referred to as the invariance of the differential.

The Differential of a Function of n Variables

The differential of a function z = f (x1, x2, . . . , xn) of n variables is defined in the obvious
way as

dz = df = f ′
1 dx1 + f ′

2 dx2 + · · · + f ′
n dxn (6)

If the absolute values of dx1,. . . , dxn are all small, then again �z ≈ dz, where �z is the
actual increment of z when (x1, . . . , xn) is changed to (x1 + dx1, . . . , xn + dxn).

The rules for differentials in (4) are valid for functions of n variables, and there is also a
general rule for invariance of the differential: The differential of z = F(x1, . . . , xn) has the
same form whether x1, . . . , xn are free variables, or depend on other basic variables. The
proofs are easy extensions of those for two variables.

P R O B L E M S F O R S E C T I O N 1 2 . 9

1. Determine the differential of z = xy2 + x3 by:

(a) computing ∂z/∂x and ∂z/∂y and then using the definition of dz.

(b) using the rules in (4).
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2. Calculate the differentials of the following:

(a) z = x3 + y3 (b) z = xey2
(c) z = ln(x2 − y2)

3. Find dz expressed in terms of dx and dy when u = u(x, y) and

(a) z = x2u (b) z = u2 (c) z = ln(xy + yu)

⊂SM⊃4. Find an approximate value for T = [(2.01)2 + (2.99)2 + (6.02)2]1/2 by using the approximation
�T ≈ dT .

5. Find dU expressed in terms of dx and dy when U = U(x, y) satisfies the equation

UeU = x
√

y

6. (a) Differentiate the equation X = ANβe�t , where A, β, and � are constants.

(b) Differentiate the equation X1 = BXEN1−E , where B and E are constants.

7. Calculate the differentials of the following:

(a) U = a1u
2
1 + · · · + anu

2
n (b) U = A(δ1u

−�

1 + · · · + δnu
−�
n )−1/�

where a1, . . . , an, A, δ1, . . . , δn, and � are positive constants.

8. Find dz when
z = Ax

a1
1 x

a2
2 . . . xan

n

where x1 > 0, x2 > 0, . . . , xn > 0, and A, a1, a2, . . . , an are all constants with A positive.
(Hint: First, take the natural logarithm of each side.)

HARDER PROBLEM

9. The differential dz defined in (1) is called the differential of first order. If f has continuous
partial derivatives of second order, we define the differential of second order d2z as the differ-
ential d(dz) of dz = f ′

1(x, y) dx + f ′
2(x, y) dy. This implies that

d2z = d(dz) = f ′′
11(x, y) (dx)2 + 2f ′′

12(x, y) dx dy + f ′′
22(x, y) (dy)2

(a) Calculate d2z for z = xy + y2.

(b) Suppose that x = t and y = t2. Express dz and d2z in terms of dt , for the function in part
(a). Also find d2z/dt2, then show that d2z 
= (d2z/dt2)(dt)2. (This example shows that
there is no invariance property for the second-order differential.)
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12.10 Systems of Equations
Many economic models relate a large number of variables to each other through a system of
simultaneous equations. To keep track of the structure of the model, the concept of degrees
of freedom is very useful.

Let x1, x2, . . . , xn be n variables. If no restrictions are placed on them then, by definition,
there are n degrees of freedom, because all n variables can be freely chosen. If the variables
are required to satisfy one equation of the form f1(x1, x2, . . . , xn) = 0, then the number of
degrees of freedom is usually reduced by 1. Whenever one further “independent” restriction
is introduced, the number of degrees of freedom is again reduced by 1. In general, introdu-
cing m < n independent restrictions on the variables x1, x2, . . . , xn means that they satisfy
a system of m independent equations having the form

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0

. . . . . . . . . . . . . . . . . . . .

fm(x1, x2, . . . , xn) = 0

(1)

Then, provided that m < n, the remaining number of degrees of freedom is n−m. The rule
that emerges from these considerations is rather vague, especially as it is hard to explain
precisely what it means for equations to be “independent”. Nevertheless, the following rule
is much used in economics and statistics:

T H E C O U N T I N G R U L E

To find the number of degrees of freedom for a system of equations, count the
number of variables, n, and the number of “independent” equations, m. In gen-
eral, if n > m, there are n−m degrees of freedom in the system. If n < m, there
is no solution to the system.

(2)

This rule of counting variables and equations is used to justify the following economic prop-
osition: “The number of independent targets the government can pursue cannot possibly
exceed the number of available policy instruments”. For example, if a national govern-
ment seeks simultaneous low inflation, low unemployment, and stability of its currency’s
exchange rate against, say, the US dollar, then it needs at least three independent policy
instruments.

It should be noted that the counting rule is not generally valid. For example, if 100
variables x1, . . . , x100 are restricted to satisfy one equation, the rule says that the number of
degrees of freedom should be 99. However, if the equation happens to be

x2
1 + x2

2 + · · · + x2
100 = 0

then there is only one solution, x1 = x2 = . . . = x100 = 0, so there are no degrees of
freedom. For the equation x2

1 + x2
2 + · · · + x2

100 = −1, even this one solution is lost.
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It is obvious that the word “independent” cannot be dropped from the statement of the
counting rule. For instance, if we just repeat an equation that has appeared before, the
number of degrees of freedom will certainly not be reduced.

The concept of degrees of freedom introduced earlier needs to be generalized.

D E G R E E S O F F R E E D O M F O R A S Y S T E M O F E Q U A T I O N S

A system of equations in n variables is said to have k degrees of freedom if
there is a set of k variables that can be freely chosen, while the remaining n − k

variables are uniquely determined once the k free variables have been assigned
specific values.

(3)

In order for a system to have k degrees of freedom, it suffices that there exist k of the
variables that can be freely chosen. We do not require that any set of k variables can be
chosen freely. If the n variables are restricted to vary within a subset A of �n, we say that
the system has k degrees of freedom in A.

The counting rule claims that if the number of equations is larger than the number of
variables, then the system is, in general, inconsistent—that is, it has no solutions. For
example, the system

f (x, y) = 0, g(x, y) = 0, h(x, y) = 0

with two variables and three equations, is usually inconsistent. Each of the equations rep-
resents a curve in the plane, and any pair of curves will usually have at least one point in
common. But if we add a third equation, the corresponding curve will seldom pass through
any points where the first two curves intersect, so the system is usually inconsistent.

So far, we have discussed the two cases m < n and m > n. What about the case m = n,
in which the number of equations is equal to the number of unknowns? Even in the simplest
case of one equation in one variable, f (x) = 0, such an equation might have any number
of solutions. Consider, for instance, the following three different single equations in one
variable:

x2 + 1 = 0, x − 1 = 0, (x − 1)(x − 2)(x − 3)(x − 4)(x − 5) = 0

These have 0, 1, and 5 solutions, respectively. Those of you who know something about
trigonometric functions will realize that the simple equation sin x = 0 has infinitely many
solutions, namely x = nπ for any integer n.

In general, a system with as many equations as unknowns is usually consistent (that is,
has solutions), but it may have several solutions. Economists, however, ideally like their
models to have a system of equations that produces a unique, economically meaningful
solution, because then the model purports to predict the values of particular economic
variables. Based on the earlier discussion, we can at least formulate the following rough
rule: A system of equations does not, in general, have a unique solution unless there are
exactly as many equations as unknowns.
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E X A M P L E 1 Consider the macroeconomic model described by the system of equations

(i) Y = C + I + G (ii) C = f (Y − T ) (iii) I = h(r) (iv) r = m(M)

where f , h, and m are given functions, Y is national income, C is consumption, I is
investment, G is public expenditure, T is tax revenue, r is the interest rate, and M is the
money supply (or more exactly, the quantity of money in circulation). How many degrees
of freedom are there?

Solution: The number of variables is 7 and the number of equations is 4, so according to
the counting rule there should be 7 − 4 = 3 degrees of freedom. Usually macroeconomists
regard M , T , and G as the exogenous (free) variables. Then the system will in general
determine the endogenous variables Y , C, I , and r as functions of M , T , and G. (For a
further analysis of this model, see Example 12.11.3. For a discussion of exogenous and
endogenous variables, see Section 12.11.)

E X A M P L E 2 Consider the alternative macroeconomic model

(i) Y = C + I + G (ii) C = f (Y − T ) (iii) G = G

whose variables have the same interpretations as in the previous example. Here the level
of public expenditure is a constant, G. Determine the number of degrees of freedom in the
model.

Solution: There are now 5 variables (Y , C, I , G, and T ) and 3 equations. Hence, there are
2 degrees of freedom. For suitable functions f , two of the variables can be freely chosen,
while allowing the remaining variables to be determined once the values of these 2 are fixed.
It is natural to consider I and T as the two free variables. Note that G cannot be chosen as
a free variable in this case because G is completely fixed by equation (iii).

P R O B L E M S F O R S E C T I O N 1 2 . 1 0

1. Use the counting rule to find the number of degrees of freedom for the following systems of
equations:

(a)
xu3 + v = y2

3uv − x = 4
(b)

x2
2 − x3

3 + 2y1 − y3
2 = 1

x3
1 − x2 + y5

1 − y2 = 0
(c)

f (y + z + w) = x3

x2 + y2 + z2 = w2

g(x, y) − z3 = w3

(In (c) assume that f and g are specified functions.)

2. Use the counting rule to find the number of degrees of freedom in the following macroeconomic
model (which is studied further in Problem 12.11.6):

(i) Y = C + I + G (ii) C = F(Y, T , r) (iii) I = f (Y, r)

(The symbols have the same interpretation as in Example 1. We assume that F and f are
specified functions of their respective arguments.)
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3. For each of the following equation systems, determine the number of degrees of freedom (if
any), and discuss whether the counting rule applies:

(a)

3x − y = 2

6x − 2y = 4

9x − 3y = 6

(b)
x − 2y = 3

x − 2y = 4
(c)

x − 2y = 3

2x − 4y = 6

(d) x2
1 + x2

2 + · · · + x2
100 = 1 (e) x2

1 + x2
2 + · · · + x2

100 = −1

12.11 Differentiating Systems of Equations

This section shows how using differentials can be an efficient way to find the partial de-
rivatives of functions defined implicitly by a system of equations. We begin with three
examples.

E X A M P L E 1 Consider the following system of two linear equations in four variables

5u + 5v = 2x − 3y

2u + 4v = 3x − 2y

It has 2 degrees of freedom. In fact, it defines u and v as functions of x and y. Differentiate
the system and then find the differentials du and dv expressed in terms of dx and dy. Derive
the partial derivatives of u and v w.r.t. x and y. Check the results by solving the system
explicitly for u and v.

Solution: For both equations, take the differential of each side and use the rules in Section
12.9. The result is

5 du + 5 dv = 2 dx − 3 dy

2 du + 4 dv = 3 dx − 2 dy

(Note that in a linear system like this, the differentials satisfy the same equations as the
variables.) Solving simultaneously for du and dv in terms of dx and dy yields

du = − 7

10
dx − 1

5
dy, dv = 11

10
dx − 2

5
dy

We read off the following partial derivatives: u′
x = − 7

10 , u′
y = − 1

5 , v′
x = 11

10 , and v′
y = − 2

5 .

Suppose that instead of finding the differential, we solve the given equation system
directly for u and v as functions of x and y. The result is u = − 7

10x− 1
5y and v = 11

10x− 2
5y.

From these expressions we easily confirm the values found for the partial derivatives.
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E X A M P L E 2 Consider the system of nonlinear equations

u2 + v = xy

uv = −x2 + y2
(∗)

(a) What has the counting rule to say about this system?
(b) Find the differentials of u and v expressed in terms of dx and dy. What are the partial

derivatives of u and v w.r.t. x and y?
(c) The point P = (x, y, u, v) = (1, 0, 1, −1) satisfies system (∗). If x = 1 is increased

by 0.01 and y = 0 is increased by 0.02, what is the new value of u, approximately?
(d) Calculate u′′

12 at the point P .

Solution: (a) There are 4 variables and 2 equations, so there should be 2 degrees of
freedom. Suppose we choose fixed values for x and y. Then there are two equations for
determining the two remaining variables, u and v. For example, if x = 1 and y = 0, then (∗)

reduces to u2 = −v and uv = −1, from which we find that u3 = 1, so u = 1 and v = −1.
For other values of x and y, it is more difficult to find solutions for u and v. However, it seems
reasonable to assume that system (∗) defines u = u(x, y) and v = v(x, y) as differentiable
functions of x and y, at least if the domain of the pair (x, y) is suitably restricted.

(b) The left- and right-hand sides of each equation in (∗) must be equal functions of x

and y. So we can equate the differentials of each side to obtain d(u2 + v) = d(xy) and
d(uv) = d(−x2 + y2). Using the rules for differentials, we obtain

2u du + dv = y dx + x dy

v du + u dv = −2x dx + 2y dy

Note that by the invariance property of the differential in Section 12.9, this system is valid
no matter which pair of variables are independent.

We want to solve the system for du and dv. There are two equations in the two unknowns
du and dv of the form

A du + B dv = C

D du + E dv = F

where, for instance, A = 2u, C = y dx + x dy, and so on. Using (2) in Section 2.4, or
standard elimination, provided that v 
= 2u2, we find that

du = 2x + yu

2u2 − v
dx + xu − 2y

2u2 − v
dy, dv = −4xu − yv

2u2 − v
dx + 4uy − xv

2u2 − v
dy

From the first of these two equations, we obtain immediately that

u′
1 = 2x + yu

2u2 − v
, u′

2 = xu − 2y

2u2 − v

Similarly, the partial derivatives of v w.r.t. x and y are the coefficients of dx and dy in the
expression for dv. So we have found all the first-order partial derivatives.
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(c) We use the approximation u(x + dx, y + dy) ≈ u(x, y) + du. Letting x = 1, y = 0,
dx = 0.01, and dy = 0.02, we obtain

u(1 + 0.01, 0 + 0.02) ≈ u(1, 0) + u′
1(1, 0) · 0.01 + u′

2(1, 0) · 0.02

= 1 + 2
3 · 0.01 + 1

3 · 0.02 ≈ 1 + 0.0133 = 1.0133

Note that in this case, it is not easy to find the exact value of u(1.01, 0.02).

(d) We find u′′
12 by using the chain rule as follows:

u′′
12 = ∂

∂y
(u′

1) = ∂

∂y

(
2x + yu

2u2 − v

)
= (yu′

2 + u)(2u2 − v) − (2x + yu)(4uu′
2 − v′

2)

(2u2 − v)2

At the point P where (x, y, u, v) = (1, 0, 1, −1), we obtain u′′
12 = 1/9.

E X A M P L E 3 Consider the following macroeconomic model:

(i) Y = C + I + G (ii) C = f (Y − T ) (iii) I = h(r) (iv) r = m(M)

Here Y is national income, C consumption, I investment, G public expenditure, T tax
revenue, r interest rate, and M money supply. (See Example 12.10.1.) If we assume that
f , h, and m are differentiable functions with 0 < f ′ < 1, h′ < 0, and m′ < 0, then
these equations will determine Y , C, I , and r as differentiable functions of M , T , and
G. Differentiate the system and express the differentials of Y , C, I , and r in terms of the
differentials of M , T , and G. Find ∂Y/∂T and ∂C/∂T , and comment on their signs.

Suppose P0 = (M0, T0, G0, Y0, C0, I0, r0) is an initial equilibrium point for the system.
If the money supply M , tax revenue T , and public expenditure G are all slightly changed
as a result of government policy or central bank intervention, find the approximate changes
in national income Y and in consumption C.

Solution: Taking differentials of the system of four equations yields

dY = dC + dI + dG

dC = f ′(Y − T )(dY − dT )

dI = h′(r) dr

dr = m′(M) dM

(v)

We wish to solve this linear system for the differential changes dY , dC, dI , and dr in
the (endogenous) variables Y , C, I , and r , expressing these differentials in terms of the
differentials of the (exogenous) policy variables dM , dT , and dG.

From the last two equations in (v), we can find dI and dr immediately. In fact

dr = m′(M) dM, dI = h′(r)m′(M) dM (vi)

Inserting the expression for dI from (vi) into the first equation in (v), while also rearranging
the second equation in (v), we obtain the system

dY − dC = h′(r)m′(M) dM + dG

f ′(Y − T ) dY − dC = f ′(Y − T ) dT



Essential Math. for Econ. Analysis, 4th edn EME4_C12.TEX, 16 May 2012, 14:24 Page 455

S E C T I O N 1 2 . 1 1 / D I F F E R E N T I A T I N G S Y S T E M S O F E Q U A T I O N S 455

These are two equations to determine the two unknowns dY and dC. Solving for dY and
dC, using a simplified notation, we get

dY = h′m′

1 − f ′ dM − f ′

1 − f ′ dT + 1

1 − f ′ dG

dC = f ′h′m′

1 − f ′ dM − f ′

1 − f ′ dT + f ′

1 − f ′ dG

(vii)

which expresses the differentials dY , dC, dI , and dr as linear functions of the differentials
dM , dT , and dG. Moreover, the solution is valid because f ′ < 1 by assumption.

From (vii) and (vi), we can at once find the partial derivatives of Y , C, I , and r w.r.t.
M , T , and G. For example, ∂Y/∂T = ∂C/∂T = −f ′/(1 − f ′) and ∂r/∂T = 0. Note that
because 0 < f ′ < 1, we have ∂Y/∂T = ∂C/∂T < 0. Thus, a small increase in the tax
level (keeping M and G constant) decreases national income in this model, but not if the
extra tax revenue is all spent by the government. For if dT = dG = dx (and dM = 0),
then dY = dx and dC = dI = dr = 0.

If dM , dT , and dG are small in absolute value, then

�Y = Y (M0 + dM, T0 + dT , G0 + dG) − Y (M0, T0, G0) ≈ dY

When computing dY , the partial derivatives are evaluated at the equilibrium point P0.

WARNING: Some textbooks recommend that students should express macro models like
the one in the previous example as a matrix equation and then either use Cramer’s rule or
matrix inversion to find the solution. Elimination is vastly simpler and drastically reduces
the risk of making errors.

E X A M P L E 4 Suppose that the two equations

(z + 2w)5 + xy2 = 2z − yw

(1 + z2)3 − z2w = 8x + y5w2
(∗)

define z and w as differentiable functions z = ϕ(x, y) and w = ψ(x, y) of x and y in a
neigbourhood around (x, y, z, w) = (1, 1, 1, 0).

(a) Compute ∂z/∂x, ∂z/∂y, ∂w/∂x, and ∂w/∂y at (1, 1, 1, 0) by finding the differentials
of (∗).

(b) Use the results in (a) to find an approximate values of ϕ(1 + 0.1, 1 + 0.2).

Solution:

(a) Equating the differentials of each side of the two equations (∗), treated as functions of
(x, y), we obtain

5(z + 2w)4(dz + 2 dw) + y2 dx + 2xy dy = 2 dz − w dy − y dw

3(1 + z2)22z dz − 2zw dz − z2 dw = 8 dx + 5y4w2 dy + 2y5w dw
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At the particular point (x, y, z, w) = (1, 1, 1, 0) this system reduces to

(i) 3 dz + 11 dw = −dx − 2 dy (ii) 24 dz − dw = 8 dx

Solving these two equations simultaneously for dz and dw in terms of dx and dy yields

dz = 29
89 dx − 2

267 dy, dw = − 16
89 dx − 16

89 dy

Hence, ∂z/∂x = 29/89, ∂z/∂y = −2/267, ∂w/∂x = −16/89, ∂w/∂y = −16/89.

(b) If x = 1 is increased by dx = 0.1 and y = 1 is increased by dy = 0.2, the associated
change in z = ϕ(x, y) is approximately dz = (29/89) · 0.1 − (2/267) · 0.2 ≈ 0.03.

Hence ϕ(1 + 0.1, 1 + 0.2) ≈ ϕ(1, 1) + dz ≈ 1 + 0.03 = 1.03.

The General Case
When economists deal with systems of equations, notably in comparative static analysis,
the variables are usually divided a priori into two types: endogenous variables, which the
model is intended to determine; exogenous variables, which are supposed to be determined
by “forces” outside the economic model such as government policy, consumers’ tastes, or
technical progress. This classification depends on the model in question. Public expenditure,
for example, is often treated as exogenous in public finance theory, which seeks to understand
how tax changes affect the economy. But it is often endogenous in a “political economy”
model which tries to explain how political variables like public expenditure emerge from
the political system.

Economic models often give rise to a general system of structural equations having
the form

f1(x1, x2, . . . , xn, y1, y2, . . . , ym) = 0

f2(x1, x2, . . . , xn, y1, y2, . . . , ym) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fm(x1, x2, . . . , xn, y1, y2, . . . , ym) = 0

(1)

Here it is assumed that x1, . . . , xn are the exogenous variables, whereas y1, . . . , ym are
the endogenous variables. An “initial equilibrium” or “status quo” solution (x0, y0) =
(x0

1 , . . . , x0
n, y0

1 , . . . , y0
m) is frequently known, or else assumed to exist. This equilibrium

might, for instance, represent a state in which there is equality between current supply and
demand for each good.

Note that if the counting rule applies, then system (1) with m equations in n+m unknowns
has n + m − m = n degrees of freedom. Suppose it defines all the endogenous variables
y1, . . . , ym as C1 functions of x1, . . . , xn in a neighbourhood of (x0, y0). Then the system
can be solved “in principle” for y1, . . . , ym in terms of x1, . . . , xn to give

y1 = ϕ1(x1, . . . , xn), . . . , ym = ϕm(x1, . . . , xn) (2)

In this case, (2) is said to be the reduced form of the structural equation system (1). The
endogenous variables have all been expressed as functions of the exogenous variables. The
form of the functions ϕ1, ϕ2, . . . , ϕm is not necessarily known.

The previous examples showed how we can often find an explicit expression for the
partial derivative of any endogenous variable w.r.t. any exogenous variable. The same type
of argument can be used in the general case, but a detailed discussion is left for FMEA.
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P R O B L E M S F O R S E C T I O N 1 2 . 1 1

1. Differentiate the system
au + bv = cx + dy

eu + f v = gx + hy

with a, b, c, d, e, f , g, and h as constants, af 
= be, and find the partial derivatives of u and v

w.r.t. x and y.

2. (a) Differentiate the following system, and solve for du and dv in terms of dx and dy:

xu3 + v = y2

3uv − x = 4
(∗)

(b) Find u′
x and v′

x by using the results in part (a).

(c) The point (x, y, u, v) = (0, 1, 4/3, 1) satisfies (∗). Find u′
x and v′

x at this point.

⊂SM⊃3. Suppose y1 and y2 are implicitly defined as differentiable functions of x1 and x2 by

f1(x1, x2, y1, y2) = 3x1 + x2
2 − y1 − 3y3

2 = 0

f2(x1, x2, y1, y2) = x3
1 − 2x2 + 2y3

1 − y2 = 0

Find ∂y1/∂x1 and ∂y2/∂x1.

⊂SM⊃4. A version of the “IS–LM” macroeconomic model originally devised by J. R. Hicks leads to the
system of equations

(i) I (r) = S(Y ) (ii) aY + L(r) = M

Herea is a positive parameter, while I , S, andL are given, continuously differentiable functions.4

Suppose that the system defines Y and r implicitly as differentiable functions of a and M . Find
expressions for ∂Y/∂M and ∂r/∂M .

5. Find u′′
xx when u and v are defined as functions of x and y by the equations xy + uv = 1 and

xu + yv = 0.

6. (a) Consider the macroeconomic model

(i) Y = C + I + G (ii) C = F(Y, T , r) (iii) I = f (Y, r)

where F and f are continuously differentiable functions, with F ′
Y > 0, F ′

T < 0, F ′
r < 0,

f ′
Y > 0, f ′

r < 0, and F ′
Y + f ′

Y < 1. Differentiate the system, and express dY in terms of
dT , dG, and dr .

(b) What happens to Y if T increases? Or if T and G undergo equal increases?

7. (a) Determine the number of degrees of freedom in the macroeconomic model

(i) Y = C(Y, r) + I + α (ii) I = F(Y, r) + β (iii) M = L(Y, r)

where Y is national income, r is the interest rate, I is total investments, α is public con-
sumption, β is public investment, and M is the money supply. Here C, F , and L are given
differentiable functions.

4 The first “IS equation” involves the investment function I and savings function S. The second
“LM equation” involves the liquidity preference function L (the demand for money) and the
money supply M . The variable Y denotes national income and r denotes the interest rate.
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(b) Differentiate the system. Put dβ = dM = 0 and find dY , dr , and dI expressed in terms
of dα.

8. A standard macroeconomic model consists of the system of equations

(i) M = αPy + L(r) (ii) S(y, r, g) = I (y, r)

Here M , α, and P are positive constants, whereas L, S, and I are differentiable functions.

(a) By using the counting rule, explain why it is reasonable to assume that the system, in
general, defines y and r as differentiable functions of g.

(b) Differentiate the system and find expressions for dy/dg and dr/dg.

9. (a) The system
u2v − u = x3 + 2y3

eux = vy

defines u and v as differentiable functions of x and y around the point P = (x, y, u, v) =
(0, 1, 2, 1). Find the differentials of u and v expressed in terms of the differentials of x and
y. Find ∂u/∂y and ∂v/∂x at P .

(b) If x increases by 0.1 and y decreases by 0.2 from their values at P , what are the approximate
changes in u and v?

HARDER PROBLEM

10. When there are two goods, consumer demand theory involves the equation system

(i) U ′
1(x1, x2) = λp1 (ii) U ′

2(x1, x2) = λp2 (iii) p1x1 + p2x2 = m

where U(x1, x2) is a given utility function. Suppose that the system defines x1, x2, and λ as
differentiable functions of p1, p2, and m. Find an expression for ∂x1/∂p1.

R E V I E W P R O B L E M S F O R C H A P T E R 1 2

1. In the following cases, find dz/dt by using the chain rule:

(a) z = F(x, y) = 6x + y3, x = 2t2, y = 3t3.

(b) z = F(x, y) = xp + yp, x = at, y = bt

(c) Check the answers by first substituting the expressions for x and y and then differentiating.

2. Let z = G(u, v), u = ϕ(t, s), and v = ψ(s). Find expressions for ∂z/∂t and ∂z/∂s.

3. Find expressions for ∂w/∂t and ∂w/∂s when

w = x2 + y3 + z4, x = t + s, y = t − s, z = st

⊂SM⊃4. Suppose production X depends on the number of workers N according to the formula X =
Ng

(
ϕ(N)/N

)
, where g and ϕ are given differentiable functions. Find expressions for dX/dN

and d2X/dN2.
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5. Suppose that a representative household’s demand for a commodity is a function E(p, m) =
Ap−amb of the price p and income m (where A, a, and b are positive constants).

(a) Suppose that p and m are both differentiable functions of time t . Then demand E is a
function only of t . Find an expression for Ė/E in terms of ṗ/p and ṁ/m.

(b) Put p = p0(1.06)t , m = m0(1.08)t , where p0 is the price and m0 is the income at time
t = 0. Show that in this case Ė/E = ln Q, where Q = (1.08)b/(1.06)a .

6. The equation
x3 ln x + y3 ln y = 2z3 ln z

defines z as a differentiable function of x and y in a neighbourhood of the point (x, y, z) =
(e, e, e). Calculate z′

1(e, e) and z′′
11(e, e).

7. What is the elasticity of substitution between y and x when F(x, y) = x2 − 10y2?

8. Find the marginal rate of substitution (MRS) between y and x when:

(a) U(x, y) = 2x0.4y0.6 (b) U(x, y) = xy + y (c) U(x, y) = 10(x−2 + y−2)−4

9. Find the degree of homogeneity, if any, of the functions:

(a) f (x, y) = 3x3y−4 + 2xy−2 (b) Y (K, L) = (Ka + La)2ceK2/L2

(c) f (x1, x2) = 5x4
1 + 6x1x

3
2 (d) F(x1, x2, x3) = ex1+x2+x3

10. What is the elasticity of substitution between y and x for the function in Problem 8(c)?

⊂SM⊃11. Find the elasticity of y w.r.t. x when y2ex+1/y = 3.

12. Find the degree of homogeneity of the functions:

(a) f (x, y) = xg(y/x), where g is an arbitrary function of one variable.

(b) F(x, y, z) = zkf (x/z, y/z), where f is an arbitrary function of two variables.

(c) G(K, L, M, N) = Ka−b · Lb−c · Mc−d · Nd−a (a, b, c, and d are constants)

13. Suppose the production functionF(K, L)defined forK > 0, L > 0 is homogeneous of degree 1.
If F ′′

KK < 0, so that the marginal productivity of capital is a strictly decreasing function of K ,
prove that F ′′

KL > 0, so that the marginal productivity of capital is strictly increasing as labour
input increases. This is called Wicksell’s law. (Hint: Use (6) in Section 12.6.)

14. Show that no generalization of the concept of a homogeneous function emerges if one replaces
tk in definition (12.7.1) by an arbitrary function g(t). (Hint: Differentiate the new (1) w.r.t. t ,
and let t = 1. Then use Euler’s theorem.)

15. The following system of equations defines u = u(x, y) and v = v(x, y) as differentiable
functions of x and y around the point P = (x, y, u, v) = (1, 1, −1, 0):

u + xey + v = e − 1

x + eu+v2 − y = e−1

Differentiate the system and find the values of u′
x , u′

y , v′
x , and v′

y at that point.
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⊂SM⊃16. (a) An equilibrium model of labour demand and output pricing leads to the following system
of equations:

pF ′(L) − w = 0

pF(L) − wL − B = 0
(∗)

Here F is twice differentiable with F ′(L) > 0 and F ′′(L) < 0. All the variables are
positive. Regard w and B as exogenous, so that p and L are endogenous variables which
are functions of w and B. Find expressions for ∂p/∂w, ∂p/∂B, ∂L/∂w, and ∂L/∂B by
implicit differentiation.

(b) What can be said about the signs of these partial derivatives? Show, in particular, that
∂L/∂w < 0.

17. (a) The following system of equations defines u = u(x, y) and v = v(x, y) as differentiable
functions of x and y around the point P = (x, y, u, v) = (1, 1, 1, 2):

uα + vβ = 2βx + y3

uαvβ − vβ = x − y

where α and β are positive constants. Differentiate the system. Then find ∂u/∂x, ∂u/∂y,
∂v/∂x, and ∂v/∂y at the point P .

(b) For the function u(x, y) in (a), find an approximation to u(0.99, 1.01).

18. A study of the demand for semiconductors involves the integral

S =
∫ T

0
e−rx(eg(T −x) − 1) dx,

where T , r and g are positive constants.

(a) Show that
r(r + g)S = regT + ge−rT − (r + g) (∗)

(b) The equation (∗) defines T as a differentiable function of g, r , and S. Use it to find an
expression for ∂T /∂g.

⊂SM⊃19. (a) Suppose that a vintage car has an appreciating market value given by the function V (t) of
time t . Suppose the maintenance cost of the car per unit of time is constant, at m per year.
Allowing for continuous time discounting at a rate r per year, the present discounted value
from selling the car at time t is P(t) = V (t)e−rt − ∫ t

0 me−rτ dτ . Show that the optimal
choice t∗ of t must satisfy

V ′(t∗) = rV (t∗) + m (∗)

and give (∗) an economic interpretation.

(b) Show that the standard second-order condition for P(t) to have a strict local maximum at
t∗(r, m) reduces to the condition D = V ′′(t∗) − rV ′(t∗) < 0.

(c) Find the partial derivatives ∂t∗/∂r and ∂t∗/∂m, and use the condition derived in the answer
to (b) in order to discuss how an economist would interpret their signs.
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M U L T I V A R I A B L E
O P T I M I Z A T I O N

At first sight it is curious that a subject as pure and

passionless as mathematics can have anything useful to say

about that messy, ill-structured, chancy world in which we live.

Fortunately we find that whenever we comprehend

what was previously mysterious, there is at the centre

of everything order, pattern and common sense.

—B. H. P. Rivett (1978)

Chapter 8 was concerned with optimization problems involving functions of one variable.

Most interesting economic optimization problems, however, require the simultaneous

choice of several variables. For example, a profit-maximizing producer of a single commodity

chooses not only its output level, but also the quantities of many different inputs. A consumer

chooses what quantities of the many different goods to buy.

Most of the mathematical difficulties arise already in the transition from one to two vari-

ables. On the other hand, textbooks in economics often illustrate economic problems by using

functions of only two variables, for which one can at least draw level curves in the plane. We

therefore begin this chapter by studying the two-variable case. The first section presents the

basic results, illustrated by relatively simple examples and problems. Then we give a more sys-

tematic presentation of the theory with two variables. Subsequently we consider how the theory

can be generalized to functions of several variables.

Much of economic analysis involves seeing how the solution to an optimization problem

responds when the situation changes—for example, if some relevant parameters change. Thus,

the theory of the firm considers how a change in the price of a good that is either an input or an

output can affect the optimal quantities of all the inputs and outputs, as well as the maximum

profit. Some simple results of this kind are briefly introduced at the end of the chapter.

13.1 Two Variables: Necessary Conditions
Consider a differentiable function z = f (x, y) defined on a set S in the xy-plane. Suppose
that f attains its largest value (its maximum) at an interior point (x0, y0) of S, as indicated
in Fig. 1. If we keep y fixed at y0, then the function g(x) = f (x, y0) depends only on x and
has its maximum at x = x0. (Geometrically, if P is the highest point on the surface in Fig. 1,
then P is certainly also the highest point on the curve through P that has y = y0—i.e. on
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the curve which is the intersection of the surface with the plane y = y0.) From Theorem
8.1.1 we know that g′(x0) = 0. But for all x, the derivative g′(x) is exactly the same as the
partial derivative f ′

1(x, y0). At x = x0, therefore, one has f ′
1(x0, y0) = 0. In the same way,

we see that (x0, y0) must satisfy f ′
2(x0, y0) = 0, because the function h(y) = f (x0, y) has

its maximum at y = y0. A point (x0, y0) where both the partial derivatives are 0 is called a
stationary (or critical) point of f .

If f attains its smallest value (its minimum) at an interior point (x0, y0) of S, a similar
argument shows that the point again must be a stationary point. So we have the following
important result:1

T H E O R E M 1 3 . 1 . 1 ( N E C E S S A R Y C O N D I T I O N S F O R I N T E R I O R E X T R E M A )

A differentiable function z = f (x, y) can have a maximum or minimum at an
interior point (x0, y0) of S only if it is a stationary point—that is, if the point
(x, y) = (x0, y0) satisfies the two equations

f ′
1(x, y) = 0, f ′

2(x, y) = 0 (first-order conditions, or FOCs)

z � f (x, y)

x0

y0

P � (x0 , y0 , f (x0 , y0))z

y

x

S

Q

R

P
Q

R

z

x

y

Figure 1 f (x, y) has maximum at P , the
highest point on the surface z = f (x, y),
where f ′

1(x0, y0) = f ′
2(x0, y0) = 0.

Figure 2 P is a maximum, Q is a local
maximum, and R is a saddle point.

In Fig. 2, the three points P , Q, and R are all stationary points, but only P is a maximum.
(Later, we shall call Q a local maximum, whereas R is a saddle point.)

In the following examples and problems only the first-order conditions are considered.
The next section explains how to verify that we have found the optimum.

E X A M P L E 1 The function f is defined for all (x, y) by

f (x, y) = −2x2 − 2xy − 2y2 + 36x + 42y − 158

Assume that f has a maximum point. Find it.

1 Interior point is defined precisely in Section 13.5.
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Solution: Theorem 13.1.1 applies. So a maximum point (x, y) must be a stationary point
satisfying the first-order conditions

f ′
1(x, y) = −4x − 2y + 36 = 0

f ′
2(x, y) = −2x − 4y + 42 = 0

These are two linear equations which determine x and y. We find that (x, y) = (5, 8) is the
only pair of numbers which satisfies both equations. Assuming there is a maximum point,
these must be its coordinates. The maximum value is f (5, 8) = 100. (In Example 13.2.2
we prove that (5, 8) is a maximum point.)

E X A M P L E 2 A firm produces two different kinds A and B of a commodity. The daily cost of producing
x units of A and y units of B is

C(x, y) = 0.04x2 + 0.01xy + 0.01y2 + 4x + 2y + 500

Suppose that the firm sells all its output at a price per unit of 15 for A and 9 for B. Find the
daily production levels x and y that maximize profit per day.

Solution: Profit per day is π(x, y) = 15x + 9y − C(x, y), so

π(x, y) = 15x + 9y − 0.04x2 − 0.01xy − 0.01y2 − 4x − 2y − 500

= −0.04x2 − 0.01xy − 0.01y2 + 11x + 7y − 500

If x > 0 and y > 0 maximize profit, then (x, y) must satisfy

∂π

∂x
= −0.08x − 0.01y + 11 = 0,

∂π

∂y
= −0.01x − 0.02y + 7 = 0

These two linear equations in x and y have the unique solution x = 100, y = 300, with
π(100, 300) = 1100. (We have not proved that this actually is a maximum. See Prob-
lem 13.2.1(a).)

E X A M P L E 3 (Profit maximization) Suppose that Q = F(K, L) is a production function with K

as the capital input and L as the labour input. The price per unit of output is p, the cost
(or rental) per unit of capital is r , and the wage rate is w. The constants p, r , and w are
all positive. The profit π from producing and selling F(K, L) units is then given by the
function

π(K, L) = pF(K, L) − rK − wL (1)

If F is differentiable and π has a maximum with K > 0, L > 0, then the first-order
conditions (FOCs) are

π ′
K(K, L) = pF ′

K(K, L) − r = 0

π ′
L(K, L) = pF ′

L(K, L) − w = 0
(∗)
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Thus, a necessary condition for profit to be a maximum when K = K∗ and L = L∗ is that

pF ′
K(K∗, L∗) = r, pF ′

L(K∗, L∗) = w (∗∗)

The first equation says that r , the price of capital, must equal the sales value at the price p

per unit of the marginal product of capital. The second equation has a similar interpretation.
Suppose we think of increasing capital input from the level K∗ by 1 unit. How much

would be gained? Production would increase by approximately F ′
K(K∗, L∗) units. Because

each extra unit is priced at p, the revenue gain is approximately pF ′
K(K∗, L∗). How much

is lost? The answer is r , because this is the price of one unit of capital. These two must be
equal.

The second equation in (∗∗) has a similar interpretation: Increasing labour input by one
unit from level L∗ will lead to the approximate gain pF ′

L(K∗, L∗) in revenue, whereas the
extra labour cost is w. The profit-maximizing pair (K∗, L∗) thus has the property that the
extra revenue from increasing either input by one unit is just offset by the extra cost.

Economists often divide the first-order conditions (∗∗) by the positive price p to reach the
alternative form F ′

K(K, L) = r/p and F ′
L(K, L) = w/p . So, to obtain maximum profit,

the firm must choose K and L to equate the marginal productivity of capital to its relative
price r/p, and also to equate the marginal productivity of labour to its relative price w/p.

Note that the conditions in (∗∗) are necessary, but generally not sufficient for an interior
maximum. Sufficient conditions for an optimum are given in Example 13.3.3.

E X A M P L E 4 Find the only possible solution to the following special case of Example 3:

max π(K, L) = 12K1/2L1/4 − 1.2K − 0.6L

Solution: The first-order conditions are

π ′
K(K, L) = 6K−1/2L1/4 − 1.2 = 0, π ′

L(K, L) = 3K1/2L−3/4 − 0.6 = 0

These equations imply that K−1/2L1/4 = K1/2L−3/4 = 0.2 = 1/5. Multiplying each side
of the first equation here by K1/2L3/4 reduces it to L = K . Hence K−1/4 = L−1/4 = 1/5.
It follows that K = L = 54 = 625 is the only possible solution. (See Example 13.2.3 for a
proof that this is indeed a maximum point.)

E X A M P L E 5 A firm is a monopolist in the domestic market but takes as given the fixed price pw of
its product in the world market. The quantities sold in the two markets are denoted by xd

and xw, respectively. The price obtained in the domestic market, as a function of its sales, is
given by the inverse demand function pd = f (xd). The cost function is c(xd + xw). (Note
that c is here a function of one variable, not a constant.)

(a) Find the profit function π(xd, xw) and write down the first-order conditions for profit to
be maximized at xd > 0, xw > 0. Give economic interpretations of these conditions.

(b) Suppose that the firm in the domestic market is faced with a demand curve whose price
elasticity is a constant equal to −2. What is the relationship between the prices in the
domestic and world markets?
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Solution: (a) The revenue from selling xd units in the domestic market at the price pd =
f (xd) is pdxd = f (xd)xd . In the world market the revenue is pwxw. The profit function is
π = π(xd, xw) = pdxd + pwxw − c(xd + xw). Thus the first-order conditions are

(i) π ′
1 = pd + (dpd/dxd)xd − c′(xd + xw) = 0, (ii) π ′

2 = pw − c′(xd + xw) = 0

According to (ii), the marginal cost in the world market must equal the price, which is the
marginal revenue in this case. In the domestic market the marginal cost must also equal the
marginal revenue. Here is an interpretation of (i): Suppose the firm contemplates producing
and selling a little extra in its domestic market. The extra revenue per unit increase in output
equals pd minus the loss that arises because of the induced price reduction for all domestic
sales. The latter loss is approximately f ′(xd)xd = (dpd/dxd)xd . Since the cost of an extra
unit of output is approximately the marginal cost c′(xd + xw), condition (i) expresses the
requirement that, per unit of extra output, the domestic revenue gain is just offset by the
cost increase.

(b) The price elasticity of demand is −2, meaning that Elpd
xd = (pd/xd)(dxd/dpd) = −2.

By the rule for differentiating inverse functions one has dpd/dxd = 1/(dxd/dpd). It follows
that (dpd/dxd)xd = − 1

2pd . Then (i) and (ii) imply that 1
2pd = c′(xd + xw) = pw, so the

world market price is half the domestic market price.

P R O B L E M S F O R S E C T I O N 1 3 . 1

1. The function f defined for all (x, y) by f (x, y) = −2x2 − y2 + 4x + 4y − 3 has a maximum.
Find the corresponding values of x and y.

2. (a) The function f defined for all (x, y) by f (x, y) = x2 + y2 − 6x + 8y + 35 has a minimum
point. Find it.

(b) Show that f (x, y) can be written in the form f (x, y) = (x − 3)2 + (y + 4)2 + 10. Explain
why this shows that you have really found the minimum in part (a).

3. In the profit-maximizing problem of Example 3, let p = 1, r = 0.65, w = 1.2, and

F(K, L) = 80 − (K − 3)2 − 2(L − 6)2 − (K − 3)(L − 6)

Find the only possible values of K and L that maximize profits.

4. Yearly profits (in millions of dollars) for a firm are given by

P(x, y) = −x2 − y2 + 22x + 18y − 102

where x is the amount spent on research (in millions of dollars), and y is the amount spent on
advertising (in millions of dollars).

(a) Find the profits when x = 10, y = 8 and when x = 12, y = 10.

(b) Find the only possible values of x and y that can maximize profits, and the corresponding
profit.
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13.2 Two Variables: Sufficient Conditions
Suppose f is a function of one variable which is twice differentiable in an interval I . In this
case a very simple sufficient condition for a stationary point in I to be a maximum point is
that f ′′(x) ≤ 0 for all x in I . (See Theorem 8.2.2.) The function f is then called “concave”.

For functions of two variables there is a corresponding test for concavity based on the
second-order partial derivatives. Provided the function has an interior stationary point, this
test implies that its graph is a surface shaped like the one in Fig. 13.1.1.

Consider any curve parallel to the xz-plane which lies in the surface, like QPR in that
figure. Any such curve is the graph of a concave function of one variable, implying that
f ′′

11(x, y) ≤ 0. A similar argument holds for any curve parallel to the yz-plane which lies
in the surface, implying that f ′′

22(x, y) ≤ 0. In general, however, having these two second-
order partial derivatives be nonpositive is not sufficient on its own to ensure that the surface
is shaped like the one in Fig. 13.1.1. This is clear from the next example.

E X A M P L E 1 The function
f (x, y) = 3xy − x2 − y2

has f ′′
11(x, y) = f ′′

22(x, y) = −2. Each curve parallel to the xz-plane that lies in the surface
defined by the graph has the equation z = 3xy0 − x2 − y2

0 for some fixed y0. It is therefore
a concave parabola. So is each curve parallel to the yz-plane that lies in the surface. But
along the line y = x the function reduces to f (x, x) = x2, which is a convex rather than a
concave parabola. It follows that f has no maximum (or minimum) at (0, 0), which is the
only stationary point.

What Example 1 shows is that conditions ensuring that the graph of f looks like the one in
Fig. 13.1.1 cannot ignore the second-order mixed partial derivative f ′′

12(x, y). The following
result will be discussed in FMEA. (See the end of Section 13.3 for a proof of the local
version.) To formulate the theorem we need a new concept. A set S in the xy-plane is
convex if, for each pair of points P and Q in S, all the line segment between P and Q lies
in S.

T H E O R E M 1 3 . 2 . 1 ( S U F F I C I E N T C O N D I T I O N S F O R A M A X I M U M O R M I N I M U M )

Suppose that (x0, y0) is an interior stationary point for a C2 function f (x, y)

defined in a convex set S in �2.

(a) If for all (x, y) in S,

f ′′
11(x, y) ≤ 0, f ′′

22(x, y) ≤ 0, and f ′′
11(x, y)f ′′

22(x, y) − (
f ′′

12(x, y)
)2 ≥ 0

then (x0, y0) is a maximum point for f (x, y) in S.

(b) If for all (x, y) in S,

f ′′
11(x, y) ≥ 0, f ′′

22(x, y) ≥ 0, and f ′′
11(x, y)f ′′

22(x, y) − (
f ′′

12(x, y)
)2 ≥ 0

then (x0, y0) is a minimum point for f (x, y) in S.
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NOTE 1 The conditions in part (a) of Theorem 13.2.1 are sufficient for a stationary point
to be a maximum point. They are far from being necessary. This is clear from the function
whose graph is shown in Fig. 13.1.2, which has a maximum at P , but where the conditions
in (a) are certainly not satisfied in the whole of its domain.

NOTE 2 If a twice differentiable function z = f (x, y) satisfies the inequalities in (a)
throughout a convex set S, it is called concave, whereas it is called convex if it satisfies the
inequalities in (b) throughout S. It follows from these definitions that f is concave if and
only if −f is convex, just as in the one-variable case.

There are more general definitions of concave and convex functions which apply to
functions that are not necessarily differentiable. These are presented in FMEA. (The one-
variable case was briefly discussed in Section 8.7.)

E X A M P L E 2 Show that
f (x, y) = −2x2 − 2xy − 2y2 + 36x + 42y − 158

has a maximum at the stationary point (x0, y0) = (5, 8). (See Example 13.1.1.)

Solution: We found that f ′
1(x, y) = −4x − 2y + 36 and f ′

2(x, y) = −2x − 4y + 42.
Furthermore, f ′′

11 = −4, f ′′
12 = −2, and f ′′

22 = −4. Thus

f ′′
11(x, y) ≤ 0, f ′′

22(x, y) ≤ 0, f ′′
11(x, y)f ′′

22(x, y) − (
f ′′

12(x, y)
)2 = 16 − 4 = 12 ≥ 0

According to (a) in Theorem 13.2.1, these inequalities guarantee that the stationary point
(5, 8) is a maximum point.

E X A M P L E 3 Show that we have found the maximum in Example 13.1.4.

Solution: If K > 0 and L > 0, we find that

π ′′
KK = −3K−3/2L1/4, π ′′

KL = 3
2K−1/2L−3/4, and π ′′

LL = − 9
4K1/2L−7/4

Clearly, π ′′
KK < 0, π ′′

LL < 0, and moreover,

π ′′
KKπ ′′

LL − (π ′′
KL)2 = 27

4 K−1L−3/2 − 9
4K−1L−3/2 = 9

2K−1L−3/2 > 0

It follows that the stationary point (K, L) = (625, 625) maximizes profit.

This section concludes with two examples that each involve a constraint. Nevertheless,
a simple transformation can be used to convert the problem into the form we have been
discussing, without any constraint.

E X A M P L E 4 Suppose that any production by the firm in Example 13.1.2 creates pollution, so it is
legally restricted to produce a total of 320 units of the two kinds of output. The firm’s
problem is then:

max −0.04x2 − 0.01xy − 0.01y2 + 11x + 7y − 500 subject to x + y = 320

What now are the optimal quantities of the two kinds of output?
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Solution: The firm still wants to maximize its profits. But because of the restriction y =
320 − x, the new profit function is

π̂(x) = −0.04x2 − 0.01x(320 − x) − 0.01(320 − x)2 + 11x + 7(320 − x) − 500

We easily find π̂ ′(x) = −0.08x + 7.2, so π̂ ′(x) = 0 for x = 7.2/0.08 = 90. Since
π̂ ′′(x) = −0.08 < 0 for all x, the point x = 90 does maximize π̂ . The corresponding value
of y is y = 320 − 90 = 230. The maximum profit is 1040.

E X A M P L E 5 A firm has three factories each producing the same item. Let x, y, and z denote the
respective output quantities that the three factories produce in order to fulfil an order for
2000 units in total. Hence, x + y + z = 2000. The cost functions for the three factories are

C1(x) = 200 + 1

100
x2, C2(y) = 200 + y + 1

300
y3, C3(z) = 200 + 10z

The total cost of fulfilling the order is thus

C(x, y, z) = C1(x) + C2(y) + C3(z)

Find the values of x, y, and z that minimize C. (Hint: Reduce the problem to one with only
two variables by solving x + y + z = 2000 for z.)

Solution: Solving the equation x+y+z = 2000 for z yields z = 2000−x−y. Substituting
this expression for z in the expression for C yields, after simplifying,

Ĉ(x, y) = C(x, y, 2000 − x − y) = 1

100
x2 − 10x + 1

300
y3 − 9y + 20 600

Any stationary points of Ĉ must satisfy the two equations

Ĉ ′
1(x, y) = 1

50
x − 10 = 0, Ĉ ′

2(x, y) = 1

100
y2 − 9 = 0

The only solution is x = 500 and y = 30, implying that z = 1470. The corresponding
value of C is 17 920.

The second-order partial derivatives are Ĉ′′
11(x, y) = 1

50 , Ĉ ′′
12(x, y) = 0, and Ĉ ′′

22(x, y) =
1

50y. It follows that for all x ≥ 0, y ≥ 0, one has

Ĉ ′′
11(x, y) ≥ 0, Ĉ ′′

22(x, y) ≥ 0, and Ĉ′′
11(x, y)Ĉ ′′

22(x, y) − (
Ĉ ′′

12(x, y)
)2 = y

2500
≥ 0

Part (b) of Theorem 13.2.1 implies that (500, 30) is a minimum point of Ĉ within the
convex domain of points (x, y) satisfying x ≥ 0, y ≥ 0. It follows that (500, 30, 1470) is
a minimum point of C within the domain of (x, y, z) satisfying x ≥ 0, y ≥ 0, z ≥ 0, and
x + y + z = 2000.
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P R O B L E M S F O R S E C T I O N 1 3 . 2

1. Prove that the optimum has been found in: (a) Example 13.1.2; (b) Problem 13.1.1;
(c) Problem 13.1.3.

2. (a) A firm produces two different kinds A and B of a commodity. The daily cost of producing
x units of A and y units of B is

C(x, y) = 2x2 − 4xy + 4y2 − 40x − 20y + 514

Suppose that the firm sells all its output at a price per unit of $24 for A and $12 for B. Find
the daily production levels x and y that maximize profit.

(b) The firm is required to produce exactly 54 units per day of the two kinds combined. What
now is the optimal production plan?

⊂SM⊃3. Solve the utility-maximizing problem max U = xyz subject to x + 3y + 4z = 108, by making
U a function of y and z by eliminating the variable x.

4. The demands for a monopolist’s two products are determined by the equations

p = 25 − x, q = 24 − 2y

where p and q are prices per unit of the two goods, and x and y are the corresponding quantities.
The costs of producing and selling x units of the first good and y units of the other are

C(x, y) = 3x2 + 3xy + y2

(a) Find the monopolist’s profit π(x, y) from producing and selling x units of the first good
and y units of the other.

(b) Find the values of x and y that maximize π(x, y). Verify that you have found the maximum
profit.

5. A firm produces two goods. The cost of producing x units of good 1 and y units of good 2 is

C(x, y) = x2 + xy + y2 + x + y + 14

Suppose that the firm sells all its output of each good at prices per unit of p and q respectively.
Find the values of x and y that maximize profits. (Assume 1

2 p + 1
2 < q < 2p − 1 and p > 1.)

6. The profit function of a firm is π(x, y) = px + qy − αx2 − βy2, where p and q are the prices
per unit and αx2 + βy2 are the costs of producing and selling x units of the first good and y

units of the other. The constants are all positive.

(a) Find the values of x and y that maximize profits. Denote them by x∗ and y∗. Verify that
the second-order conditions are satisfied.

(b) Define π∗(p, q) = π(x∗, y∗). Verify that ∂π∗(p, q)/∂p = x∗ and ∂π∗(p, q)/∂q = y∗.
Give these results economic interpretations.

7. Find the smallest value of x2 + y2 + z2 when we require that 4x + 2y − z = 5. (Geometrically,
the problem is to find the point in the plane 4x + 2y − z = 5 which is closest to the origin.)

8. Show that f (x, y) = Axayb −px − qy − r (where A, a, b are positive constants, and p, q, and
r are arbitrary constants) is concave for x > 0, y > 0 provided that a + b ≤ 1. (See Note 2.)
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13.3 Local Extreme Points
Sometimes one needs to consider local extreme points of a function. The point (x0, y0) is
said to be a local maximum point of f in S if f (x, y) ≤ f (x0, y0) for all pairs (x, y)

in S that lie sufficiently close to (x0, y0). More precisely, the definition is that there exists
a positive number r such that f (x, y) ≤ f (x0, y0) for all (x, y) in S that lie inside the
circle with centre (x0, y0) and radius r . If the inequality is strict for (x, y) �= (x0, y0), then
(x0, y0) is a strict local maximum point.

A (strict) local minimum point is defined in the obvious way, and it should also be
clear what we mean by local maximum and minimum values, local extreme points, and local
extreme values. Note how these definitions imply that a global extreme point is also a local
extreme point; the converse is not true, of course.

In searching for maximum and minimum points, the first-order conditions were very
useful. The same result also applies to the local extreme points:

At any local extreme point in the interior of the domain of a differentiable function, the
function must be stationary—i.e. all its first-order partial derivatives are 0.

This observation follows because in the argument for Theorem 13.1.1 it was sufficient to
consider the behaviour of the function in a small neighbourhood of the optimal point.

These first-order conditions are necessary for a differentiable function to have a local
extreme point. However, a stationary point does not have to be a local extreme point. A
stationary point (x0, y0) of f which, like point R in Fig. 13.1.2, is neither a local maximum
nor a local minimum point, is called a saddle point of f . Hence:

A saddle point (x0, y0) is a stationary point with the property that there exist points (x, y)

arbitrarily close to (x0, y0) with f (x, y) < f (x0, y0), and there also exist such points with
f (x, y) > f (x0, y0).

E X A M P L E 1 Show that (0, 0) is a saddle point of f (x, y) = x2 − y2.

Solution: It is easy to check that (0, 0) is a stationary point at which f (0, 0) = 0. Moreover,
f (x, 0) = x2 and f (0, y) = −y2, so f (x, y) takes positive and negative values arbitrarily
close to the origin. Hence, (0, 0) is a saddle point. See the graph in Fig. 1.

z

y

x

Figure 1 f (x, y) = x2 − y2. The point (0, 0) is a saddle point

Local extreme points and saddle points can be illustrated by thinking of the mountains in
the Himalayas. Every summit is a local maximum, but only the highest (Mount Everest)
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is the (global) maximum. The deepest points of the lakes or glaciers are local minima. In
every mountain pass there will be a saddle point that is the highest point in one compass
direction and the lowest in another.

The stationary points of a function thus fall into three categories:

(a) Local maximum points (b) Local minimum points (c) Saddle points

How do we distinguish between these three cases?
Consider first the case when z = f (x, y) has a local maximum at (x0, y0). The functions

g(x) = f (x, y0) and h(y) = f (x0, y) describe the behaviour of f along the straight lines
y = y0 and x = x0, respectively (see Fig. 13.1.1). These functions must achieve local
maxima at x0 and y0, respectively. Therefore, g′′(x0) = f ′′

11(x0, y0) ≤ 0 and h′′(y0) =
f ′′

22(x0, y0) ≤ 0.
On the other hand, if g′′(x0) < 0 and h′′(y0) < 0, then we know that g and h really

do achieve local maxima at x0 and y0, respectively. Stated differently, the conditions
f ′′

11(x0, y0) < 0 and f ′′
22(x0, y0) < 0 will ensure that f (x, y) has a local maximum in

the directions through (x0, y0) that are parallel to the x-axis and the y-axis.
However, note that the signs of f ′′

11(x0, y0) and f ′′
22(x0, y0) on their own do not reveal

much about the behaviour of the graph of z = f (x, y) when we move away from (x0, y0)

in directions other than the two mentioned. Example 1 illustrated the problem.
It turns out that in order to have a correct second-derivative test for functions f of two

variables, the mixed second-order partial f ′′
12(x0, y0) must also be considered, just as it had

to be in Section 13.2. The following theorem can be used to determine the nature of the
stationary points in most cases. (A proof is given at the end of this section.)

T H E O R E M 1 3 . 3 . 1 ( S E C O N D - D E R I V A T I V E T E S T F O R L O C A L E X T R E M A )

Suppose f (x, y) is a C2 function in a domain S, and let (x0, y0) be an interior
stationary point of S. Write

A = f ′′
11(x0, y0), B = f ′′

12(x0, y0), and C = f ′′
22(x0, y0)

(a) If A < 0 and AC − B2 > 0, then (x0, y0) is a (strict) local maximum point.

(b) If A > 0 and AC − B2 > 0, then (x0, y0) is a (strict) local minimum point.

(c) If AC − B2 < 0, then (x0, y0) is a saddle point.

(d) If AC −B2 = 0, then (x0, y0) could be a local maximum, a local minimum,
or a saddle point.

Note that AC − B2 > 0 in (a) implies that AC > B2 ≥ 0, and so AC > 0. Thus, if A < 0,
then also C < 0. The condition C = f ′′

22(x0, y0) < 0 is thus (indirectly) included in the
assumptions in (a). The corresponding observation for (b) is also valid.

The conditions in (a), (b), and (c) are usually called (local) second-order conditions.
Note that these are sufficient conditions for a stationary point to be, respectively, a strict local
maximum point, a strict local minimum point, or a saddle point. None of these conditions
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is necessary. The result in Problem 5 will confirm (d), because it shows that a stationary
point where AC − B2 = 0 can fall into any of the three categories. The second-derivative
test is inconclusive in this case.

E X A M P L E 2 Find the stationary points and classify them when f (x, y) = x3 − x2 − y2 + 8.

Solution: The stationary points must satisfy the two equations

f ′
1(x, y) = 3x2 − 2x = 0 and f ′

2(x, y) = −2y = 0

Because 3x2 − 2x = x(3x − 2), we see that the first equation has the solutions x = 0 and
x = 2/3. The second equation has the solution y = 0. We conclude that (0, 0) and (2/3, 0)

are the only stationary points.
Furthermore, f ′′

11(x, y) = 6x − 2, f ′′
12(x, y) = 0, and f ′′

22(x, y) = −2. A convenient
way of classifying the stationary points is to make a table like the following (with A, B, and
C defined in the theorem):

(x, y) A B C AC − B2 Type of point

(0, 0) −2 0 −2 4 Local maximum point

(2/3, 0) 2 0 −2 −4 Saddle point

E X A M P L E 3 Consider Example 13.1.3 and suppose that the production function F is twice differenti-
able. Let (K∗, L∗) be an input pair satisfying the first-order conditions (∗∗) in the example.
Define �(K, L) = F ′′

KK(K, L)F ′′
LL(K, L) − (F ′′

KL(K, L))2.

(a) Prove that if

F ′′
KK(K, L) ≤ 0, F ′′

LL(K, L) ≤ 0, and �(K, L) ≥ 0 for all K ≥ 0 and L ≥ 0 (∗)

then (K∗, L∗) maximizes profit. (According to Note 13.2.2, the product function F is
concave.)

(b) Prove also that if
F ′′

KK(K∗, L∗) < 0 and �(K∗, L∗) > 0 (∗∗)

then (K∗, L∗) is a local maximum for the profit function.

Solution:

(a) The second-order partials of the profit function are π ′′
KK(K, L) = pF ′′

KK(K, L),
π ′′

KL(K, L) = pF ′′
KL(K, L), and π ′′

LL(K, L) = pF ′′
LL(K, L). Since p > 0, the con-

clusion follows from Theorem 13.2.1(a).

(b) In this case the conclusion follows from Theorem 13.3.1(a).
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Proof of the Second-Derivative Test

Let z = f (x, y) be the function graphed in Fig. 2, with (x0, y0) as a local maximum point. For fixed
values of h and k, define the function g of one variable by

g(t) = f (x0 + th, y0 + tk)

This function tells us what happens to f as one moves away from (x0, y0) in the direction (h, k), or
in the reverse direction (−h, −k).

If f has a local maximum at (x0, y0), then g(t) must certainly have a local maximum at t = 0.
Necessary conditions for this are that g′(0) = 0 and g′′(0) ≤ 0. The first- and second-order derivatives
of g(t) were calculated in Example 12.1.5. At t = 0 the second derivative of g is

g′′(0) = f ′′
11(x0, y0)h

2 + 2f ′′
12(x0, y0)hk + f ′′

22(x0, y0)k
2 (1)

So if f has a local maximum at (x0, y0), the expression in (1) must be ≤ 0 for all choices of (h, k).
In this way we have obtained a necessary condition for f to have a local maximum at (x0, y0). We

are often more interested in sufficient conditions for a local maximum. For the one-variable function
g we know that the conditions g′(0) = 0 and g′′(0) < 0 are sufficient for g to have a local maximum
at t = 0. It is therefore reasonable to conjecture that we have the following result:

If f ′
1(x0, y0) = f ′

2(x0, y0) = 0 and the expression in (1) for the second derivative

g′′(0) is < 0 for all directions (h, k) �= (0, 0), then (x0, y0) is a (strict) local

maximum point for f .

(2)

(h, k) (x0 � th , y0 � tk)
(x0 , y0)

z

y

x
Figure 2

This turns out to be correct, as will be proved in FMEA. Problem 7, however, shows that the expression
in (1) really must be negative for all directions (h, k) without exception.

Relying on (2), we can prove part (a) of Theorem 13.3.1. It suffices to verify that

A < 0 and AC − B2 > 0 	⇒ Ah2 + 2Bhk + Ck2 < 0 for all (h, k) �= (0, 0) (3)

To this end we “complete the square”:

Ah2 + 2Bhk + Ck2 = A

[(
h + B

A
k

)2

+ AC − B2

A2
k2

]
(4)

The expression in square brackets is obviously ≥ 0, and = 0 only if both h + Bk/A = 0 and k = 0,
implying that h = k = 0. Because A < 0, the right-hand side of (4) is negative for all (h, k) �= (0, 0),
so we have proved (2).
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P R O B L E M S F O R S E C T I O N 1 3 . 3

1. (a) Find the partial derivatives of first and second order for the function f defined for all (x, y)

by f (x, y) = 5 − x2 + 6x − 2y2 + 8y.

(b) Find the only stationary point and classify it by using the second-derivative test. What does
Theorem 13.2.1 tell us?

2. (a) Find the first- and second-order partial derivatives of f (x, y) = x2 + 2xy2 + 2y2.

(b) Show that the stationary points are (0, 0), (−1, 1), (−1, −1), and classify them.

⊂SM⊃3. (a) Let f be a function of two variables, given by

f (x, y) = (x2 − axy)ey

where a �= 0 is a constant. Find the stationary points of f and decide for each of them if it
is a local maximum point, a local minimum point or a saddle point.

(b) Let (x∗, y∗) be the stationary point where x∗ �= 0, and let f ∗(a) = f (x∗, y∗). Find
df ∗(a)/da. Show that if we let f̂ (x, y, a) = (x2 − axy)ey , then

f̂ ′
3(x

∗, y∗, a) = df ∗(a)

da

⊂SM⊃4. (a) Suppose in Example 10.3.2 that the market value of the tree at time t is a function f (t, x)

of the amount x spent on trimming the tree at time 0, as well as of t . Assuming continuous
compounding at the interest rate r , the present discounted value of the profit earned on the
tree is then

V (t, x) = f (t, x)e−rt − x

What are the first-order conditions for V (t, x) to have a maximum at t∗ > 0, x∗ > 0?

(b) What are the first-order conditions if f (t, x) takes the separable form f (t, x) = g(t)h(x),
with g(t) > 0 and h(x) > 0? (Note that in this case t∗ does not depend on the function h.)

(c) In the separable case, prove that g′′(t∗) < r2g(t∗) and h′′(x∗) < 0 are sufficient conditions
for a stationary point (t∗, x∗) to be a local maximum point for V .

(d) Find t∗ and x∗ when g(t) = e
√

t and h(x) = ln(x + 1), and check the local second-order
conditions.

5. Consider the three functions: (a) z = −x4 − y4 (b) z = x4 + y4 (c) z = x3 + y3.
Prove that the origin is a stationary point for each one of these functions, and that AC −B2 = 0
at the origin in each case. By studying the functions directly, prove that the origin is respectively
a maximum point for (a), a minimum point for (b), and a saddle point for (c).

HARDER PROBLEMS

⊂SM⊃6. (a) Find the domain of the function f (x, y) = ln(1 + x2y).

(b) Prove that the stationary points are all the points on the y-axis.

(c) Show that the second-derivative test fails.

(d) Classify the stationary points by looking directly at the sign of the value of f (x, y). Then
look at the figure in the answer section.
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7. (a) The graph of f (x, y) = (y − x2)(y − 2x2) intersects the xy-plane z = 0 in two parabolas.
In the xy-plane, draw the domains where f is negative, and where f is positive. Show that
(0, 0) is the only stationary point, and that it is a saddle point.

(b) Suppose (h, k) �= (0, 0) is any direction vector. Let g(t) = f (th, tk) and show that g has
a local minimum at t = 0, whatever the direction (h, k) may be. (Thus, although (0, 0) is
a saddle point, the function has a local minimum at the origin in each direction through the
origin.)

13.4 Linear Models with Quadratic Objectives
In this section we consider some other interesting economic applications of optimization
theory when there are two variables. Versions of the first example have already appeared in
Example 13.1.5 and Problem 13.2.4.

E X A M P L E 1 (Discriminating Monopolist) Consider a firm that sells a product in two isolated geo-
graphical areas. If it wants to, it can then charge different prices in the two different areas
because what is sold in one area cannot easily be resold in the other. As an example, it
seems that express mail or courier services find it possible to charge much higher prices
in Europe than they can in North America. Another example—pharmaceutical firms often
charge much more for the same medication in the USA than they do in Europe or Canada.

Suppose that such a firm also has some monopoly power to influence the different prices
it faces in the two separate markets by adjusting the quantity it sells in each. Economists
generally use the term “discriminating monopolist” to describe a firm having this power.

Faced with two such isolated markets, the discriminating monopolist has two independent
demand curves. Suppose that, in inverse form, these are

P1 = a1 − b1Q1 , P2 = a2 − b2Q2 (∗)

for market areas 1 and 2, respectively. Suppose, too, that the total cost is proportional to
total production:2

C(Q) = α(Q1 + Q2)

As a function of Q1 and Q2, total profits are

π(Q1, Q2) = P1Q1 + P2Q2 − α(Q1 + Q2)

= (a1 − b1Q1)Q1 + (a2 − b2Q2)Q2 − α(Q1 + Q2)

= (a1 − α)Q1 + (a2 − α)Q2 − b1Q
2
1 − b2Q

2
2

2 It is true that this cost function neglects transport costs. But the point to be made is that, even though
supplies to the two areas are perfect substitutes in production, the monopolist will generally be
able to earn higher profits by charging different prices, if this is allowed.
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We want to find the values of Q1 ≥ 0 and Q2 ≥ 0 that maximize profits. The first-order
conditions are

π ′
1(Q1, Q2) = (a1 − α) − 2b1Q1 = 0, π ′

2(Q1, Q2) = (a2 − α) − 2b2Q2 = 0

with the solutions

Q∗
1 = (a1 − α)/2b1, Q∗

2 = (a2 − α)/2b2

Furthermore, π ′′
11(Q1, Q2) = −2b1, π ′′

12(Q1, Q2) = 0, and π ′′
22(Q1, Q2) = −2b2. Hence,

for all (Q1, Q2)

π ′′
11 ≤ 0, π ′′

22 ≤ 0, and π ′′
11π

′′
22 − (π ′′

12)
2 = 4b1b2 ≥ 0

We conclude from Theorem 13.2.1 that if Q∗
1 and Q∗

2 are both positive, implying that
(Q∗

1, Q
∗
2) is an interior point in the domain of π , then the pair (Q∗

1, Q
∗
2) really does maximize

profits.
The corresponding prices can be found by inserting these values in (∗) to get

P ∗
1 = a1 − b1Q

∗
1 = 1

2 (a1 + α), P ∗
2 = a2 − b2Q

∗
2 = 1

2 (a2 + α)

The maximum profit is

π∗ = (a1 − α)2

4b1
+ (a2 − α)2

4b2

Both demands Q∗
1 and Q∗

2 are positive provided a1 > α and a2 > α. In this case, P ∗
1 and P ∗

2
are both greater than α. This implies that there is no “dumping”, with the price in one market
less than the cost α. Nor is there any “cross-subsidy”, with the losses due to dumping in
one market being subsidized out of profits in the other market. It is notable that the optimal
prices are independent of b1 and b2. More important, note that the prices are not the same
in the two markets, except in the special case when a1 = a2. Indeed, P ∗

1 > P ∗
2 if and only

if a1 > a2. This says that the price is higher in the market where consumers are willing to
pay a higher price for each unit when the quantity is close to zero.

E X A M P L E 2 Suppose that the monopolist in Example 1 has the demand functions

P1 = 100 − Q1, P2 = 80 − Q2

and that the cost function is C = 6(Q1 + Q2).
(a) How much should be sold in the two markets to maximize profits? What are the cor-

responding prices?

(b) How much profit is lost if it becomes illegal to discriminate?

(c) The authorities in market 1 impose a tax of t per unit sold in market 1. Discuss the
consequences.



Essential Math. for Econ. Analysis, 4th edn EME4_C13.TEX, 16 May 2012, 14:24 Page 477

S E C T I O N 1 3 . 4 / L I N E A R M O D E L S W I T H Q U A D R A T I C O B J E C T I V E S 477

Solution:

(a) Here a1 = 100, a2 = 80, b1 = b2 = 1, and α = 6. Example 1 gives the answers

Q∗
1 = (100 − 6)/2 = 47, Q∗

2 = 37, P ∗
1 = 1

2 (100 + 6) = 53, P ∗
2 = 43

The corresponding profit is P ∗
1 Q∗

1 + P ∗
2 Q∗

2 − 6(Q∗
1 + Q∗

2) = 3578.

(b) If price discrimination is not permitted, then P1 = P2 = P , and Q1 = 100 − P ,
Q2 = 80 − P , with total demand Q = Q1 + Q2 = 180 − 2P . Then P = 90 − 1

2Q,
so profits are

π = (
90 − 1

2Q
)
Q − 6Q = 84Q − 1

2Q2

This has a maximum at Q = 84 when P = 48. The corresponding profit is now 3528,
so the loss in profit is 3578 − 3528 = 50.

(c) With the introduction of the tax, the new profit function is

π̂ = (100 − Q1)Q1 + (80 − Q2)Q2 − 6(Q1 + Q2) − tQ1

We easily see that this has a maximum at Q̂1 = 47 − 1
2 t , Q̂2 = 37, with corresponding

prices P̂1 = 53 + 1
2 t , P̂2 = 43. The tax therefore has no influence on the sales in

market 2, while the amount sold in market 1 is lowered and the price in market 1 goes
up. The optimal profit is easily worked out:

π∗ = (53 + 1
2 t)(47 − 1

2 t) + 43 · 37 − 6(84 − 1
2 t) − t (47 − 1

2 t) = 3578 − 47t + 1
4 t2

So introducing the tax makes the profit fall by 47t − 1
4 t2. The authorities in market 1

obtain a tax revenue which is

T = tQ̂1 = t (47 − 1
2 t) = 47t − 1

2 t2

Thus we see that profits fall by 1
4 t2 more than the tax revenue. This amount 1

4 t2 repre-
sents the so-called deadweight loss from the tax.

A monopolistic firm faces a downward-sloping demand curve. A discriminating monopolist
such as in Example 1 faces separate downward-sloping demand curves in two or more
isolated markets. A monopsonistic firm, on the other hand, faces an upward-sloping supply
curve for one or more of its factors of production. Then, by definition, a discriminating
monopsonist faces two or more upward-sloping supply curves for different kinds of the
same input—for example, workers of different race or gender. Of course, discrimination by
race or gender is illegal in many countries. The following example, however, suggests one
possible reason why firms might want to discriminate if they were allowed to.

E X A M P L E 3 (Discriminating Monopsonist) Consider a firm using quantities L1 and L2 of two
kinds of labour as its only inputs in order to produce output Q according to the simple
production function

Q = L1 + L2
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Thus, both output and labour supply are measured so that each unit of labour produces one
unit of output. Note especially how the two kinds of labour are essentially indistinguishable,
because each unit of each type makes an equal contribution to the firm’s output. Suppose,
however, that there are two segmented labour markets, with different inverse supply func-
tions specifying the wage that must be paid to attract a given labour supply. Specifically,
suppose that

w1 = α1 + β1L1, w2 = α2 + β2L2

Assume moreover that the firm is competitive in its output market, taking price P as fixed.
Then the firm’s profits are

π(L1, L2) = PQ − w1L1 − w2L2 = P(L1 + L2) − (α1 + β1L1)L1 − (α2 + β2L2)L2

= (P − α1)L1 − β1L
2
1 + (P − α2)L2 − β2L

2
2

The firm wants to maximize profits. The first-order conditions are

π ′
1(L1, L2) = (P − α1) − 2β1L1 = 0, π ′

2(L1, L2) = (P − α2) − 2β2L2 = 0

These have the solutions

L∗
1 = P − α1

2β1
, L∗

2 = P − α2

2β2

It is easy to see that the conditions for maximum in Theorem 13.2.1 are satisfied, so that
L∗

1, L∗
2 really do maximize profits if P > α1 and P > α2. The maximum profit is

π∗ = (P − α1)
2

4β1
+ (P − α2)

2

4β2

The corresponding wages are

w∗
1 = α1 + β1L

∗
1 = 1

2 (P + α1), w∗
2 = α2 + β2L

∗
2 = 1

2 (P + α2)

Hence, w∗
1 = w∗

2 only if α1 = α2. Generally, the wage is higher for the type of labour that
demands a higher wage for very low levels of labour supply—perhaps this is the type of
labour with better job prospects elsewhere.

E X A M P L E 4 (Econometrics: Linear Regression) Empirical economics is concerned with analys-
ing data in order to try to discern some pattern that helps in understanding the past, and
possibly in predicting the future. For example, price and quantity data for a particular com-
modity such as natural gas may be used in order to try to estimate a demand curve. This
might then be used to predict how demand will respond to future price changes. The most
commonly used technique for estimating such a curve is linear regression.

Suppose it is thought that variable y—say, the quantity demanded—depends upon vari-
able x—say, price or income. Suppose that we have observations (xt , yt ) of both variables at
times t = 1, 2, . . . , T . Then the technique of linear regression seeks to fit a linear function

y = α + βx

to the data, as indicated in Fig. 1.
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et  � yt � (α � βxt)

y � α � βx

y

x

(xt , yt)

Figure 1

Of course, an exact fit is possible only if there exist numbers α and β for which yt = α+βxt

for t = 1, 2, . . . , T . This is rarely possible. Generally, however α and β may be chosen,
one has instead

yt = α + βxt + et , t = 1, 2, . . . , T

where et is an error or disturbance term. Obviously, one hopes that the errors will be small,
on average. So the parameters α and β are chosen to make the errors as “small as possible”,
somehow. One idea would be to make the sum

∑T
t=1(yt −α−βxt ) equal to zero. However,

in this case, large positive discrepancies would cancel large negative discrepancies. Indeed,
the sum of errors could be zero even though the line is very far from giving a perfect or even
a good fit. We must somehow prevent large positive errors from cancelling large negative
errors. Usually, this is done by minimizing the quadratic “loss” function

L(α, β) = 1

T

T∑
t=1

e2
t = 1

T

T∑
t=1

(yt − α − βxt )
2 (loss function) (∗)

which equals the mean (or average) square error. Expanding the square gives3

L(α, β) = 1

T

∑
t

(y2
t + α2 + β2x2

t − 2αyt − 2βxtyt + 2αβxt )

This is a quadratic function of α and β. We shall show how to derive the ordinary least-
squares estimates of α and β. To do so it helps to introduce some standard notation. Write

μx = x1 + · · · + xT

T
= 1

T

∑
t

xt , μy = y1 + · · · + yT

T
= 1

T

∑
t

yt

for the statistical means of xt and yt , and

σxx = 1

T

∑
t

(xt − μx)
2 , σyy = 1

T

∑
t

(yt − μy)
2 , σxy = 1

T

∑
t

(xt − μx)(yt − μy)

for their statistical variances, as well as their covariance, respectively. In what follows, we
shall assume that the xt are not all equal. Then, in particular, σxx > 0.

3 From now on, we often use
∑

t to denote
∑T

t=1.
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Using the result in Example 3.2.2, we have

σxx = 1

T

∑
t

x2
t − μ2

x , σyy = 1

T

∑
t

y2
t − μ2

y , σxy = 1

T

∑
t

xtyt − μxμy

(You should check the last as an exercise.) Then the expression for L(α, β) becomes

L(α, β) = (σyy + μ2
y) + α2 + β2(σxx + μ2

x) − 2αμy − 2β(σxy + μxμy) + 2αβμx

= α2 + μ2
y + β2μ2

x − 2αμy − 2βμxμy + 2αβμx + β2σxx − 2βσxy + σyy

The first-order conditions for a minimum of L(α, β) take the form

L′
1(α, β) = 2α − 2μy + 2βμx = 0

L′
2(α, β) = 2βμ2

x − 2μxμy + 2αμx + 2βσxx − 2σxy = 0

Note that L′
2(α, β) = μxL

′
1(α, β) + 2βσxx − 2σxy . So the values of α and β that make L

stationary are given by

β̂ = σxy/σxx, α̂ = μy − β̂μx = μy − (σxy/σxx)μx (∗∗)

Furthermore, L′′
11 = 2, L′′

12 = 2μx , L′′
22 = 2μ2

x + 2σxx . Thus L′′
11 ≥ 0, L′′

22 ≥ 0, and

L′′
11L

′′
22 − (L′′

12)
2 = 2(2μ2

x + 2σxx) − (2μx)
2 = 4σxx = 4T −1

∑
t

(xt − μx)
2 ≥ 0

We conclude that the conditions in Theorem 13.2.1(b) are satisfied, and therefore the pair
(α̂, β̂) given by (∗∗) minimizes L(α, β). The problem is then completely solved:

The straight line y = α̂ + β̂x, with α̂ and β̂ given by (∗∗), is the one that best fits the
observations (x1, y1), (x2, y2), . . . , (xT , yT ), in the sense of minimizing the mean square
error in (∗).

Note in particular that this estimated straight line passes through the mean (μx, μy) of the
observed pairs (xt , yt ), t = 1, . . . , T . Also, with a little bit of tedious algebra we obtain

L(α, β) = (α + βμx − μy)
2 + σxx(β − σxy/σxx)

2 + (σxxσyy − σ 2
xy)/σxx

The first two terms on the right are always nonnegative, and with α = α̂ and β = β̂, they
are zero, confirming that α̂ and β̂ do give the minimum value of L(α, β).

P R O B L E M S F O R S E C T I O N 1 3 . 4

1. (a) Suppose that the monopolist in Example 1 faces the demand functions

P1 = 200 − 2Q1, P2 = 180 − 4Q2

and that the cost function is C = 20(Q1 + Q2). How much should be sold in the two
markets to maximize total profit? What are the corresponding prices?

(b) How much profit is lost if it becomes illegal to discriminate?

(c) Discuss the consequences of imposing a tax of 5 per unit on the product sold in market 1.
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⊂SM⊃2. A firm produces and sells a product in two separate markets. When the price in market A is p

per ton, and the price in market B is q per ton, the demand in tons per week in the two markets
are, respectively,

QA = a − bp, QB = c − dq

The cost function is C(QA, QB) = α + β(QA + QB), and all constants are positive.

(a) Find the firm’s profit π as a function of the prices p and q, and then find the pair (p∗, q∗)
that maximizes profits.

(b) Suppose it becomes unlawful to discriminate by price, so that the firm must charge the same
price in the two markets. What price p̂ will now maximize profits?

(c) In the case β = 0, find the firm’s loss of profit if it has to charge the same price in both
markets. Comment.

3. In Example 1, discuss the effects of a tax imposed in market 1 of t per unit of Q1.

⊂SM⊃4. The following table shows the Norwegian gross national product (GNP) and spending on foreign
aid (FA) for the period 1970–1973 (in millions of crowns).

Year 1970 1971 1972 1973

GNP 79 835 89 112 97 339 110 156

FA 274 307 436 524

Growth of both GNP and FA was almost exponential during the period. So, approximately:

GNP = Aea(t−t0), t0 = 1970

Define x = t − t0 and b = ln A. Then ln(GNP) = ax + b. On the basis of the table above, one
gets the following

Year 1970 1971 1972 1973

y = ln(GNP) 11.29 11.40 11.49 11.61

(a) Using the method of least squares, determine the straight line y = ax + b which best fits
the data in the last table.

(b) Repeat the method above to estimate c and d, where ln(FA) = cx + d.

(c) The Norwegian government had a stated goal of eventually giving 1% of its GNP as foreign
aid. If the time trends of the two variables had continued as they did during the years
1970–1973, when would this goal have been reached?

⊂SM⊃5. (Duopoly) Each of two firms A and B produces its own brand of a commodity such as mineral
water in amounts denoted by x and y, which are sold at prices p and q per unit, respectively.
Each firm determines its own price and produces exactly as much as is demanded. The demands
for the two brands are given by

x = 29 − 5p + 4q , y = 16 + 4p − 6q
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Firm A has total costs 5 + x, whereas firm B has total costs 3 + 2y. (Assume that the functions
to be maximized have maxima, and at positive prices.)

(a) Initially, the two firms collude in order to maximize their combined profit, as one monopolist
would. Find the prices (p, q), the production levels (x, y), and the profits of firms A and B.

(b) Then an anti-trust authority prohibits collusion, so each producer maximizes its own profit,
taking the other’s price as given.

If q is fixed, how will A choose p? (Find p as a function p = pA(q) of q.)

If p is fixed, how will B choose q? (Find q as a function q = qB(p) of p.)

(c) Under the assumptions in part (b), what constant equilibrium prices are possible? What are
the production levels and profits in this case?

(d) Draw a diagram with p along the horizontal axis and q along the vertical axis, and draw the
“reaction” curves pA(q) and qB(p). Show on the diagram how the two firms’ prices change
over time if A breaks the cooperation first by maximizing its profit, taking B’s initial price
as fixed, then B answers by maximizing its profit with A’s price fixed, then A responds,
and so on.

13.5 The Extreme Value Theorem

As with functions of one variable, it is easy to find examples of functions of several variables
that do not have any maximum or minimum points. For providing sufficient conditions to
ensure that extreme points do exist, however, the extreme value theorem (Theorem 8.4.1)
was very useful for functions of one variable. It can be directly generalized to functions of
several variables. In order to formulate the theorem, however, we need a few new concepts.

For many of the results concerning functions of one variable, it was important to distin-
guish between different kinds of domain for the functions. For functions of several variables,
the distinction between different kinds of domain is no less important. In the one-variable
case, most functions were defined over intervals, and there are not many different kinds
of interval. For functions of several variables, however, there are many different kinds of
domain. Fortunately, the distinctions that are relevant to the extreme value theorem can be
made using only the concepts of open, closed, and bounded sets.

A point (a, b) is called an interior point of a set S in the plane if there exists a circle
centred at (a, b) such that all points strictly inside the circle lie in S. (See Fig. 1.) A set is
called open if it consists only of interior points. (See the second set illustrated in Fig. 1,
where we indicate boundary points that belong to the set by a solid curve, and those that
do not by a dashed curve.) The point (a, b) is called a boundary point of a set S if every
circle centred at (a, b) contains points of S as well as points in its complement, as illustrated
in the first figure. A boundary point of S does not necessarily lie in S. If S contains all its
boundary points, then S is called closed. (See the third set in Fig. 1.) Note that a set that
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contains some but not all of its boundary points, like the last of those illustrated in Fig. 1, is
neither open nor closed. In fact, a set is closed if and only if its complement is open.4

Open Closed Neither open
nor closed

Interior
point

Boundary
point

S

Figure 1

These illustrations give only very loose indications of what it means for a set to be either
open or closed. Of course, if a set is not even precisely defined, it is impossible to decide
conclusively whether it is open or closed.

In many of the optimization problems considered in economics, sets are defined by one
or more inequalities, and boundary points occur where one or more of these inequalities are
satisfied with equality. For instance, provided that p, q, and m are positive parameters, the
(budget) set of points (x, y) that satisfy the inequalities

px + qy ≤ m, x ≥ 0, y ≥ 0 (∗)

is closed. This set is a triangle, as shown in Fig. 4.4.12. Its boundary consists of the three
sides of the triangle. Each of the three sides corresponds to having one of the inequalities
in (∗) be satisfied with equality. On the other hand, the set that results from replacing ≤ by
< and ≥ by > in (∗) is open.

In general, if g(x, y) is a continuous function and c is a real number, then the sets

{(x, y) : g(x, y) ≥ c }, {(x, y) : g(x, y) ≤ c }, {(x, y) : g(x, y) = c}
are all closed. If ≥ is replaced by >, or ≤ is replaced by <, or = by �=, then the corresponding
set becomes open.

A set in the plane is bounded if the whole set is contained within a sufficiently large
circle. The sets in Fig. 1 and the budget triangle in Fig. 4.4.12 are all bounded. On the other
hand, the set of all (x, y) satisfying

x ≥ 1 and y ≥ 0

is a closed, but unbounded set. (See Fig. 11.1.1.) The set is closed because it contains all its
boundary points. How would you characterize the set in Fig. 11.1.2? (In fact, it is neither
open nor closed, but it is bounded.) A set in the plane that is both closed and bounded is
often called compact.

We are now ready to formulate the main result in this section.

4 In every day usage the words “open” and “closed” are antonyms: a shop is either open or closed.
In topology, however, a set that contains some but not all its boundary points is neither open nor
closed. See the last set in Fig. 1.
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T H E O R E M 1 3 . 5 . 1 ( E X T R E M E V A L U E T H E O R E M )

Suppose the function f (x, y) is continuous throughout a nonempty, closed and
bounded set S in the plane. Then there exists both a point (a, b) in S where f

has a minimum and a point (c, d) in S where f has a maximum—that is,

f (a, b) ≤ f (x, y) ≤ f (c, d) for all (x, y) in S

Theorem 13.5.1 is a pure existence theorem. It tells us nothing about how to find the extreme
points. Its proof is found in most advanced calculus books and in FMEA. Also, even though
the conditions of the theorem are sufficient to ensure the existence of extreme points, they
are far from necessary. (See Note 8.4.1.)

Finding Maxima and Minima

Sections 13.1 and 13.2 presented some simple cases where we could find the maximum
and minimum points of a function of two variables by finding its stationary points. The
procedure set out in the following frame covers many additional optimization problems.

F I N D I N G M A X I M A A N D M I N I M A

Find the maximum and minimum values of a differentiable function f (x, y)

defined on a closed, bounded set S in the plane.

Solution:

(I) Find all stationary points of f in the interior of S.

(II) Find the largest value and the smallest value of f on the boundary of S, along
with the associated points. (If it is convenient to subdivide the boundary
into several pieces, find the largest and smallest value on each piece of the
boundary.)

(III) Compute the values of the function at all the points found in (I) and (II). The
largest function value is the maximum value of f in S. The smallest function
value is the minimum value of f in S.

(1)

We try out this procedure on the function whose graph is depicted in Fig. 2 below. (Because
the function is not specified analytically, we can only give a rough geometric argument.) The
function has a rectangular domain S of points (x, y) in the xy-plane. The only stationary
point of f it includes is (x0, y0), which corresponds to the point P of the graph. The boundary
of S consists of four straight-line segments. The point R vertically above one corner point
of S represents the maximum value of f along the boundary; similarly, Q represents the
minimum value of f along the boundary. The only candidates for a maximum/minimum
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are, therefore, the three points P , Q, and R. By comparing the values of f at these points,
we see that P represents the minimum value, whereas R represents the maximum value of
f in S.

z � f (x, y)

(x0 , y0)

PQ

S

Rz

y

x

Figure 2

As an aspiring economist you will be glad to hear that most optimization problems in
economics, especially those appearing in textbooks, rarely create enough difficulties to call
for the full recipe. Usually there is an interior optimum that can be found by equating all the
first-order partial derivatives to zero. Conditions that are sufficient for this easier approach
to work were already discussed in Section 13.2. Nevertheless, we consider an example of
a harder problem which illustrates how the whole recipe is sometimes needed. This recipe
is also needed in several of the problems for this section. In particular, Problem 3 gives an
economic example.

E X A M P L E 1 Find the extreme values for f (x, y) defined over S when

f (x, y) = x2 + y2 + y − 1, S = {(x, y) : x2 + y2 ≤ 1 }

Solution: The set S consists of all the points on or inside the circle of radius 1 centred at
the origin, as shown in Fig. 3. The continuous function f will attain both a maximum and
a minimum over S, by the extreme value theorem.

According to the preceding recipe, we start by finding all the stationary points in the
interior of S. These stationary points satisfy the two equations

f ′
1(x, y) = 2x = 0, f ′

2(x, y) = 2y + 1 = 0

So (x, y) = (0, −1/2) is the only stationary point, and it is in the interior of S, with
f (0, −1/2) = −5/4.

The boundary of S consists of the circle x2 + y2 = 1. Note that if (x, y) lies on this
circle, then in particular both x and y lie in the interval [−1, 1]. Inserting x2 + y2 = 1 into
the expression for f (x, y) shows that, along the boundary of S, the value of f is determined
by the following function of one variable:

g(y) = 1 + y − 1 = y, y ∈ [−1, 1]
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The maximum value of g is 1 for y = 1, and then x = 0. The minimum value is −1 when
y = −1, and then again x = 0.

We have now found the only three possible candidates for extreme points, namely,
(0, −1/2), (0, 1), and (0, −1). But f (0, −1/2) = −5/4, f (0, 1) = 1, and f (0, −1) = −1.
We conclude that the maximum value of f in S is 1, which is attained at (0, 1), whereas the
minimum value is −5/4, attained at (0, −1/2).

1

1

y

x

S

Figure 3 The domain in Example 1

P R O B L E M S F O R S E C T I O N 1 3 . 5

1. Let f (x, y) = 4x − 2x2 − 2y2, S = {(x, y) : x2 + y2 ≤ 25 }.
(a) Compute f ′

1(x, y) and f ′
2(x, y), then find the only stationary point for f .

(b) Find the extreme points for f over S.

⊂SM⊃2. Find the maximum and minimum points for the following:

(a) f (x, y) = x3 + y3 − 9xy + 27 subject to 0 ≤ x ≤ 4 and 0 ≤ y ≤ 4.

(b) f (x, y) = x2 + 2y2 − x subject to x2 + y2 ≤ 1.

⊂SM⊃3. In one study of the quantities x and y of natural gas that Western Europe should import from
Norway and Siberia, respectively, it was assumed that the benefits were given by the function
f (x, y) = 9x + 8y − 6(x + y)2. (The term −6(x + y)2 occurs because the world price of
natural gas rises as total imports increase.) Because of capacity constraints, x and y must satisfy
0 ≤ x ≤ 5 and 0 ≤ y ≤ 3. Finally, for political reasons, it was felt that imports from Norway
should not provide too small a fraction of total imports at the margin, so that x ≥ 2(y − 1), or
equivalently −x + 2y ≤ 2. Thus, the optimization problem was cast as

max f (x, y) = 9x + 8y − 6(x + y)2 subject to 0 ≤ x ≤ 5, 0 ≤ y ≤ 3, −x + 2y ≤ 2

In the xy-plane, draw the set S of all points satisfying the three constraints, and then solve the
problem.

4. (a) Determine values of the constants a, b, and c such that f (x, y) = ax2y + bxy + 2xy2 + c

has a local minimum at the point (2/3, 1/3) with local minimum value −1/9.

(b) With the values of a, b, and c found in part (a), find the maximum and minimum values of
f over S = {(x, y) : x ≥ 0, y ≥ 0, 2x + y ≤ 4}.
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⊂SM⊃5. (a) Find all stationary points of f (x, y) = xe−x(y2 − 4y) and classify them by using the
second-derivative test.

(b) Show that f has neither a global maximum nor a global minimum.

(c) Let S = {(x, y) : 0 ≤ x ≤ 5, 0 ≤ y ≤ 4 }. Prove that f has global maximum and
minimum points in S and find them.

(d) Find the slope of the tangent to the level curve xe−x(y2 − 4y) = e − 4 at the point where
x = 1 and y = 4 − e.

6. Which of the following sets are open, closed, bounded, or compact?

(a) { (x, y) : 5x2 + 5y2 ≤ 9 } (b) { (x, y) : x2 + y2 > 9 } (c) { (x, y) : x2 + y2 ≤ 9 }
(d) { (x, y) : 2x + 5y ≥ 6 } (e) { (x, y) : 5x + 8y = 8 } (f) { (x, y) : 5x + 8y > 8 }

HARDER PROBLEM

7. Give an example of a discontinuous function g of one variable such that the set
{x : g(x) ≤ 1} is not closed.

13.6 Three or More Variables
So far this chapter has considered optimization problems for functions of two variables. In
order to understand modern economic theory we definitely have to extend the analysis to
an arbitrary number of variables.

The extensions of the definitions of maximum and minimum points, extreme points, etc.
are almost obvious. If f (x) = f (x1, . . . , xn) is a function of n variables defined over a set S
in �n, then c = (c1, . . . , cn) is a (global) maximum point for f in S if

f (x) ≤ f (c) for all x in S (1)

Suppose that f is a function of n variables defined over a set S in �n and that f (x) ≤ f (c)
for all x in S, so c maximizes f over S. Then −f (x) ≥ −f (c) for all x in S. Thus,
c maximizes f over S if and only if c minimizes −f over S. We can use this simple
observation to convert maximization problems into minimization problems and vice versa.
(Recall the one-variable illustration in Fig. 8.1.1.)

The concepts of interior and boundary points, and of open, closed, and bounded sets, are
also easy to generalize. First, define the distance between the points x = (x1, . . . , xn) and
y = (y1, . . . , yn) in �n by

‖x − y‖ =
√

(x1 − y1)2 + (x2 − y2)2 + · · · + (xn − yn)2 (2)

For n = 1, 2 and 3 this reduces to the distance concept discussed earlier. In particular, if
y = 0, then

‖x‖ =
√

x2
1 + x2

2 + · · · + x2
n
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is the distance between x and the origin. The number ‖x‖ is also called the norm or length
of the vector x.

An open (n-dimensional) ball with centre at a = (a1, . . . , an) and radius r is the set of
all points x = (x1, . . . , xn) such that ‖x−a‖ < r . The definitions in Section 13.5 of interior
point, open set, boundary point, closed set, bounded set, and compact set all become valid
for sets in �n provided we replace the word “circle” by “ball”.

If g(x) = g(x1, . . . , xn) is a continuous function, and c is a real number, then each of
the three sets

{ x : g(x) ≥ c }, { x : g(x) ≤ c }, { x : g(x) = c }
is closed. If ≥ is replaced by >, ≤ by <, or = by �=, the corresponding set is open.

If A is an arbitrary set in �n, we define the interior of A as the set of interior points in A.
If A is open, the interior of A is equal to the set itself.5

A stationary (or critical) point for a function of n variables is a point where all the
first-order derivatives are 0. We have the following important generalization of Theorem
13.1.1:

T H E O R E M 1 3 . 6 . 1 ( N E C E S S A R Y F I R S T - O R D E R C O N D I T I O N S )

Suppose f is defined in a set S in �n and let c = (c1, . . . , cn) be an interior point
in S where f is differentiable. A necessary condition for c to be a maximum or
minimum point for f is that c is a stationary point for f —that is, x = c satisfies
the n equations

f ′
i (x) = 0, i = 1, . . . , n (first-order conditions, or FOCs)

Proof: Keep i (1 ≤ i ≤ n) fixed and define g(xi) = f (c1, . . . , ci−1, xi , ci+1, . . . , cn), whose
domain consists of those xi such that (c1, . . . , ci−1, xi , ci+1, . . . , cn) belongs to S. If c = (c1, . . . , cn)

is a maximum (or minimum) point for f , then the function g of one variable must attain a maximum
(or minimum) at xi = ci . Because c is an interior point of S, it follows that ci is also an interior
point in the domain of g. Hence, according to Theorem 8.1.1, we must have g′(ci) = 0. But
g′(ci) = f ′

i (c1, . . . , cn), so the conclusion follows.

The extreme value theorem is valid also for functions of n variables:

T H E O R E M 1 3 . 6 . 2 ( E X T R E M E V A L U E T H E O R E M )

Suppose the function f is continuous throughout a nonempty, closed and
bounded set S in �n. Then there exist both a point d in S where f has a minimum
and a point c in S where f has a maximum—that is,

f (d) ≤ f (x) ≤ f (c) for all x in S

5 These topological definitions and results are dealt with in some detail in FMEA.
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If f (x) is defined over a set S in �n, then the maximum and minimum points (if there are
any) must lie either in the interior of S or on the boundary of S. According to Theorem
13.6.1, if f is differentiable, then any maximum or minimum point in the interior must
satisfy the first-order conditions. Consequently, the recipe in (13.5.1) is also valid for any
function of n variables defined on a closed and bounded set in �n.

Both the local and the global second-order conditions for the two-variable case can be
generalized to functions of n variables, though they become considerably more complicated.
This will be discussed in FMEA.

A Useful Result

A simple result, which is nevertheless of considerable interest in theoretical economics, is
often expressed as follows: Maximizing a function is equivalent to maximizing a strictly
increasing transformation of that function. For instance, suppose we want to find all pairs
(x, y) that maximize f (x, y) over a set S in the xy-plane. Then we can just as well try to
find those (x, y) that maximize over S any one of the following objective functions:

(i) af (x, y) + b (a > 0) (ii) ef (x,y) (iii) ln f (x, y)

(In case (iii), we must assume that f (x, y) > 0 over S.) The maximum points are exactly
the same. But the maximum values are, of course, quite different. As a concrete example,
because the transformation u �→ ln u is strictly increasing when u > 0, the problem

maximize ex2+2xy2−y3
subject to (x, y) ∈ S

has the same solutions for x and y as the problem

maximize x2 + 2xy2 − y3 subject to (x, y) ∈ S

In general, it is easy to prove the following result:

T H E O R E M 1 3 . 6 . 3

Suppose f (x) = f (x1, . . . , xn) is defined over a set S in �n, let F be a function
of one variable defined over the range of f , and let c be a point in S. Define g

over S by
g(x) = F(f (x))

Then:

(a) If F is increasing and c maximizes (minimizes) f over S, then c also maxi-
mizes (minimizes) g over S.

(b) If F is strictly increasing, then c maximizes (minimizes) f over S if and
only if c maximizes (minimizes) g over S.
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Proof: (For the maximization case—the argument in the minimization case is entirely
similar.)
(a) Because c maximizes f over S, we have f (x) ≤ f (c) for all x in S. But then g(x) =

F(f (x)) ≤ F(f (c)) = g(c) for all x in S, because F is increasing. It follows that c
maximizes g over S.

(b) If F is also strictly increasing and f (x) > f (c), then it must be true that g(x) =
F(f (x)) > F(f (c)) = g(c). So g(x) ≤ g(c) for all x in S implies that f (x) ≤ f (c)
for all x in S.

NOTE 1 The proof of Theorem 13.6.3 is extremely simple. No continuity or differenti-
ability assumptions are required. Instead, the proof is based only on the concepts of
maximum/minimum, and of increasing/strictly increasing functions. Some people ap-
pear to distrust such simple, direct arguments and replace them by inefficient or even
insufficient arguments based on “differentiating everything in sight” in order to use
first- or second-order conditions. Such distrust merely makes matters unnecessarily
complicated and risks introducing errors.

P R O B L E M S F O R S E C T I O N 1 3 . 6

1. Each of the following functions has a maximum point. Find it.

(a) f (x, y, z) = 2x − x2 + 10y − y2 + 3 − z2

(b) f (x, y, z) = 3 − x2 − 2y2 − 3z2 − 2xy − 2xz

2. (a) Suppose f (x) = e−x2
and F(u) = ln u. Verify that f (x) has a maximum at x = 0 if and

only if g(x) = F(f (x)) has a maximum at x = 0.

(b) Suppose f (x) = e−x2
and F(u) = 5. Then g(x) = F(f (x)) = 5. Explain why this

example shows that implication (a) in Theorem 13.6.3 cannot be reversed. (Recall that we
call a constant function increasing.)

3. Suppose g(x) = F(f (x)) where f : �n → � and F : � → � are differentiable functions,
with F ′ �= 0 everywhere. Prove that x is a stationary point for f if and only if it is a stationary
point for g.

⊂SM⊃4. Find the first-order partial derivatives of the function of three variables given by

f (x, y, z) = −2x3 + 15x2 − 36x + 2y − 3z +
∫ z

y

et2
dt

Then determine its eight stationary points.

5. Suggest how to simplify the following problems:

(a) max 1
2

(
ex2+y2−2x − e−(x2+y2−2x)

)
subject to (x, y) ∈ S

(b) max Ax
a1
1 · · · xan

n subject to x1 + x2 + · · · + xn = 1

Assume in (b) that A > 0 and x1 > 0, . . . , xn > 0.
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13.7 Comparative Statics and the Envelope Theorem
Optimization problems in economics usually involve maximizing or minimizing functions
which depend not only on endogenous variables one can choose, but also on one or more
exogenous parameters like prices, tax rates, income levels, etc. Although these parameters
are held constant during the optimization, they vary according to the economic situation.
For example, we may calculate a firm’s profit-maximizing input and output quantities while
treating the prices it faces as parameters. But then we may want to know how the optimal
quantities respond to changes in those prices, or in whatever other exogenous parameters
affect the problem we are considering.

Consider first the following simple problem. A function f depends on a single variable
x as well as on a single parameter r . We wish to maximize or minimize f (x, r) w.r.t. x

while keeping r constant:
max(min)x f (x, r)

The value of x that maximizes (minimizes) f will usually depend on r , so we denote it by
x∗(r). Inserting x∗(r) into f (x, r), we obtain

f ∗(r) = f (x∗(r), r) (the value function)

What happens to the value function as r changes? Assuming that f ∗(r) is differentiable,
the chain rule yields

df ∗(r)
dr

= f ′
1(x

∗(r), r)
dx∗(r)

dr
+ f ′

2(x
∗(r), r)

If f (x, r) has an extreme point at an interior point x∗(r) in the domain of variation for x,
then f ′

1(x
∗(r), r) = 0. It follows that

df ∗(r)
dr

= f ′
2(x

∗(r), r) (1)

Note that when r is changed, then f ∗(r) changes for two reasons. First, a change in r

changes the value of f ∗ directly because r is the second variable in f (x, r). Second, a
change in r changes the value of the function x∗(r), and hence f (x∗(r), r) is changed
indirectly. Formula (1) shows that the total effect is simply found by computing the partial
derivative of f (x∗(r), r) w.r.t. r , ignoring entirely the indirect effect of the dependence of
x∗ on r . At first sight, this seems very surprising. On further reflection, however, you may
realize that the first-order condition for x∗(r) to maximize f (x, r) w.r.t. x implies that any
small change in x, whether or not it is induced by a small change in r , must have a negligible
effect on the value of f (x∗, r).

E X A M P L E 1 Suppose that when a firm produces and sells x units of a commodity, it has revenue
R(x) = rx, while the cost is C(x) = x2, where r is a positive parameter. The profit is then

π(x, r) = R(x) − C(x) = rx − x2

Find the optimal choice x∗ of x, and verify (1) in this case.
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Solution: The quadratic profit function has a maximum when π ′
1 = r − 2x = 0, that is for

x∗ = r/2. So the maximum profit as a function of r is given by π∗(r) = rx∗ − (x∗)2 =
r(r/2) − (r/2)2 = r2/4, and then dπ∗/dr = r/2. Using formula (1) is much more direct:
because π ′

2(x, r) = x, it implies that dπ∗/dr = π ′
2(x

∗(r), r) = x∗(r) = 1
2 r .

E X A M P L E 2 In Example 8.6.5 we studied a firm with the profit function π̂(Q, t) = R(Q)−C(Q)−tQ,
where t denoted a tax per unit produced. Let Q∗ = Q∗(t) denote the optimal choice of Q

as a function of the tax rate t , and let π∗(t) be the corresponding value function. Because
π̂ ′

2 = −Q, formula (1) yields

dπ∗(t)
dt

= π̂ ′
2(Q

∗(t), t) = −Q∗(t)

which is the same result found earlier.

It is easy to generalize (1) to the case with many choice variables and many parameters. We
let x = (x1, . . . , xn), and r = (r1, . . . , rk). Then we can formulate the following result:

E N V E L O P E T H E O R E M

If f ∗(r) = maxx f (x, r) and if x∗(r) is the value of x that maximizes f (x, r),
then

∂f ∗(r)
∂rj

=
[
∂f (x, r)

∂rj

]
x=x∗(r)

, j = 1, . . . , k

provided that the partial derivative exists.

(2)

Again, f ∗(r) is the value function. It is easy to prove (2) by using the first-order conditions
to eliminate other terms, as in the argument for (1). The same equality holds if we minimize
f (x, r) w.r.t. x instead of maximize (or even if x∗(r) is any stationary point).

y � f *(r)

Kx�

Kx*

Kx�

y

rr

Figure 1 The curve y = f ∗(r) is the envelope of all the curves y = f (x, r)

Figure 1 illustrates (2) in the case where there is only one parameter r . For each fixed value
of x there is a curve Kx in the ry-plane, given by the equation y = f (x, r). Figure 1 shows
some of these curves together with the graph of y = f ∗(r). For all x and all r we have
f (x, r) ≤ maxx f (x, r) = f ∗(r). It follows that none of the Kx-curves can ever lie above
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the curve y = f ∗(r). On the other hand, for each value of r there is at least one value x∗

of x such that f (x∗, r) = f ∗(r), namely the choice of x∗ which solves the maximization
problem for the given value of r . The curve Kx∗ will then just touch the curve y = f ∗(r) at
the point (r, f ∗(r)) = (r, f (x∗, r)), and so must have exactly the same tangent as the graph
of y = f ∗(r) at this point. Moreover, because Kx∗ can never go above this graph, it must
have exactly the same tangent as the graph of f ∗ at the point where the curves touch. The
slope of this common tangent, therefore, must be not only df ∗/dr , the slope of the tangent
to the graph of f ∗ at (r, f ∗(r)), but also ∂f (x∗, r)/∂r , the slope of the tangent to the curve
Kx∗ at the point (r, f (x∗, r)). Equation (2) follows because Kx∗ is the graph of f (x∗, r)
when x∗ is fixed.

As Fig. 1 suggests, the graph of y = f ∗(r) is the lowest curve with the property that it
lies on or above all the curves Kx. So its graph is like an envelope or some “cling film” that
is used to enclose or wrap up all these curves. Indeed, a point is on or below the graph if and
only if it lies on or below one of the curves Kx. For this reason we call the graph of f ∗ the
envelope of the family of Kx-curves. Also, result (2) is often called the envelope theorem.

E X A M P L E 3 In Example 13.1.3, Q = F(K, L) denoted a production function with K as capital input
and L as labour input. The price per unit of the product was p, the price per unit of capital
was r , and the price per unit of labour was w. The profit obtained by using K and L units
of the inputs, then producing and selling F(K, L) units of the product, is given by

π̂(K,L, p, r, w) = pF(K, L) − rK − wL

Here profit has been expressed as a new function π̂ of the parameters p, r , and w, as
well as of the choice variables K and L. We keep p, r , and w fixed and maximize π̂

w.r.t. K and L. The optimal values of K and L are functions of p, r , and w, which we
denote by K∗ = K∗(p, r, w) and L∗ = L∗(p, r, w). The value function for the problem is
π̂∗(p, r, w) = π̂(K∗, L∗, p, r, w). Usually, π̂∗ is called the firm’s profit function, though
it would be more accurately described as the “maximum profit function”. It is found by
taking prices as given and choosing the optimal quantities of all inputs and outputs.

According to (2), one has

∂π̂∗

∂p
= F(K∗, L∗) = Q∗,

∂π̂∗

∂r
= −K∗,

∂π̂∗

∂w
= −L∗ (∗)

These three equalities are instances of what is known in producer theory as Hotelling’s
lemma. An economic interpretation of the middle equality is this: How much profit is lost
if the price of capital increases by a small amount? At the optimum the firm uses K∗ units
of capital, so the answer is K∗ per unit increase in the price. See Problem 4 for further
interesting relationships.

P R O B L E M S F O R S E C T I O N 1 3 . 7

1. (a) A firm produces a single commodity and gets p for each unit sold. The cost of producing
x units is ax + bx2 and the tax per unit is t . Assume that the parameters are positive with
p > a + t . The firm wants to maximize its profit. Find the optimal production x∗ and the
optimal profit π∗.
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(b) Prove that ∂π∗/∂p = x∗, and give an economic interpretation.

⊂SM⊃2. (a) A firm uses capital K , labour L, and land T to produce Q units of a commodity, where

Q = K2/3 + L1/2 + T 1/3

Suppose that the firm is paid a positive price p for each unit it produces, and that the positive
prices it pays per unit of capital, labour, and land are r , w, and q, respectively. Express the
firm’s profits as a function π of (K, L, T ), then find the values of K , L, and T (as functions
of the four prices) that maximize the firm’s profits (assuming a maximum exists).

(b) Let Q∗ denote the optimal number of units produced and K∗ the optimal capital stock.
Show that ∂Q∗/∂r = −∂K∗/∂p.

3. (a) A firm produces Q = a ln(L + 1) units of a commodity when labour input is L units.
The price obtained per unit is P and price per unit of labour is w, both positive, and with
w < aP . Write down the profit function π . What choice of labour input L = L∗ maximizes
profits?

(b) ConsiderL∗ as a function of all the three parameters, L∗(P, w, a), and defineπ∗(P, w, a) =
π(L∗, P , w, a). Verify that ∂π∗/∂P = π ′

P (L∗, P , w, a), ∂π∗/∂w = π ′
w(L∗, P , w, a), and

∂π∗/∂a = π ′
a(L

∗, P , w, a), thus confirming the envelope theorem.

4. With reference to Example 3, assuming that F is a C2 function, prove the symmetry relations:

∂Q∗

∂r
= −∂K∗

∂p
,

∂Q∗

∂w
= −∂L∗

∂p
,

∂L∗

∂r
= ∂K∗

∂w

(Hint: Using the first result in Example 3 andYoung’s theorem, we have the equalities ∂Q∗/∂r =
(∂/∂r)(∂π̂∗/∂p) = (∂/∂p)(∂π̂∗/∂r). Now use the other results in Example 3.)

⊂SM⊃5. (a) With reference to Example 3 we want to study the factor demand functions—in particular
how the optimal choices of capital and labour respond to price changes. By differentiating
the first-order conditions (∗∗) in Example 13.1.3, verify that we get

F ′
K(K∗, L∗) dp + pF ′′

KK(K∗, L∗) dK + pF ′′
KL(K∗, L∗) dL = dr

F ′
L(K∗, L∗) dp + pF ′′

LK(K∗, L∗) dK + pF ′′
LL(K∗, L∗) dL = dw

(b) Use this system to find the partials of K∗ and L∗ w.r.t. p, r , and w. (You might find it easier
first to find ∂K∗/∂p and ∂L∗/∂p by putting dr = dw = 0, etc.)

(c) Assume that the local second-order conditions (∗∗) in Example 13.3.3 are satisfied. What
can you say about the signs of the partial derivatives? In particular, show that the factor
demand curves are downward sloping as functions of their own factor prices. Verify that
∂K∗/∂w = ∂L∗/∂r .

⊂SM⊃6. A profit-maximizing monopolist produces two commodities whose quantities are denoted by
x1 and x2. Good 1 is subsidized at the rate of s per unit and good 2 is taxed at t per unit. The
monopolist’s profit function is therefore given by

π(x1, x2) = R(x1, x2) − C(x1, x2) + sx1 − tx2
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where R and C are the firm’s revenue and cost functions, respectively. Assume that the partial
derivatives of these functions have the following signs:

R′
1 > 0, R′

2 > 0, R′′
11 < 0, R′′

12 = R′′
21 < 0, R′′

22 < 0

C ′
1 > 0, C ′

2 > 0, C ′′
11 > 0, C ′′

12 = C ′′
21 > 0, C ′′

22 > 0

(a) Find the first-order conditions for maximum profits.

(b) Write down the local second-order conditions for maximum profits.

(c) Suppose that x∗
1 = x∗

1 (s, t), x∗
2 = x∗

2 (s, t) solve the problem. Find the signs of ∂x∗
1 /∂s,

∂x∗
1 /∂t , ∂x∗

2 /∂s, and ∂x∗
2 /∂t , assuming that the local second-order conditions are satisfied.

(d) Show that ∂x∗
1 /∂t = −∂x∗

2 /∂s.

R E V I E W P R O B L E M S F O R C H A P T E R 1 3

1. The function f defined for all (x, y) by f (x, y) = −2x2 + 2xy − y2 + 18x − 14y + 4 has a
maximum. Find the corresponding values of x and y. Use Theorem 13.2.1 to prove that it is a
maximum point.

⊂SM⊃2. (a) A firm produces two different kinds A and B of a commodity. The daily cost of producing
Q1 units of A and Q2 units of B is C(Q1, Q2) = 0.1(Q2

1 + Q1Q2 + Q2
2). Suppose that

the firm sells all its output at a price per unit of P1 = 120 for A and P2 = 90 for B. Find
the daily production levels that maximize profits.

(b) If P2 remains unchanged at 90, what new price (P1) per unit of A would imply that the
optimal daily production level for A is 400 units?

3. (a) The profit obtained by a firm from producing and selling x and y units of two brands of a
commodity is given by

P(x, y) = −0.1x2 − 0.2xy − 0.2y2 + 47x + 48y − 600

Find the production levels that maximize profits.

(b) A key raw material is rationed so that total production must be restricted to 200 units. Find
the production levels that now maximize profits.

⊂SM⊃4. Find the stationary points of the following functions:

(a) f (x, y) = x3 − x2y + y2 (b) g(x, y) = xye4x2−5xy+y2

(c) f (x, y) = 4y3 + 12x2y − 24x2 − 24y2

5. Define f (x, y, a) = ax2 − 2x + y2 − 4ay, where a is a parameter. For each fixed a �= 0, find
the point (x∗(a), y∗(a)) that makes the function f stationary w.r.t. (x, y). Find also the value
function f ∗(a) = f (x∗(a), y∗(a), a), and verify the envelope theorem in this case.

⊂SM⊃6. (a) Suppose the production function in Problem 13.7.2 is replaced by Q = Ka + Lb + T c, for
parameters a, b, c ∈ (0, 1). Assuming that a maximum exists, find the values of K , L, and
T that maximize the firm’s profits.

(b) Let π∗ denote the optimal profit as a function of the four prices. Compute the partial
derivative ∂π∗/∂r .

(c) Verify the envelope theorem in this case.
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7. Define f (x, y) for all (x, y) by

f (x, y) = ex+y + ex−y − 3
2 x − 1

2 y

(a) Find the first- and second-order partial derivatives of f , then show that f (x, y) is convex.

(b) Find the minimum point of f (x, y).

⊂SM⊃8. (a) Find and classify the stationary points of

f (x, y) = x2 − y2 − xy − x3

(b) Find the domain S where f is concave, and find the largest value f in S.

⊂SM⊃9. Consider the function f defined for all (x, y) by f (x, y) = 1
2 x2 −x +ay(x −1)− 1

3 y3 +a2y2,
where a is a constant.

(a) Prove that (x∗, y∗) = (1 − a3, a2) is a stationary point of f .

(b) Verify the envelope theorem in this case.

(c) Where in the xy-plane is f convex?

⊂SM⊃10. In this problem we will generalize several of the economic examples and problems considered
so far. Consider a firm that produces two different goods A and B. If the total cost function is
C(x, y) and the prices obtained per unit of A and B are p and q respectively, then the profit is

π(x, y) = px + qy − C(x, y) (i)

(a) Suppose first that the firm has a small share in the markets for both these goods, and so
takes p and q as given. Write down and interpret the first-order conditions for x∗ > 0 and
y∗ > 0 to maximize profits.

(b) Suppose next that the firm has a monopoly in the sale of both goods. The prices are no
longer fixed, but chosen by the monopolist, bearing in mind the demand functions

x = f (p, q) and y = g(p, q) (ii)

Suppose we solve equations (ii) for p and q to obtain the inverse demand functions

p = F(x, y) and q = G(x, y) (iii)

Then profit as a function of x and y is

π(x, y) = xF(x, y) + yG(x, y) − C(x, y) (iv)

Write down and interpret the first-order conditions for x∗ > 0 and y∗ > 0 to maximize
profits.

(c) Suppose p = a − bx − cy and q = α −βx − γy, where b and γ are positive. (An increase
in the price of either good decreases the demand for that good, but may increase or decrease
the demand for the other good.) If the cost function is C(x, y) = Px + Qy + R, write
down the first-order conditions for maximum profit.

(d) Prove that the (global) second-order conditions are satisfied provided 4γ b ≥ (β + c)2.
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Mathematics is removed from this turmoil of human life, but its

methods and the relations are a mirror, an incredibly pure mirror,

of the relations that link facts of our existence.

—Konrad Knopp (1928)

The previous chapter 13 introduced unconstrained optimization problems with several vari-

ables. In economics, however, the variables to be chosen must often satisfy one or more

constraints. Accordingly, this chapter considers constrained optimization problems, and studies

the method of Lagrange multipliers in some detail. Sections 14.1–14.7 treat equality constraints,

with Section 14.7 presenting some comparative static results and the envelope theorem. More

general constrained optimization problems allowing inequality constraints are introduced in Sec-

tions 14.8–14.10. A much fuller treatment of constrained optimization can be found in FMEA.

14.1 The Lagrange Multiplier Method
A typical economic example of a constrained optimization problem concerns a consumer
who chooses how much of the available income m to spend on a good x whose price is
p, and how much income to leave over for expenditure y on other goods. Note that the
consumer then faces the budget constraint px + y = m. Suppose that preferences are
represented by the utility function u(x, y). In mathematical terms the consumer’s problem
can be expressed as

max u(x, y) subject to px + y = m

This is a typical constrained maximization problem. In this case, because y = m − px,
the same problem can be expressed as the unconstrained maximization of the function
h(x) = u(x, m − px) w.r.t. the single variable x. Indeed, this method of converting a
constrained optimization problem involving two variables to a one-variable problem was
used in Section 13.2.

When, however, the constraint involves a complicated function, or there are several
equality constraints to consider, this substitution method might be difficult or even im-
possible to carry out in practice. In such cases, economists make much use of the Lagrange
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multiplier method.1 Actually, this method is often used even for problems that are quite
easy to express as unconstrained problems. One reason is that Lagrange multipliers have
an important economic interpretation. In addition, a similar method works for many more
complicated optimization problems, such as those where the constraints are expressed in
terms of inequalities.

We start with the problem of maximizing (or minimizing) a function f (x, y) of two
variables, when x and y are restricted to satisfy an equality constraint g(x, y) = c. This can
be written as

max(min) f (x, y) subject to g(x, y) = c (1)

The first step of the method is to introduce a Lagrange multiplier, often denoted by λ,
which is associated with the constraint g(x, y) = c. Then we define the Lagrangian L by

L(x, y) = f (x, y) − λ(g(x, y) − c) (2)

in which the expression g(x, y) − c, which must be 0 when the constraint is satisfied, has
been multiplied by λ. Note that L(x, y) = f (x, y) for all (x, y) that satisfy the constraint
g(x, y) = c.

The Lagrange multiplier λ is a constant, so the partial derivatives of L(x, y) w.r.t. x and
y are L′

1(x, y) = f ′
1(x, y) − λg′

1(x, y) and L′
2(x, y) = f ′

2(x, y) − λg′
2(x, y), respectively.

As will be explained algebraically and geometrically in Section 14.4, except in rare cases
a solution of problem (1) can only be a point (x, y) where, for a suitable value of λ, the
first-order partial derivatives of L vanish, and also the constraint g(x, y) = c is satisfied.

Here is a simple economic application.

E X A M P L E 1 A consumer has the utility function U(x, y) = xy and faces the budget constraint
2x + y = 100. Find the only solution candidate to the consumer demand problem

maximize xy subject to 2x + y = 100

Solution: The Lagrangian is L(x, y) = xy − λ(2x + y − 100). Including the constraint,
the first-order conditions for the solution of the problem are

L′
1(x, y) = y − 2λ = 0, L′

2(x, y) = x − λ = 0, 2x + y = 100

The first two equations imply that y = 2λ and x = λ. So y = 2x. Inserting this into the
constraint yields 2x + 2x = 100. So x = 25 and y = 50, implying that λ = x = 25.

This solution can be confirmed by the substitution method. From 2x + y = 100 we
get y = 100 − 2x, so the problem is reduced to maximizing the unconstrained function
h(x) = x(100 − 2x) = −2x2 + 100x. Since h′(x) = −4x + 100 = 0 gives x = 25, and
h′′(x) = −4 < 0 for all x, this shows that x = 25 is a maximum point.

1 Named after its discoverer, the Italian-born French mathematician J. L. Lagrange (1736–1813).
The Danish economist Harald Westergaard seems to be the first who used it in economics, in 1876.
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Example 1 illustrates the following general method:2

T H E L A G R A N G E M U L T I P L I E R M E T H O D

To find the only possible solutions of the problem

maximize (minimize) f (x, y) subject to g(x, y) = c

proceed as follows:

(I) Write down the Lagrangian

L(x, y) = f (x, y) − λ(g(x, y) − c)

where λ is a constant.

(II) Differentiate L w.r.t. x and y, and equate the partial derivatives to 0.

(III) The two equations in (II), together with the constraint, yield the following
three equations:

L′
1(x, y) = f ′

1(x, y) − λg′
1(x, y) = 0

L′
2(x, y) = f ′

2(x, y) − λg′
2(x, y) = 0

g(x, y) = c

(IV) Solve these three equations simultaneously for the three unknowns x, y,
and λ. These triples (x, y, λ) are the solution candidates, at least one of
which solves the problem (if it has a solution).

The conditions in (III) are called the first-order conditions for problem (1).

NOTE 1 Some economists prefer to consider the Lagrangian as a function L(x, y, λ)

of three variables. Then the first-order condition ∂L/∂λ = −(g(x, y) − c) = 0 yields
the constraint. In this way all the three necessary conditions are obtained by equating the
partial derivatives of the (extended) Lagrangian to 0. However, it does seem somewhat
unnatural to perform a differentiation to get an obvious necessary condition, namely the
constraint equation. Also, this procedure can easily lead to trouble when treating problems
with inequality constraints, so we prefer to avoid it.

E X A M P L E 2 A single-product firm intends to produce 30 units of output as cheaply as possible. By
using K units of capital and L units of labour, it can produce

√
K + L units. Suppose the

prices of capital and labour are, respectively, 1 and 20. The firm’s problem is then:

minimize K + 20L subject to
√

K + L = 30

Find the optimal choices of K and L.

2 If g′
1(x, y) and g′

2(x, y) both vanish, the method might fail to give the right answer.
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Solution: The Lagrangian is L = K+20L−λ(
√

K+L−30), so the first-order conditions
are:

L′
K = 1 − λ/2

√
K = 0 , L′

L = 20 − λ = 0 ,
√

K + L = 30

The second equation gives λ = 20, which inserted into the first equation yields 1 =
20/2

√
K . It follows that

√
K = 10, and hence K = 100. Inserted into the constraint

this gives
√

100 + L = 30, and hence L = 20. The 30 units are therefore produced in the
cheapest way when the firm uses 100 units of capital and 20 units of labour. The associated
cost is K + 20L = 500. (Theorem 14.5.1 will tell us that this is the solution because L is
convex in (K, L).)

An economist would be inclined to ask: What is the additional cost of producing 31
rather than 30 units? Solving the problem with the constraint

√
K + L = 31, we see that

still λ = 20 and K = 100, while L = 31 − 10 = 21. The associated minimum cost is
100 + 20 · 21 = 520, so the additional cost is 520 − 500 = 20. This is precisely equal to
the Lagrange multiplier! Thus, in this case the Lagrange multiplier tells us by how much
costs increase if the production requirement is increased by one unit from 30 to 31.

E X A M P L E 3 A consumer who has Cobb–Douglas utility function U(x, y) = Axayb faces the budget
constraint px + qy = m, where A, a, b, p, q, and m are all positive constants. Find the
only solution candidate to the consumer demand problem

max Axayb subject to px + qy = m (∗)

Solution: The Lagrangian is L(x, y) = Axayb − λ(px + qy − m), so the first-order
conditions are

L′
1(x, y) = aAxa−1yb − λp = 0, L′

2(x, y) = bAxayb−1 − λq = 0, px + qy = m

Solving the first two equations for λ yields

λ = aAxa−1yb/p = bAxayb−1/q

Cancelling the common factor Axa−1yb−1 from the last two fractions gives

ay/p = bx/q

Solving this equation for qy yields qy = (b/a)px, which inserted into the budget constraint
gives px + (b/a)px = m. From this equation we find x and then y. The results are the
following demand functions:

x = x(p, q, m) = a

a + b

m

p
, y = y(p, q, m) = b

a + b

m

q
(∗∗)

(It follows from (∗∗) that for all t one has x(tp, tq, tm) = x(p, q, m) and y(tp, tq, tm) =
y(p, q, m), so the demand functions are homogeneous of degree 0. This is as one should ex-
pect because, if (p, q, m) is changed to (tp, tq, tm), then the constraint in (∗) is unchanged,
and so the optimal choices of x and y are unchanged. See also Example 12.7.4.)
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The solution we have found makes good sense. In the utility function Axayb, the relative
sizes of the coefficients a and b indicate the relative importance of x and y in the individual’s
preferences. For instance, if a is larger than b, then the consumer values a 1% increase in
x more than a 1% increase in y. The product px is the amount spent on the first good, and
(∗∗) says that the consumer should spend the fraction a/(a +b) of income on this good and
the fraction b/(a + b) on the second good.

Formula (∗∗) can be applied immediately to find the correct answer to thousands of
exam problems in mathematical economics courses given each year all over the world! But
note that the utility function has to be of the Cobb–Douglas type Axayb. For the problem
max xa + yb subject to px + qy = m, the solution is not given by (∗∗). (Assuming that
0 < a < 1, see Problem 9 for the case when b = 1, and Problem 14.5.4 for the case when
a = b.)

WARNING: There is an underlying assumption in problem (∗) that x ≥ 0 and y ≥ 0.
Thus, we maximize a continuous function Axayb over a closed bounded set S = {(x, y) :
px + qy = m, x ≥ 0, y ≥ 0}. According to the extreme value theorem, a maximum
must exist. Since utility is 0 when x = 0 or when y = 0, and positive at the point given
by (∗∗), this point indeed solves the problem. Without nonnegativity conditions on x and
y, however, the problem might fail to have a maximum. Indeed, consider the problem
max x2y subject to x + y = 1. For any t , the pair (x, y) = (−t, 1 + t) satisfies the
constraint, yet x2y = t2(1 + t) → ∞ as t → ∞, so there is no maximum.

E X A M P L E 4 Examine the general utility maximizing problem with two goods:

maximize u(x, y) subject to px + qy = m (3)

Solution: The Lagrangian is L(x, y) = u(x, y) − λ(px + qy − m), so the first-order
conditions are

L′
x(x, y) = u′

x(x, y) − λp = 0 (i)

L′
y(x, y) = u′

y(x, y) − λq = 0 (ii)

px + qy = m (iiii)

From equation (i) we get λ = u′
x(x, y)/p, and from (ii), λ = u′

y(x, y)/q. Hence,

u′
x(x, y)

p
= u′

y(x, y)

q
, which can be rewritten as

u′
x(x, y)

u′
y(x, y)

= p

q
(4)

The left-hand side of the last equation is the marginal rate of substitution (MRS) (see
Section 12.5). Utility maximization thus requires equating the MRS to the price ratio p/q.

A geometric interpretation of (4) is that the consumer should choose the point on the
budget line at which the slope of the level curve of the utility function, −u′

x(x, y)/u′
y(x, y),

is equal to the slope of the budget line, −p/q. (See Section 12.3.) Thus at the optimal point
the budget line is tangent to a level curve of the utility function, illustrated by point P in
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Figure 1. The level curves of the utility function are the indifference curves, along which the
utility level is constant by definition. Thus, utility is maximized at a point where the budget
line is tangent to an indifference curve. The fact that λ = u′

x(x, y)/p = u′
y(x, y)/q at point

P means that the marginal utility per dollar is the same for both goods. At any other point
(x, y) where, for example, u′

x(x, y)/p > u′
y(x, y)/q, the consumer can increase utility by

shifting expenditure away from y toward x. Indeed, then the increase in utility per extra
dollar spent on x would equal u′

x(x, y)/p; this exceeds the decrease in utility per dollar
reduction in the amount spent on y, which equals u′

y(x, y)/q.
As in Example 3, the optimal choices of x and y can be expressed as demand functions

of (p, q, m), which must be homogeneous of degree zero in the three variables together.

u(x, y) � c1

u(x, y) � c2

u(x, y) � c3

px � qy � m

y

x

P

Figure 1 Assuming that c1 < c2 < c3 < · · · , the solution
to problem (3) is at P .

P R O B L E M S F O R S E C T I O N 1 4 . 1

All the following problems have only one solution candidate, which is the optimal solution.

1. (a) Use Lagrange’s method to find the only possible solution to the problem:

max xy subject to x + 3y = 24

(b) Check the solution by using the results in Example 3.

2. Use the Lagrange’s method to solve the problem

min −40Q1 + Q2
1 − 2Q1Q2 − 20Q2 + Q2

2 subject to Q1 + Q2 = 15

3. Use the results in Example 3 to solve the following problems.

(a) max 10x1/2y1/3 subject to 2x + 4y = m.

(b) max x1/2y1/2 subject to 50 000x + 0.08y = 1 000 000

(c) max 12x
√

y subject to 3x + 4y = 12

⊂SM⊃4. Solve the following problems:

(a) min f (x, y) = x2 + y2 subject to g(x, y) = x + 2y = 4

(b) min f (x, y) = x2 + 2y2 subject to g(x, y) = x + y = 12

(c) max f (x, y) = x2 + 3xy + y2 subject to g(x, y) = x + y = 100
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5. A person has utility function
u(x, y) = 100xy + x + 2y

Suppose that the price per unit of x is $2, and that the price per unit of y is $4. The person
receives $1000 that all has to be spent on the two commodities x and y. Solve the utility
maximization problem.

6. An individual has a Cobb–Douglas utility function U(m, l) = Amalb, where m is income and
l is leisure. Here A, a, and b are positive constants, with a + b ≤ 1. A total of T0 hours are
allocated between work W and leisure l, so that W + l = T0. If the hourly wage is w, then
m = wW , and the individual’s problem is

max Amalb subject to (m/w) + l = T0

Solve the problem by using (∗∗) in Example 3.

7. Solve Problem 13.R.3(b) by using the Lagrange method.

8. A firm produces and sells two commodities. By selling x tons of the first commodity the firm
gets a price per ton given by p = 96 − 4x. By selling y tons of the other commodity the price
per ton is given by q = 84 − 2y. The total cost of producing and selling x tons of the first
commodity and y tons of the second is given by C(x, y) = 2x2 + 2xy + y2.

(a) Show that the firm’s profit function is P(x, y) = −6x2 − 3y2 − 2xy + 96x + 84y.

(b) Compute the first-order partial derivatives of P , and find its only stationary point.

(c) Suppose that the firm’s production activity causes so much pollution that the authorities
limit its output to 11 tons in total. Solve the firm’s maximization problem in this case. Verify
that the production restrictions do reduce the maximum possible value of P(x, y).

⊂SM⊃9. Consider the utility maximization problem

max xa + y subject to px + y = m

where all constants are positive, a ∈ (0, 1).

(a) Find the demand functions, x∗(p, m) and y∗(p, m).

(b) Find the partial derivatives of the demand functions w.r.t. p and m, and check their signs.

(c) How does the optimal expenditure on the x good vary with p? (Check the elasticity of
px∗(p, m) w.r.t. p.)

(d) Put a = 1/2. What are the demand functions in this case? Denote the maximal utility
as a function of p and m by U∗(p, m), the value function, also called the indirect utility
function. Verify that ∂U∗/∂p = −x∗(p, m).

HARDER PROBLEM

⊂SM⊃10. Consider the problem

max U(x, y) = 100 − e−x − e−y subject to px + qy = m

(a) Write down the first-order conditions for the problem and solve them for x, y, and λ as
functions of p, q, and m. What assumptions are needed for x and y to be nonnegative?

(b) Verify that x and y are homogeneous of degree 0 as functions of p, q, and m.
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14.2 Interpreting the Lagrange Multiplier
Consider again the problem

max(min) f (x, y) subject to g(x, y) = c

Suppose x∗ and y∗ are the values of x and y that solve this problem. In general, x∗ and y∗

depend on c. We assume that x∗ = x∗(c) and y∗ = y∗(c) are differentiable functions of c.
The associated value of f (x, y) is then also a function of c, with

f ∗(c) = f (x∗(c), y∗(c)) (1)

Here f ∗(c) is called the (optimal) value function for the problem. Of course, the associ-
ated value of the Lagrange multiplier also depends on c, in general. Provided that certain
regularity conditions are satisfied, we have the remarkable result that

df ∗(c)
dc

= λ(c) (2)

Thus, the Lagrange multiplier λ = λ(c) is the rate at which the optimal value of the objective
function changes with respect to changes in the constraint constant c.

In particular, if dc is a small change in c, then

f ∗(c + dc) − f ∗(c) ≈ λ(c) dc (3)

In economic applications, c often denotes the available stock of some resource, and f (x, y)

denotes utility or profit. Then λ(c) dc measures the approximate change in utility or profit
that can be obtained from dc units more (or −dc less, when dc < 0). Economists call λ a
shadow price of the resource. If f ∗(c) is the maximum profit when the resource input is
c, then (3) says that λ indicates the approximate increase in profit per unit increase in the
resource.

Proof of (2) (assuming that f ∗(c) is differentiable): Taking the differential of (1) gives

df ∗(c) = df (x∗, y∗) = f ′
1(x

∗, y∗) dx∗ + f ′
2(x

∗, y∗) dy∗ (∗)

But from the first-order conditions we have f ′
1(x

∗, y∗) = λg′
1(x

∗, y∗) and f ′
2(x

∗, y∗) =
λg′

2(x
∗, y∗), so (∗) can be written as

df ∗(c) = λg′
1(x

∗, y∗) dx∗ +λg′
2(x

∗, y∗) dy∗ = λ[g′
1(x

∗, y∗) dx∗ +g′
2(x

∗, y∗) dy∗] (∗∗)

Moreover, taking the differential of the identity g(x∗(c), y∗(c)) = c yields

dg(x∗, y∗) = g′
1(x

∗, y∗) dx∗ + g′
2(x

∗, y∗) dy∗ = dc

Substituting the last equality in (∗∗) implies that df ∗(c) = λ dc
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E X A M P L E 1 Consider the following generalization of Example 14.1.1:

max xy subject to 2x + y = m

The first-order conditions again give y = 2x with λ = x. The constraint now becomes
2x + 2x = m, so x = m/4. In the notation introduced above, the solution is

x∗(m) = m/4, y∗(m) = m/2, λ(m) = m/4

The value function is therefore f ∗(m) = (m/4)(m/2) = m2/8. It follows that df ∗(m)/dm

= m/4 = λ(m). Hence (2) is confirmed. Suppose in particular that m = 100. Then
f ∗(100) = 1002/8. What happens to the value function if m = 100 increases by 1? The
new value is f ∗(101) = 1012/8, so f ∗(101) − f ∗(100) = 1012/8 − 1002/8 = 25.125.
Note that formula (3) with dc = 1 gives f ∗(101) − f ∗(100) ≈ λ(100) · 1 = 25 · 1 = 25,
which is quite close to the exact value 25.125.

E X A M P L E 2 Suppose Q = F(K, L) denotes the output of a state-owned firm when the input of
capital is K and that of labour is L. Suppose the prices of capital and labour are r and w,
respectively, and that the firm is given a total budget of m to spend on the two input factors.
The firm wishes to find the choice of inputs it can afford that maximizes output. So it faces
the problem

max F(K, L) subject to rK + wL = m

Solving this problem by using Lagrange’s method, the value of the Lagrange multiplier will
tells us approximately the increase in output if m is increased by 1 dollar.

Consider, for example, the specific problem

max 120KL subject to 2K + 5L = m

Note that this is mathematically a special case of the problem in Example 14.1.3. Only the
notation is different, along with the fact that the consumer has been replaced with a firm.
From (∗∗) in Example 14.1.3 we find the solution

K∗ = 1
4m, L∗ = 1

10m, with λ = 6m

The optimal output is Q∗(m) = 120K∗L∗ = 120 1
4m 1

10m = 3m2, so dQ∗/dm = 6m = λ,
and (2) is confirmed.

P R O B L E M S F O R S E C T I O N 1 4 . 2

1. Verify that equation (2) holds for the problem: max x3y subject to 2x + 3y = m.

2. (a) With reference to Example 14.1.2, solve the problem

minimize rK + wL subject to
√

K + L = Q

assuming that Q > w/2r , where r , w, and Q are positive constants.

(b) Verify (2) in this case.
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3. (a) Consider the problem of minimizing x2 + y2 subject to x + 2y = a (where a is a constant).
Solve the problem by transforming it into an unconstrained optimization problem with one
variable.

(b) Show that the Lagrange method leads to the same solution. Verify (2) in this case.

(c) Explain the solution by studying the level curves of f (x, y) = x2 +y2 and the graph of the
straight line x + 2y = a. Can you give a geometric interpretation of the problem? Does
the corresponding maximization problem have a solution?

⊂SM⊃4. (a) Solve the utility maximization problem

max U(x, y) = √
x + y subject to x + 4y = 100

using the Lagrange method, i.e. find the quantities demanded of the two goods.

(b) Suppose income increases from 100 to 101. What is the exact increase in the optimal value
of U(x, y)? Compare with the value found in (a) for the Lagrange multiplier.

(c) Suppose we change the budget constraint to px + qy = m, but keep the same utility
function. Derive the quantities demanded of the two goods if m > q2/4p.

⊂SM⊃5. (a) Consider the consumer demand problem

max
x, y

[
U(x, y) = α ln(x − a) + β ln(y − b)

]
subject to px + qy = m (∗)

where α, β, a, b, p, q, and m are positive constants with α + β = 1, and moreover, with
m > ap + bq. Show that if x∗, y∗ solve problem (∗), then expenditure on the two goods is
given by the two linear functions

px∗ = αm + pa − α(pa + qb), qy∗ = βm + qb − β(pa + qb) (∗∗)

of the variables (m, p, q). (This is a special case of the linear expenditure system that the
British economist R. Stone fitted to UK consumption data in the Economic Journal, 1954.)

(b) Let U ∗(p, q, m) = U(x∗, y∗) denote the indirect utility function. Show that ∂U∗/∂m > 0

and verify the so-called Roy’s identities,
∂U∗

∂p
= −∂U ∗

∂m
x∗ and

∂U∗

∂q
= −∂U ∗

∂m
y∗.

HARDER PROBLEM

⊂SM⊃6. An oil producer starts extracting oil from a well at time t = 0, and ends at a time t = T

that the producer chooses. Suppose that the output flow at any time t in the interval [0, T ] is
xt (T − t) barrels per unit of time, where the intensity x can also be chosen. The total amount
of oil extracted in the given time span is thus given by the function g(x, T ) = ∫ T

0 xt (T − t) dt

of x and T . Assume further that the sales price per barrel at time t is p = 1+ t , and that the cost
per barrel extracted is equal to αT 2, where α is a positive constant. The profit per unit of time
is then (1 + t − αT 2)xt (T − t), so that the total profit earned during the time interval [0, T ] is
a function of x and T given by f (x, T ) = ∫ T

0 (1 + t − αT 2) xt (T − t) dt . If the total amount
of extractable oil in the field is M barrels, the producer can choose values of x and T such that
g(x, T ) = M . The producer’s problem is thus

max f (x, T ) subject to g(x, T ) = M (∗)

Find explicit expressions for f (x, T ) and g(x, T ) by calculating the given integrals, and then
solve problem (∗). Verify Equation (2) in this case.
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14.3 Several Solution Candidates
In all our examples and problems so far, the recipe for solving constrained optimization
problems has produced only one solution candidate. In this section we consider a problem
where there are several solution candidates. In such cases we have to decide which of the
candidates actually solves the problem, assuming it has any solution at all.

E X A M P L E 1 Solve the problem

max (min) f (x, y) = x2 + y2 subject to g(x, y) = x2 + xy + y2 = 3

Solution: The Lagrangian in this case is L(x, y) = x2 + y2 − λ(x2 + xy + y2 − 3), and
the three equations to consider are

L′
1(x, y) = 2x − λ(2x + y) = 0 (i)

L′
2(x, y) = 2y − λ(x + 2y) = 0 (ii)

x2 + xy + y2 − 3 = 0 (iii)

Let us eliminate λ from (i) and (ii). From (i) we get λ = 2x/(2x + y) provided y = −2x.
Inserting this value of λ into (ii) gives

2y = 2x

2x + y
(x + 2y), or y2 = x2, and so y = ±x

Suppose y = x. Then (iii) yields x2 = 1, so x = 1 or x = −1. This gives the two solution
candidates (x, y) = (1, 1) and (−1, −1), with λ = 2/3.

Suppose y = −x. Then (iii) yields x2 = 3, so x = √
3 or x = −√

3. This gives the two
solution candidates (x, y) = (

√
3, −√

3) and (−√
3,

√
3), with λ = 2.

It remains to consider the case y = −2x. Then from (i), x = 0 and so y = 0. But this
contradicts (iii), so this case cannot occur.

We have found the only four points (x, y) that can solve the problem. Furthermore,

f (1, 1) = f (−1, −1) = 2 , f (
√

3, −√
3) = f (−√

3,
√

3) = 6

We conclude that if the problem has solutions, then (1, 1) and (−1, −1) solve the minimiz-
ation problem, whereas (

√
3, −√

3) and (−√
3,

√
3) solve the maximization problem.

y

x

(1, 1)

(�1, �1)

(��3, �3)

(�3, ��3)

Figure 1 The constraint curve in Example 1
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Geometrically, the equality constraint determines an ellipse. The problem is therefore to
find what points on the ellipse are nearest to or furthest from the origin. See Fig. 1. It is
“geometrically obvious” that such points exist.

Here is an alternative way of proving that (x, y) = (1, 1) minimizes f (x, y) = x2 + y2 subject to
the constraint x2 + xy + y2 = 3. (The other points can be treated in the same way.) Note, however,
that this method works only in special cases.

Let x = 1 + h and y = 1 + k. Thus h and k measure the deviation of x and y, respectively,
from 1. Then f (x, y) takes the form

f (x, y) = (1 + h)2 + (1 + k)2 = 2 + 2(h + k) + h2 + k2 (∗)

If (x, y) = (1 + h, 1 + k) satisfies the constraint, then (1 + h)2 + (1 + h)(1 + k) + (1 + k)2 = 3, so
h + k = −hk/3 − (h2 + k2)/3. Inserting this expression for h + k into (∗) yields

f (x, y) = 2 + 2
[− 1

3 hk − 1
3 (h2 + k2)

] + h2 + k2 = 2 + 1
3 (h − k)2

Because 1
3 (h− k)2 ≥ 0 for all (h, k), it follows that f (x, y) ≥ 2 for all values of (x, y). But because

f (1, 1) = 2, this means that (1, 1) really does minimize f (x, y) subject to the constraint.

P R O B L E M S F O R S E C T I O N 1 4 . 3

⊂SM⊃1. (a) max(min) 3xy subject to x2 + y2 = 8

(b) max(min) x + y subject to x2 + 3xy + 3y2 = 3

⊂SM⊃2. In (b) you can take it for granted that the minimum value exists.

(a) max x2 + y2 − 2x + 1 subject to x2 + 4y2 = 16

(b) min ln(2 + x2) + y2 subject to x2 + 2y = 2

3. (a) Find the solutions to the necessary conditions for the problem max(min) f (x, y) = x + y

subject to g(x, y) = x2 + y = 1.

(b) Explain the solution geometrically by drawing appropriate level curves for f (x, y) together
with the graph of the parabola x2 +y = 1. Does the associated minimization problem have
a solution?

(c) Replace the constraint by x2 + y = 1.1, and solve the problem in this case. Find the
corresponding change in the optimal value of f (x, y) = x + y, and check to see if this
change is approximately equal to λ · 0.1, as suggested by (14.2.3).

⊂SM⊃4. (a) Solve the problem

max f (x, y) = 24x − x2 + 16y − 2y2 subject to g(x, y) = x2 + 2y2 = 44

(b) What is the approximate change in the optimal value of f (x, y) if 44 is changed to 45?
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14.4 Why the Lagrange Method Works
We have explained the Lagrange multiplier method for solving the problem

max(min) f (x, y) subject to g(x, y) = c (1)

In this section we give a geometric as well as an analytic argument for the method.

A Geometric Argument
The maximization problem in (1) can be given a geometric interpretation, as shown in Fig. 1.
The graph of f is like the surface of an inverted bowl, whereas the equation g(x, y) = c

represents a curve in the xy-plane. The curve K on the bowl is the one that lies directly
above the curve g(x, y) = c. (The latter curve is the projection of K onto the xy-plane.)
Maximizing f (x, y) without taking the constraint into account gets us to the peak A in
Fig. 1. The solution to problem (1), however, is at B, which is the highest point on the curve
K . If we think of the graph of f as representing a mountain, and K as a mountain path,
then we seek the highest point on the path, which is B. Analytically, the problem is to find
the coordinates of B.

z � f (x, y)

 g (x, y) � c

A

B
K

z

y

x

 g (x, y) � c

y

x

P

A�

B� Q

Figure 1 Illustrating a Lagrange problem

The right half of Fig. 1 shows some of the level curves for f , and also indicates the constraint
curve g(x, y) = c. Now A′ represents the point at which f (x, y) has its unconstrained (free)
maximum. The closer a level curve of f is to point A′, the higher is the value of f along
that level curve. We are seeking that point on the constraint curve g(x, y) = c where f has
its highest value. If we start at point P on the constraint curve and move along that curve
toward A′, we encounter level curves with higher and higher values of f .

Obviously, the point Q indicated in Fig. 1 is not the point on g(x, y) = c at which f

has its highest value, because the constraint curve passes through the level curve of f at
that point. Therefore, we can cross a level curve to higher values of f by proceeding further
along the constraint curve. However, when we reach point B ′, we cannot go any higher. It is
intuitively clear that B ′ is the point where the constraint curve touches (without intersecting)
a level curve for f .
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This observation implies that the slope of the tangent to the curve g(x, y) = c at (x, y)

is equal to the slope of the tangent to the level curve of f at that point.
Recall from Section 12.3 that the slope of the level curve F(x, y) = c is given by

dy/dx = −F ′
1(x, y)/F ′

2(x, y). Thus, the condition that the slope of the tangent to g(x, y) =
c is equal to the slope of a level curve for f (x, y) can be expressed analytically as:3

−g′
1(x, y)

g′
2(x, y)

= −f ′
1(x, y)

f ′
2(x, y)

or
f ′

1(x, y)

g′
1(x, y)

= f ′
2(x, y)

g′
2(x, y)

(2)

It follows that a necessary condition for (x, y) to solve problem (1) is that the left- and
right-hand sides of the last equation in (2) are equal at (x, y). Let λ denote the common
value of these fractions. This is the Lagrange multiplier introduced in Section 14.1. With
this definition,

f ′
1(x, y) − λg′

1(x, y) = 0 , f ′
2(x, y) − λg′

2(x, y) = 0 (3)

Using the Lagrangian from Section 14.1, we see that (3) just tells us that the Lagrangian has
a stationary point. An analogous argument for the problem of minimizing f (x, y) subject
to g(x, y) = c gives the same condition.

An Analytic Argument

The geometric argument above is quite convincing. But the analytic argument we are about
to offer is easier to generalize to more than two variables.

So far we have studied the problem of finding the absolute largest or smallest value of
f (x, y) subject to the constraint g(x, y) = c. Sometimes we are interested in studying the
corresponding local extrema. Briefly formulated, the problem is

local max(min) f (x, y) subject to g(x, y) = c (4)

Possible solutions are illustrated in Fig. 2.

f (x, y) � 4
f (x, y) � 3
f (x, y) � 2
f (x, y) � 1

 g (x, y) � c

y

x

P

Q

R

Figure 2 Q, R, and P all satisfy the first-order conditions

The point R is a local minimum point for f (x, y) subject to g(x, y) = c, whereas Q and
P are local maximum points. The global maximum of f (x, y) subject to g(x, y) = c is

3 Disregard for the moment cases where any denominator is 0.
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attained only at P . Each of the points P , Q, and R in Fig. 2 satisfies condition (2), so the
first-order conditions are exactly as before. Let us derive them in a way that does not rely
on geometric intuition. Except in some special cases, the equation g(x, y) = c defines y

implicitly as a differentiable function of x near any local extreme point. Denote this function
by y = h(x). According to formula (12.3.1), provided that g′

2(x, y) = 0, one has

y ′ = h′(x) = −g′
1(x, y)/g′

2(x, y)

Now, the objective function z = f (x, y) = f (x, h(x)) is, in effect, a function of x alone.
By calculating dz/dx while taking into account how y depends on x, we obtain a necessary
condition for local extreme points by equating dz/dx to 0. But

dz

dx
= f ′

1(x, y) + f ′
2(x, y)y ′ (with y ′ = h′(x))

So substituting the previous expression for h′(x) gives the following necessary condition
for (x, y) to solve problem (1):

dz

dx
= f ′

1(x, y) − f ′
2(x, y)

g′
1(x, y)

g′
2(x, y)

= 0 (5)

Assuming that g′
2(x, y) = 0, and defining λ = f ′

2(x, y)/g′
2(x, y), we deduce that the two

equations f ′
1(x, y) − λg′

1(x, y) = 0 and f ′
2(x, y) − λg′

2(x, y) = 0 must both be satisfied.
Hence, the Lagrangian must be stationary at (x, y). The same result holds (by an analogous
argument) provided g′

1(x, y) = 0. To summarize, one can prove the following precise result:

T H E O R E M 1 4 . 4 . 1 ( L A G R A N G E ’ S T H E O R E M )

Suppose that f (x, y) and g(x, y) have continuous partial derivatives in a domain
A of the xy-plane, and that (x0, y0) is both an interior point of A and a local
extreme point for f (x, y) subject to the constraint g(x, y) = c. Suppose further
that g′

1(x0, y0) and g′
2(x0, y0) are not both 0. Then there exists a unique number

λ such that the Lagrangian

L(x, y) = f (x, y) − λ (g(x, y) − c)

has a stationary point at (x0, y0).

Problem 3 asks you to show how trouble can result from uncritical use of the Lagrange
multiplier method, disregarding the assumptions in Theorem 14.4.1. Problem 4 asks you to
show what can go wrong if g′

1(x0, y0) and g′
2(x0, y0) are both 0.

In constrained optimization problems in economics, it is often implicitly assumed that the
variables are nonnegative. This was certainly the case for the specific utility maximization
problem in Example 14.1.3. Because the optimal solutions were positive, nothing was lost
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by disregarding the nonnegativity constraints. Here is an example showing that sometimes
we must take greater care.

E X A M P L E 1 Consider the utility maximization problem

max xy + x + 2y subject to 2x + y = m, x ≥ 0, y ≥ 0

where we have required that the amount of each good is nonnegative. The Lagrangian is L =
xy + x + 2y −λ(2x + y −m). So the first-order conditions (disregarding the nonnegativity
constraints for the moment) are L′

1 = y + 1 − 2λ = 0, L′
2(x, y) = x + 2 − λ = 0.

By eliminating λ, we find that y = 2x + 3. Inserting this into the budget constraint gives
2x + 2x + 3 = m, so x = 1

4 (m − 3). We easily find the corresponding value of y, and the
suggested solution that emerges is x∗ = 1

4 (m − 3), y∗ = 1
2 (m + 3). Note that in the case

when m < 3, then x∗ < 0, so that the expressions we have found for x∗ and y∗ do not solve
the given problem. The solution in this case is, as shown below, x∗ = 0, y∗ = m. (So when
income is low, the consumer should spend everything on just one commodity.)

Let us analyse the problem by converting it to one that is unconstrained. To do this, note
how the constraint implies that y = m − 2x. In order for both x and y to be nonnegative,
one must require 0 ≤ x ≤ m/2 and 0 ≤ y ≤ m. Substituting y = m − 2x into the utility
function, we obtain utility as function U(x) of x alone, where

U(x) = x(m − 2x) + x + 2(m − 2x) = −2x2 + (m − 3)x + 2m, x ∈ [0, m/2]

This is a quadratic function with x = 1
4 (m − 3) as the stationary point. If m > 3, it is an

interior stationary point for the concave function U , so it is a maximum point. If m ≤ 3,
then U ′(x) = −4x + (m− 3) ≤ 0 for all x ≥ 0. Because of the constraint x ≥ 0, it follows
that U(x) must have its largest value for x = 0.

Optimization problems with inequality constraints are generally known as nonlinear pro-
gramming problems. Some relatively simple cases are discussed in Sections 14.8 and 14.9.
A much more systematic treatment of nonlinear programming is included in FMEA.

WARNING: One of the most frequently occurring errors in the economics literature (even
in some leading textbooks) concerning the Lagrange multiplier method is the claim that it
transforms a constrained optimization problem into one of finding an unconstrained optimum
of the Lagrangian. Problem 1 shows that this is wrong. What the method does instead is to
transform a constrained optimization problem into one of finding the appropriate stationary
points of the Lagrangian. Sometimes these are maximum points, but often they are not.

P R O B L E M S F O R S E C T I O N 1 4 . 4

1. Consider the problem max xy subject to x + y = 2. Show that (x, y) = (1, 1), with λ = 1, is
the only solution of the first-order conditions. (That this is indeed the solution of the problem
is easily seen by reducing it to the one-variable problem of maximizing xy = x(2 − x).)
But (1, 1) does not maximize the Lagrangian L(x, y) = xy − 1 · (x + y − 2). Why not?
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2. The following text taken from a book on mathematics for management contains grave errors. Sort
them out. “Consider the general problem of finding the extreme points of z = f (x, y) subject
to the constraint g(x, y) = 0. Clearly the extreme points must satisfy the pair of equations
f ′

x(x, y) = 0, f ′
y(x, y) = 0 in addition to the constraint g(x, y) = 0. Thus, there are three

equations that must be satisfied by the pair of unknowns x, y. Because there are more equations
than unknowns, the system is said to be overdetermined and, in general, is difficult to solve. In
order to facilitate computation . . . ” (A description of the Lagrange method follows.)

HARDER PROBLEMS

3. Consider the problem max f (x, y) = 2x + 3y subject to g(x, y) = √
x + √

y = 5.

(a) Show that the Lagrange multiplier method suggests the wrong solution (x, y) = (9, 4).
(Note that f (9, 4) = 30, and yet f (25, 0) = 50.)

(b) Solve the problem by studying the level curves of f (x, y) = 2x + 3y together with the
graph of the constraint equation. (See Problem 5.4.2.)

(c) Which assumption of Theorem 14.4.1 is violated?

⊂SM⊃4. The functions f and g are defined by

f (x, y) = (x + 2)2 + y2 and g(x, y) = y2 − x(x + 1)2

Find the minimum value of f (x, y) subject to g(x, y) = 0. Show that the Lagrange multiplier
method cannot locate this minimum. (Hint: Draw a graph of g(x, y) = 0. Note in particular
that g(−1, 0) = 0.)

14.5 Sufficient Conditions
Under the hypotheses of Theorem 14.4.1, the Lagrange multiplier method for the problem

max(min) f (x, y) subject to g(x, y) = c (1)

gives necessary conditions for the solution. In order to confirm that we have really found the
solution, however, a more careful check is needed. The examples and problems of Section
14.3 have geometric interpretations which strongly suggest we have found the solution.
Indeed, if the constraint set is closed and bounded, then the extreme value theorem 13.6.2
guarantees that a continuous function will attain both maximum and minimum values over
this set. A case in point is Example 14.3.1, where the constraint set is closed and bounded
(see Fig. 14.3.1), so the continuous function f (x, y) = x2 +y2 will attain both a maximum
value and a minimum value over the constraint set. Since there are 4 points satisfying
the first-order conditions, it remains only to check which of them gives f its highest and
lowest value. (To test your understanding of when this procedure can be used, explain why
it certainly works in Problems 14.3.1(a) and 14.3.2(a), but not in Problem 14.3.2(b), to
mention just a few.) Finally, in some cases, ad hoc methods of the kind illustrated at the end
of Example 14.3.1 can be used.
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Concave/Convex Lagrangian
If (x0, y0) does solve problem (1), then the Lagrangian L(x, y) = f (x, y)−λ(g(x, y)−c)

is stationary at (x0, y0), but L does not necessarily have a maximum (minimum) at (x0, y0)

(see Problem 14.4.1). Suppose, however, that L(x, y) happens to reach a global maximum
at (x0, y0) — that is, (x0, y0) maximizes L(x, y) among all (x, y). Then

L(x0, y0) = f (x0, y0) − λ(g(x0, y0) − c) ≥ L(x, y) = f (x, y) − λ(g(x, y) − c) (∗)

for all (x, y). If (x0, y0) also satisfies the constraint g(x0, y0) = c, then from (∗) we conclude
that f (x0, y0) ≥ f (x, y) for all (x, y) such that g(x, y) = c. Hence, (x0, y0) really does
solve the maximization problem (1).

A corresponding result is obtained for the minimization problem in (1), provided that
L(x, y) reaches a global minimum at (x0, y0).

Next, we recall from Theorem 13.2.1 and Note 13.2.2 that a stationary point (x0, y0) for
a concave (convex) function really does maximize (minimize) the function. Thus we have
the following result:

T H E O R E M 1 4 . 5 . 1 ( C O N C A V E / C O N V E X L A G R A N G I A N )

Consider problem (1) and suppose (x0, y0) is a stationary point for the Lagrangian
L(x, y) = f (x, y) − λ(g(x, y) − c).

(A) If the Lagrangian is concave, then (x0, y0) solves the maximization problem.

(B) If the Lagrangian is convex, then (x0, y0) solves the minimization problem.

E X A M P L E 1 Consider a firm that uses positive inputs K and L of capital and labour, respectively,
to produce a single output Q according to the Cobb–Douglas production function Q =
F(K, L) = AKaLb, where A, a, and b are positive parameters satisfying a + b ≤ 1.
Suppose that the prices of capital and labour are r > 0 and w > 0, respectively. The
cost-minimizing inputs of K and L must solve the problem

min rK + wL subject to AKaLb = Q

Explain why the Lagrangian is convex, so that a stationary point of the Lagrangian must
minimize costs. (Hint: See Problem 13.2.8.)

Solution: The Lagrangian is L = rK + wL − λ(AKaLb − Q), and the first-order con-
ditions are r = λAaKa−1Lb and w = λAbKaLb−1, implying that λ > 0. From Problem
13.2.8 we see that −L is concave, so L is convex.

Local Second-Order Conditions
Sometimes we are interested in conditions that are sufficient for (x0, y0) to be a local
extreme point of f (x, y) subject to g(x, y) = c. We start by looking at the expression for
dz/dx given by (14.4.5). The condition dz/dx = 0 is necessary for local optimality. If also
d2z/dx2 < 0, then a stationary point of the Lagrangian must solve the local maximization
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problem. The derivative d2z/dx2 is just the total derivative of dz/dx w.r.t. x. Assuming
that both f and g are C2 functions, and recalling that y is a function of x, it follows from
(14.4.5) that

d2z

dx2
= f ′′

11 + f ′′
12y

′ − (f ′′
21 + f ′′

22y
′)

g′
1

g′
2

− f ′
2
(g′′

11 + g′′
12y

′)g′
2 − (g′′

21 + g′′
22y

′)g′
1

(g′
2)

2

But f and g are C2 functions, so f ′′
12 = f ′′

21 and g′′
12 = g′′

21. Moreover, y ′ = −g′
1/g

′
2.

Also f ′
1 = λg′

1 and f ′
2 = λg′

2, because these are the first-order conditions. Using these
relationships to eliminate y ′ and f ′

2, as well as some elementary algebra, we obtain

d2z

dx2
= 1

(g′
2)

2

[
(f ′′

11 − λg′′
11)(g

′
2)

2 − 2(f ′′
12 − λg′′

12)g
′
1g

′
2 + (f ′′

22 − λg′′
22)(g

′
1)

2]
We see that d2z/dx2 < 0 provided the expression in the square brackets is < 0. Thus we
have the following result:

T H E O R E M 1 4 . 5 . 2 ( L O C A L S E C O N D - O R D E R C O N D I T I O N S )

Consider the problem

local max(min) f (x, y) subject to g(x, y) = c

and suppose that (x0, y0) satisfies the first-order conditions f ′
1(x, y) = λg′

1(x, y),
f ′

2(x, y) = λg′
2(x, y). Define

D(x, y, λ) = (f ′′
11 − λg′′

11)(g
′
2)

2 − 2(f ′′
12 − λg′′

12)g
′
1g

′
2 + (f ′′

22 − λg′′
22)(g

′
1)

2

(A) If D(x0, y0, λ) < 0, then (x0, y0) solves the local maximization problem.

(B) If D(x0, y0, λ) > 0, then (x0, y0) solves the local minimization problem.

The conditions on the sign of D(x0, y0, λ) are called the (local) second-order conditions.

E X A M P L E 2 Consider the problem

local max (min) f (x, y) = x2 + y2 subject to g(x, y) = x2 + xy + y2 = 3

In Example 14.3.1 we saw that the first-order conditions give the points (1, 1) and (−1, −1)

with λ = 2/3, as well as (
√

3, −√
3) and (−√

3,
√

3) with λ = 2. Use Theorem 14.5.2 to
check the local second-order conditions in this case.

Solution: We find that f ′′
11 = 2, f ′′

12 = 0, f ′′
22 = 2, g′′

11 = 2, g′′
12 = 1, and g′′

22 = 2. So

D(x, y, λ) = (2 − 2λ)(x + 2y)2 + 2λ(2x + y)(x + 2y) + (2 − 2λ)(2x + y)2

Hence D(1, 1, 2
3 ) = D(−1, −1, 2

3 ) = 24 and D(
√

3, −√
3, 2) = D(−√

3,
√

3, 2) = −24.
From the signs of D, we conclude that (1, 1) and (−1, −1) are local minimum points,
whereas (

√
3, −√

3) and (−√
3,

√
3) are local maximum points. (In Example 14.3.1 we

actually proved that these points were global extreme points.)
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For those who are familiar with 3 × 3 determinants (see Section 16.2), the rather lengthy expression
D(x, y, λ) can be written in a symmetric form that is easier to remember. In fact,

D(x, y, λ) = −

∣∣∣∣∣∣∣
0 g′

1(x, y) g′
2(x, y)

g′
1(x, y) L′′

11(x, y) L′′
12(x, y)

g′
2(x, y) L′′

21(x, y) L′′
22(x, y)

∣∣∣∣∣∣∣ (2)

Note that the 2×2 matrix at the bottom right of (2) is the Hessian of the Lagrangian (see Section 11.6).
So the determinant is naturally called a bordered Hessian; its borders in the first row and first column,
apart from the 0 element in the top left position, are the first-order partial derivatives of g.

P R O B L E M S F O R S E C T I O N 1 4 . 5

1. Use Theorem 14.5.1 to check that the optimal solution is found in Problem 14.1.3(a).

2. Consider the utility maximizing problem max ln x + ln y subject to px + qy = m. Compute
D(x, y, λ) in Theorem 14.5.2 in this case, and verify that the second-order condition in that
theorem is satisfied. (Note that the Lagrangian is actually concave, as is easily checked, so
the unique solution (x, y) = (m/p, m/2q) to the first-order conditions is actually a global
constrained maximum for this problem.)

3. Compute D(x, y, λ) in Theorem 14.5.2 for Problem 14.2.3(a). Conclusion?

⊂SM⊃4. Prove that U(x, y) = xa + ya , a ∈ (0, 1), is concave when x > 0, y > 0. Solve the consumer
demand problem

max xa + ya subject to px + qy = m

14.6 Additional Variables and Constraints
Constrained optimization problems in economics usually involve more than just two vari-
ables. The typical problem with n variables can be written in the form

max(min) f (x1, . . . , xn) subject to g(x1, . . . , xn) = c (1)

The Lagrange multiplier method presented in the previous sections can be easily generalized.
As before, associate a Lagrange multiplier λ with the constraint and form the Lagrangian

L(x1, . . . , xn) = f (x1, . . . , xn) − λ
(
g(x1, . . . , xn) − c

)
(2)

Next, find all the first-order partial derivatives of L and equate them to zero, so that

L′
1 = f ′

1(x1, . . . , xn) − λg′
1(x1, . . . , xn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L′
n = f ′

n(x1, . . . , xn) − λg′
n(x1, . . . , xn) = 0

(3)

These n equations, together with the constraint, form n + 1 equations that should be solved
simultaneously to determine the n + 1 unknowns x1, . . . , xn, and λ.
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NOTE 1 This method will (in general) fail to give correct necessary conditions if all the first-
order partial derivatives of g(x1, . . . , xn) vanish at the stationary point of the Lagrangian.
Otherwise, the proof is an easy generalization of the analytic argument in Section 14.4 for
the first-order conditions. If, say, ∂g/∂xn = 0, we “solve” g(x1, . . . , xn) = c for xn near
the stationary point, and thus reduce the problem to an unconstrained extremum problem in
the remaining n − 1 variables x1, . . . , xn−1.

E X A M P L E 1 Solve the consumer’s demand problem

max U(x, y, z) = x2y3z subject to x + y + z = 12

Solution: With L(x, y, z) = x2y3z − λ(x + y + z − 12), the first-order conditions are

L′
1 = 2xy3z − λ = 0 , L′

2 = 3x2y2z − λ = 0 , L′
3 = x2y3 − λ = 0 (∗)

If any of the variables x, y, and z is 0, then x2y3z = 0, which is not the maximum value.
So suppose that x, y, and z are all positive. From the two first equations in (∗), we have
2xy3z = 3x2y2z, so y = 3x/2. The first and third equations in (∗) likewise imply that
z = x/2. Inserting y = 3x/2 and z = x/2 into the constraint yields x + 3x/2 + x/2 = 12,
so x = 4. Then y = 6 and z = 2. Thus, the only possible solution is (x, y, z) = (4, 6, 2).

E X A M P L E 2 Solve the problem

minimize f (x, y, z) = (x − 4)2 + (y − 4)2 + (
z − 1

2

)2
subject to x2 + y2 = z

Can you supply a geometric interpretation of the problem?

Solution: The Lagrangian is L(x, y, z) = (x −4)2 + (y −4)2 +(
z− 1

2

)2 −λ(x2 +y2 −z),
and the first-order conditions are:

L′
1(x, y, z) = 2(x − 4) − 2λx = 0 (i)

L′
2(x, y, z) = 2(y − 4) − 2λy = 0 (ii)

L′
3(x, y, z) = 2

(
z − 1

2

) + λ = 0 (iii)

x2 + y2 = z (iv)

From (i) we see that x = 0 is impossible. Equation (i) thus gives λ = 1 − 4/x. Inserting
this into (ii) and (iii) gives y = x and z = 2/x. Using these results, equation (iv) reduces
to 2x2 = 2/x, that is, x3 = 1, so x = 1. It follows that (x, y, z) = (1, 1, 2) is the only
solution candidate to the problem.

The expression (x−4)2 +(y−4)2 +(z−1/2)2 measures the square of the distance from
the point (4, 4, 1/2) to the point (x, y, z). The set of points (x, y, z) that satisfy z = x2 +y2

is a surface known as a paraboloid, part of which is shown in Fig. 1. The minimization
problem is therefore to find that point on the paraboloid which has the smallest (square)
distance from (4, 4, 1/2). It is “geometrically obvious” that this problem has a solution. On
the other hand, the problem of finding the largest distance from (4, 4, 1/2) to a point on the
paraboloid does not have a solution, because the distance can be made as large as we like.
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z � x2 � y2

4

4

z

y

x

Figure 1

E X A M P L E 3 The general consumer optimization problem with n goods is

max
x1,...,xn

U(x1, . . . , xn) subject to p1x1 + · · · + pnxn = m (4)

where U is defined for x1 ≥ 0, . . . , xn ≥ 0. The Lagrangian is

L(x1, . . . , xn) = U(x1, . . . , xn) − λ(p1x1 + · · · + pnxn − m)

The first-order conditions are

L′
i (x1, . . . , xn) = U ′

i (x1, . . . , xn) − λpi = 0, i = 1, . . . , n

Writing x = (x1, . . . , xn), we have

U ′
1(x)

p1
= U ′

2(x)

p2
= · · · = U ′

n(x)

pn

= λ (5)

Apart from the last equation, which serves only to determine the Lagrange multiplier λ, we
have n − 1 equations. (For n = 2, there is one equation; for n = 3, there are two equations;
and so on.) In addition, the constraint must hold. Thus, we have n equations to determine
the values of x1, . . . , xn. From (5) it also follows that

U ′
j (x)

U ′
k(x)

= pj

pk

for every pair of goods j and k (6)

The left-hand side is the marginal rate of substitution (MRS) of good k for good j , whereas
the right-hand side is their price ratio, or rate of exchange of good k for good j . So condition
(6) equates the MRS for each pair of goods to the corresponding price ratio.

Consider the equations in (5), together with the budget constraint. Assume that this
system is solved for x1, . . . , xn and λ as functions of p1, . . . , pn and m, giving xi =
Di(p1, . . . , pn, m), for i = 1, . . . , n. Then Di(p1, . . . , pn, m) gives the amount of the
ith commodity demanded by the individual when facing prices p1, . . . , pn and income m.
For this reason D1, . . . , Dn are called the (individual) demand functions. By the same
argument as in Example 14.1.3, the demand functions are homogeneous of degree 0. As one
check that you have correctly derived the demand functions, it is a good idea to verify that the
functions you find are indeed homogeneous of degree 0, and satisfy the budget constraint.



Essential Math. for Econ. Analysis, 4th edn EME4_C14.TEX, 16 May 2012, 14:24 Page 519

S E C T I O N 1 4 . 6 / A D D I T I O N A L V A R I A B L E S A N D C O N S T R A I N T S 519

In the case when the consumer has a Cobb–Douglas utility function, the constrained
maximization problem is

max Ax
a1
1 · · · xan

n subject to p1x1 + · · · + pnxn = m (∗)

where we assume that each “taste” parameter ai > 0. Then the demand functions are

Di(p1, . . . , pn, m) = ai

a1 + · · · + an

m

pi

, i = 1, . . . , n (∗∗)

(see Problem 8(a)). We see how the pattern of the two-variable case in Example 14.1.3
is repeated, with a constant fraction of income m spent on each good, independent of all
prices. Note also that the demand for any good i is completely unaffected by changes in the
price of any other good. This is an argument against using Cobb–Douglas utility functions,
because we expect realistic demand functions to depend on prices of other goods that are
either complements or substitutes.

More Constraints

Occasionally economists need to consider optimization problems with more than one equal-
ity constraint (although it is much more common to have many inequality constraints). The
corresponding general Lagrange problem is

max(min) f (x1, . . . , xn) subject to

⎧⎨
⎩

g1(x1, . . . , xn) = c1

. . . . . . . . . . . . . . . . . . .

gm(x1, . . . , xn) = cm

(7)

The Lagrange multiplier method can be extended to treat problem (7). To do so, associate
a Lagrange multiplier with each constraint, then form the Lagrangian sum

L(x1, . . . , xn) = f (x1, . . . , xn) −
m∑

j=1

λj

(
gj (x1, . . . , xn) − cj

)
(8)

Except in special cases, this Lagrangian must be stationary at any optimal point. That is, its
partial derivative w.r.t. each variable xi must vanish. Hence,

∂L

∂xi

= ∂f (x1, . . . , xn)

∂xi

−
m∑

j=1

λj

∂gj (x1, . . . , xn)

∂xi

= 0 , i = 1, 2, . . . , n (9)

Together with the m equality constraints, these n equations form a total of n + m equations
in the n + m unknowns x1, . . . , xn, λ1, . . . , λm.

E X A M P L E 4 Solve the problem

min x2 + y2 + z2 subject to

{
x + 2y + z = 30 (i)

2x − y − 3z = 10 (ii)
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Solution: The Lagrangian is

L(x, y, z) = x2 + y2 + z2 − λ1(x + 2y + z − 30) − λ2(2x − y − 3z − 10)

The first-order conditions (9) require that

∂L

∂x
= 2x − λ1 − 2λ2 = 0 (iii)

∂L

∂y
= 2y − 2λ1 + λ2 = 0 (iv)

∂L

∂z
= 2z − λ1 + 3λ2 = 0 (v)

So there are five equations, (i) to (v), to determine the five unknowns x, y, z, λ1, and λ2.
Solving (iii) and (iv) simultaneously for λ1 and λ2 gives

λ1 = 2
5x + 4

5y , λ2 = 4
5x − 2

5y

Inserting these expressions for λ1 and λ2 into (v) and rearranging yields

x − y + z = 0 (vi)

This equation together with (i) and (ii) constitutes a system of three linear equations in the
unknowns x, y, and z. Solving this system by elimination gives (x, y, z) = (10, 10, 0). The
corresponding values of the multipliers are λ1 = 12 and λ2 = 4.

Here is a geometric argument to confirm that we have solved the minimization problem.
Each of the two constraints represents a plane in �3, and the points satisfying both constraints
consequently lie on the straight line where the two planes intersect. Now x2 + y2 + z2

measures (the square of) the distance from the origin to a point on this straight line, which
we want to make as small as possible by choosing the point on the line that is nearest to the
origin. No maximum distance can possibly exist, but it is geometrically obvious that there
is a minimum distance, and it must be attained at this nearest point.

An easier alternative method to solve this particular problem is to reduce it to a one-
variable optimization problem by using (i) and (ii) to get y = 20 − x and z = x − 10, the
equations of the straight line where the planes intersect. Then the square of the distance
from the origin is x2 + y2 + z2 = x2 + (20 − x)2 + (x − 10)2 = 3(x − 10)2 + 200, and
this function is easily seen to have a minimum when x = 10. See also Problem 5.

P R O B L E M S F O R S E C T I O N 1 4 . 6

1. Consider the problem min x2 + y2 + z2 subject to x + y + z = 1.

(a) Write down the Lagrangian for this problem, and find the only point (x, y, z) that satisfies
the necessary conditions.

(b) Give a geometric argument for the existence of a solution. Does the corresponding maxi-
mization problem have any solution?

2. Use the result in (∗∗) in Example 3 to solve the utility maximizing problem

max 10x1/2y1/3z1/4 subject to 4x + 3y + 6z = 390
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3. A consumer’s demands x, y, z for three goods are chosen to maximize the utility function

U(x, y, z) = x + √
y − 1/z (x ≥ 0, y > 0, z > 0)

subject to the budget constraint px + qy + rz = m, where p, q, r > 0 and m ≥ √
pr + p2/4q.

(a) Write out the first-order conditions for a constrained maximum.

(b) Find the utility-maximizing demands for all three goods as functions of the four variables
(p, q, r, m).

(c) Show that the maximized utility is given by the indirect utility function

U ∗(p, q, r, m) = m

p
+ p

4q
− 2

√
r

p

(d) Find ∂U ∗/∂m and comment on your answer.

4. Each week an individual consumes quantities x and y of two goods, and works for l hours.
These three quantities are chosen to maximize the utility function

U(x, y, l) = α ln x + β ln y + (1 − α − β) ln(L − l)

which is defined for 0 ≤ l < L and for x, y > 0. Here α and β are positive parameters satisfying
α + β < 1. The individual faces the budget constraint px + qy = wl, where w is the wage
per hour. Define γ = (α + β)/(1 − α − β). Find the individual’s demands x∗, y∗, and labour
supply l∗ as functions of p, q, and w.

5. Consider the problem in Example 4, and let (x, y, z) = (10+h, 10+k, l). Show that if (x, y, z)

satisfies both constraints, then k = −h and l = h. Then show that x2 + y2 + z2 = 200 + 3h2.
Conclusion?

6. A statistical problem requires solving

min a2
1x

2
1 + a2

2x
2
2 + · · · + a2

nx
2
n subject to x1 + x2 + · · · + xn = 1

Here all the constants ai are nonzero. Solve the problem, taking it for granted that the minimum
value exists. What is the solution if one of the ai’s is zero?

⊂SM⊃7. Solve the problem:

max(min) x + y subject to

{
x2 + 2y2 + z2 = 1
x + y + z = 1

HARDER PROBLEM

⊂SM⊃8. Consider the consumer optimization problem in Example 3. Find the demand functions when:

(a) U(x1, . . . , xn) = Ax
a1
1 · · · xan

n (A > 0, a1 > 0, . . . , an > 0)

(b) U(x1, . . . , xn) = xa
1 + · · · + xa

n (0 < a < 1)
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14.7 Comparative Statics
Equation (14.2.2) offers an economic interpretation of the Lagrange multiplier for the case
of two variables and one constraint. This can be extended to the Lagrange problem with n

variables and m constraints introduced in Section 14.6. That general problem can be written
in the form

max(min) f (x) subject to gj (x) = cj , j = 1, . . . , m (1)

Let x∗
1 , . . . , x∗

n be the values of x1, . . . , xn that satisfy the necessary conditions for the
solution to (1). In general, x∗

1 , . . . , x∗
n depend on the values of c1, . . . , cm. We assume that

each x∗
i = x∗

i (c1, . . . , cm), i = 1, . . . , n is a differentiable function of c1, . . . , cm. The
associated value f ∗ = f (x∗

1 , . . . , x∗
n) of f is then a function of c1, . . . , cm as well.

Indeed, if we put x∗ = (x∗
1 , . . . , x∗

n) and c = (c1, . . . , cm), the resulting value is

f ∗(c) = f (x∗(c)) = f (x∗
1 (c), . . . , x∗

n(c)) (2)

This function f ∗ of the right-hand sides of the equality constraints in (1) is called the
(optimal) value function for problem (1). The m Lagrange multipliers λ1, . . . , λm associ-
ated with x∗ also depend on c. Provided that certain regularity conditions are satisfied, we
have

∂f ∗(c)
∂ci

= λi(c), i = 1, . . . , m (3)

The Lagrange multiplier λi = λi(c) for the ith constraint is the rate at which the optimal
value of the objective function changes w.r.t. changes in the constant ci . The number λi is
referred to as the imputed shadow price (or marginal value) per unit of resource i.

Suppose we change the components of the vector c = (c1, . . . , cm) by the respective
amounts dc = (dc1, . . . , dcm). According to (12.8.2), if dc1, . . . , dcm are all small in
absolute value, using (3) yields

f ∗(c + dc) − f ∗(c) ≈ λ1(c) dc1 + · · · + λm(c) dcm (4)

E X A M P L E 1 Consider Example 4 in the previous section, and suppose we change the first constraint
to x+2y+z = 31 and the second constraint to 2x−y−3z = 9. Estimate the corresponding
change in the value function by using (4). Find also the new exact value of the value function.

Solution: Using the notation introduced above and the results in Example 14.6.4, we
have c1 = 30, c2 = 10, dc1 = 1, dc2 = −1, λ1(30, 10) = 12, λ2(30, 10) = 4, and
f ∗(c1, c2) = f ∗(30, 10) = 102 + 102 + 02 = 200. Then (4) yields

f ∗(30 + 1, 10 − 1) − f ∗(30, 10) ≈ λ1(30, 10) dc1 + λ2(30, 10) dc2

= 12 · 1 + 4 · (−1) = 8

Thus, f ∗(31, 9) = f ∗(30 + 1, 10 − 1) ≈ 200 + 8 = 208.
To find the exact value of f ∗(31, 9), observe that (vi) in Example 14.6.4 is still valid.

Thus, we have the three equations x + 2y + z = 31, 2x − y − 3z = 9, x − y + z = 0,
whose solutions for x, y, and z are 151/15, 31/3, and 4/15, respectively. We find that
f ∗(31, 9) = 15614/75 ≈ 208.19.
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The Envelope Theorem

Using vector notation with x = (x1, . . . , xn) and r = (r1, . . . , rk), consider the version

max(min)x f (x, r) subject to gj (x, r) = 0, j = 1, . . . , m (5)

of the Lagrange problem (1) in which both the objective function f and each of the m

different constraint functions gj depend not only on the vector x of variables xi which are to
be chosen, but also on the parameter vector r. Suppose that λj = λj (r), j = 1, . . . , m are
the Lagrange multipliers obtained from the first-order conditions for problem (5), and let
L(x, r) = f (x, r) − ∑m

j=1 λjgj (x, r) be the corresponding Lagrangian. By analogy with
(2), let x∗(r) denote the optimal choice of x when the parameter vector is r, and define

f ∗(r) = f (x∗(r), r) (6)

At the end of this section we prove that if f ∗(r) and x∗(r) are differentiable, the following
result holds:

E N V E L O P E T H E O R E M

∂f ∗(r)
∂ri

=
[
∂L(x, r)

∂ri

]
x=x∗(r)

, i = 1, . . . , k (7)

Economists refer to this as the envelope theorem. It is a very useful general result that
should be studied carefully. When any parameter ri is changed, then f ∗(r) changes for two
reasons: First, a change in ri changes the vector r and thus changes f (x∗(r), r) directly.
Second, a change in ri changes, in general, all the functions x∗

1 (r), . . . , x∗
n(r), which changes

f (x∗(r), r) indirectly. The result in (7) shows that the total effect on the value function of
a small change in ri is found by computing the partial derivative of L(x, r) w.r.t. ri , and
evaluating it at x∗(r), ignoring the indirect effect of the dependence of x∗ on r altogether.
The reason is that any small change in x that preserves the equality constraints of problem
(5) will have a negligible effect on the value of f (x∗, r).

E X A M P L E 2 For Example 14.6.3, let U∗(p1, . . . , pn, m) denote the maximum utility obtainable when
prices are p1, . . . , pn and the income is m. This U∗ is called the indirect utility function.
Using (3) for the Lagrange multiplier λ associated with the budget constraint, we see that

λ = ∂U∗

∂m
(8)

Thus, λ is the rate of increase in maximum utility as income increases. For this reason, λ is
generally called the marginal utility of income.

Including the vector r = (p1, . . . , pn, m) of all parameters, the Lagrangian L(x, r) takes
the form

L(x1, . . . , xn, p1, . . . , pn, m) = U(x1, . . . , xn) − λ(p1x1 + · · · + pnxn − m)
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Obviously, ∂L/∂m = λ and ∂L/∂pi = −λxi . Hence, from (7) we get

∂U∗(p1, . . . , pn, m)

∂m
= ∂L(x∗

1 , . . . , x∗
n, p1, . . . , pn, m)

∂m
= λ

which repeats (8). Moreover,

∂U∗(p1, . . . , pn, m)

∂pi

= ∂L(x∗
1 , . . . , x∗

n, p1, . . . , pn, m)

∂pi

= −λx∗
i

which is the so-called Roy’s identity.4 This formula has a nice interpretation: the marginal
disutility of a price increase is the marginal utility of income (λ) multiplied by the quantity
demanded (x∗

i ). Intuitively, this is because, for a small price change, the loss of real income
is approximately equal to the change in price multiplied by the quantity demanded.

E X A M P L E 3 As an illustration of Roy’s identity, consider the consumer optimization problem with
a Cobb–Douglas utility function, as given by (∗) in Section 14.6 and Problem 14.6.8(a).
Substituting the demands, which are given by (∗∗) in Section 14.6, into the utility function,
we obtain the indirect utility function, where we have defined a = a1 + a2 + · · · + an,

U∗(p1, . . . , pn, m) = A

(
a1m

ap1

)a1

· · ·
(

anm

apn

)an

= Bma

P (p1, . . . , pn)

where B denotes the constant Aa1
a1 · · · an

an/aa , and P = P(p1, . . . , pn) denotes the
function p

a1
1 · · · pan

n . In fact, P is a homogeneous of degree a price index, which is also a
Cobb–Douglas function whose powers match those of the original utility function.

This formula for the indirect utility function implies that ∂U∗/∂m = Bama−1/P , and
also that

∂U∗

∂pi

= −Bma

P 2

∂P

∂pi

= −Bma

P 2

aiP

pi

= −Bama−1

P

aim

api

= −∂U∗

∂m
Di(p1, . . . , pn, m)

This confirms Roy’s identity for the case of a Cobb–Douglas utility function.

E X A M P L E 4 A firm uses K units of capital and L units of labour to produce F(K, L) units of a
commodity. The prices of capital and labour are r and w, respectively. Consider the cost
minimization problem

minimize C = rK + wL subject to F(K, L) = Q

where we want to find the values of K and L that minimize the cost of producing Q units. Let
C∗ = C(r, w, Q) be the value function for the problem. Find ∂C∗/∂r , ∂C∗/∂w, ∂C∗/∂Q.

4 Named after the French economist René Roy. Thus his name should be pronounced like the French
word “roi” (meaning king); a very rough English equivalent is “rwa”.
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Solution: Including the production output requirement Q and the price parameters r

and w, the Lagrangian is L(K, L, r, w, Q) = rK + wL − λ(F (K, L) − Q), whose partial
derivatives are ∂L/∂r = K , ∂L/∂w = L, and ∂L/∂Q = λ. According to the envelope
theorem (7),

∂C∗

∂r
= K∗,

∂C∗

∂w
= L∗,

∂C∗

∂Q
= λ (∗)

The first two equalities are instances of Shephard’s lemma. The last equation shows that
λ must equal marginal cost, the rate at which minimum cost increases w.r.t. changes in
output.

Proof of (7): Using the chain rule to differentiate (6) w.r.t. rh yields

∂f ∗(r)
∂rh

=
n∑

i=1

∂f (x∗(r), r)
∂xi

∂x∗
i (r)

∂rh

+ ∂f (x∗(r), r)
∂rh

(i)

But the corresponding partial derivative of the Lagrangian evaluated at (x∗(r), r) is

∂L(x∗(r), r)
∂rh

= ∂f (x∗(r), r)
∂rh

−
m∑

j=1

λj

∂gj (x∗(r), r)
∂rh

(ii)

Subtracting each side of (ii) from the corresponding side of (i), we obtain

∂f ∗(r)
∂rh

− ∂L(x∗(r), r)
∂rh

=
n∑

i=1

∂f (x∗(r), r)
∂xi

∂x∗
i (r)

∂rh

+
m∑

j=1

λj

∂gj (x∗(r), r)
∂rh

(iii)

Differentiating the left-hand side of each constraint gj (x∗(r), r) = 0 w.r.t. rh, however, yields

n∑
i=1

∂gj (x∗(r), r)
∂xi

∂x∗
i (r)

∂rh

+ ∂gj (x∗(r), r)
∂rh

= 0 (iv)

Using (iv) to substitute for each term ∂gj (x∗(r), r)/∂rh in (iii) gives

∂f ∗(r)
∂rh

− ∂L(x∗(r), r)
∂rh

=
n∑

i=1

[
n∑

i=1

∂f (x∗(r), r)
∂xi

− ∂gj (x∗(r), r)
∂xi

]
∂x∗

i (r)
∂rh

(v)

The terms in square brackets, however, are equal to the partial derivatives ∂L(x∗(r), r)/∂xi which
the first-order conditions require to be 0 for each r at the optimum (x∗(r), r).

NOTE 1 This proof used only the first-order conditions for problem (5). Therefore, the results in
(7) are equally valid if we minimize rather than maximize f (x, r) w.r.t. x. (Conditions sufficient for
f ∗ to be differentiable are discussed in FMEA.)

P R O B L E M S F O R S E C T I O N 1 4 . 7

1. (a) Assuming 0 ≤ a < m/p, find the solution (x∗, y∗) to the utility maximization problem

max x + a ln y subject to px + qy = m

(b) Find the indirect utility function U∗(p, q, m, a) = x∗ + ln y∗, and compute its partial
derivatives w.r.t. p, q, m, and a. Verify the envelope theorem (7).
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⊂SM⊃2. Solve the problem min x + 4y + 3z subject to x2 + 2y2 + 1
3 z2 = b. (Suppose that b > 0 and

take it for granted that the problem has a solution.) Verify that (3) is valid.

3. (a) A firm has L units of labour at its disposal. Its outputs are three different commodities.
Producing x, y, and z units of these commodities requires αx2, βy2, and γ z2 units of
labour, respectively. Solve the problem

max (ax + by + cz) subject to αx2 + βy2 + γ z2 = L

where a, b, c, α, β, and γ are positive constants.

(b) Put a = 4, b = c = 1, α = 1, β = 1
4 , and γ = 1

5 , and show that in this case the problem

in (a) has the solution x = 4
5

√
L, y = 4

5

√
L, and z = √

L. What happens to the maximum
value of 4x + y + z when L increases from 100 to 101? Find both the exact change and the
appropriate linear approximation based on the interpretation of the Lagrange multiplier.

⊂SM⊃4. (a) Solve the problem

max(min) f (x, y, z) = x2 + y2 + z subject to g(x, y, z) = x2 + 2y2 + 4z2 = 1

(The graph of the constraint is the surface of an ellipsoid in �3, a closed and bounded set.)

(b) Suppose the constraint is changed to x2 + 2y2 + 4z2 = 1.02. What is the approximate
change in the maximum value of f (x, y, z)?

⊂SM⊃5. With reference to Example 4, let F(K, L) = K1/2L1/4 and solve the problem, finding explicit
expressions for K∗, L∗, C∗, and λ. Verify the equalities (∗) in Example 3.

6. With reference to Example 4, assuming that the cost function C∗ is a C2 function, prove the
symmetry relation ∂K∗/∂w = ∂L∗/∂r .

7. (a) Assuming that m > q2/4a2p, find the utility-maximizing demand functions x∗(p, q, m, a)

and y∗(p, q, m, a), as well as the indirect utility function U∗(p, q, m, a) = x∗ + ay∗, for
the problem

max
√

x + ay subject to px + qy = m

(b) Find all four partials of U ∗(p, q, m, a) = x∗ + ay∗ and verify the envelope theorem.

14.8 Nonlinear Programming: A Simple Case
So far this chapter has considered how to maximize or minimize a function subject to equality
constraints. The final two sections concern nonlinear programming problems, which involve
inequality constraints. Some particularly simple inequality constraints are those requiring
certain variables to be nonnegative. These often have to be imposed for the solution to
make economic sense. In addition, bounds on resource availability are often expressed as
inequalities rather than equalities.
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In this section we consider the simple nonlinear programming problem

max f (x, y) subject to g(x, y) ≤ c (1)

with just one inequality constraint. Thus, we seek the largest value attained by f (x, y) in
the admissible or feasible set S of all pairs (x, y) satisfying g(x, y) ≤ c.

Problems where one wants to minimize f (x, y) subject to (x, y) ∈ S can be handled by
instead studying the problem of maximizing −f (x, y) subject to (x, y) ∈ S.

Using the methods explained in Chapter 13, problem (1) can be solved by classical
methods. It involves examining not only the stationary points of f in the interior of the
admissible set S, but also the behaviour of f on the boundary of S. However, since the 1950s,
economists have generally tackled such problems by using an extension of the Lagrangian
multiplier method due originally to H. W. Kuhn and A. W. Tucker.

To apply their method, we begin by writing down a recipe giving all the points (x, y) that
can possibly solve problem (1), except in some bizarre cases. The recipe closely resembles
the one we used to solve the Lagrange problem max f (x, y) subject to g(x, y) = c.

R E C I P E F O R S O L V I N G P R O B L E M ( 1 )

A. Associate a constant Lagrange multiplier λ with the constraint g(x, y) ≤ c,
and define the Lagrangian

L(x, y) = f (x, y) − λ
(
g(x, y) − c

)
B. Find where L(x, y) is stationary by equating its partial derivatives to zero:

L′
1(x, y) = f ′

1(x, y) − λg′
1(x, y) = 0

L′
2(x, y) = f ′

2(x, y) − λg′
2(x, y) = 0

(2)

C. Introduce the complementary slackness condition

λ ≥ 0, and λ = 0 if g(x, y) < c (3)

D. Require (x, y) to satisfy the constraint

g(x, y) ≤ c (4)

Find all the points (x, y) that, together with associated values of λ, satisfy all the
conditions B, C, and D. These are the solution candidates, at least one of which
solves the problem (if it has a solution).

Note that the conditions (2) are exactly the same as those used in the Lagrange multiplier
method of Section 14.1. Condition (4) obviously has to be satisfied, so the only new feature
is condition (3). In fact, condition (3) is rather tricky. It requires that λ is nonnegative,
and moreover that λ = 0 if g(x, y) < c. Thus, if λ > 0, we must have g(x, y) = c. An
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alternative formulation of this condition is that

λ ≥ 0, λ · [g(x, y) − c] = 0 (5)

Later we shall see that even in nonlinear programming, the Lagrange multiplier λ can be
interpreted as a “price” per unit associated with increasing the right-hand side c of the
“resource constraint” g(x, y) ≤ c. With this interpretation, prices are nonnegative, and if
the resource constraint is not binding because g(x, y) < c at the optimum, this means that
the price associated with increasing c by one unit is 0.

The two inequalities λ ≥ 0 and g(x, y) ≤ c are complementary in the sense that at most
one can be “slack”—that is, at most one can hold with inequality. Equivalently, at least one
must be an equality.

WARNING: Failure to observe that it is possible to have both λ = 0 and g(x, y) = c in
(3), is probably the most common error that students make when answering questions in
exam papers involving nonlinear programming problems.

Parts B and C of the above rule are together called the Kuhn–Tucker conditions. Note
that these are (essentially) necessary conditions for the solution of problem (1). In general,
they are far from sufficient. Indeed, suppose one can find a point (x0, y0) at which f is
stationary and g(x0, y0) < c. Then the Kuhn–Tucker conditions will automatically be
satisfied by (x0, y0) together with the Lagrange multiplier λ = 0. Yet then (x0, y0) could be
a local or global minimum or maximum, or a saddle point.

NOTE 1 We say that conditions B and C are essentially necessary because the Kuhn–Tucker
conditions may not hold for some rather rare constrained optimization problems that fail
to satisfy a special technical condition called the “constraint qualification”. For details, see
FMEA.

NOTE 2 With equality constraints, setting the partial derivative ∂L/∂λ equal to zero just
recovers the constraint g(x, y) = c. (See Note 14.1.1.) With an inequality constraint, how-
ever, one can have ∂L/∂λ = −g(x, y) + c > 0 if the constraint is slack or inactive at
an optimum. For this reason, we advise against differentiating the Lagrangian w.r.t. the
multiplier λ, even though several other books advocate this procedure.

In Theorem 14.5.1 we proved that if the Lagrangian is concave, then the first-order
conditions in the problem max f (x, y) subject to g(x, y) = c are sufficient for optimality.
The corresponding result is also valid for problem (1):

T H E O R E M 1 4 . 8 . 1 ( S U F F I C I E N T C O N D I T I O N S )

Consider problem (1) and suppose that (x0, y0) satisfies conditions (2)–(4).

If the Lagrangian L(x, y) is concave, then (x0, y0) solves the problem.
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Proof: Any pair (x0, y0) that satisfies conditions (2) must be a stationary point of the Lagrangian.
By Theorem 13.2.1, if the Lagrangian is concave, this (x0, y0) will give a maximum. So

L(x0, y0) = f (x0, y0) − λ(g(x0, y0) − c) ≥ L(x, y) = f (x, y) − λ(g(x, y) − c)

Rearranging the terms, we obtain

f (x0, y0) − f (x, y) ≥ λ[g(x0, y0) − g(x, y)] (∗)

If g(x0, y0) < c, then by (3), we have λ = 0, so (∗) implies that f (x0, y0) ≥ f (x, y) for all
(x, y). On the other hand, if g(x0, y0) = c, then λ[g(x0, y0) − g(x, y)] = λ[c − g(x, y)]. Here
λ ≥ 0, and c − g(x, y) ≥ 0 for all (x, y) satisfying the inequality constraint. Hence, (x0, y0) solves
problem (1).5

E X A M P L E 1 A firm has a total of L units of labour to allocate to the production of two goods. These
can be sold at fixed positive prices a and b respectively. Producing x units of the first good
requires αx2 units of labour, whereas producing y units of the second good requires βy2

units of labour, where α and β are positive constants. Find what output levels of the two
goods maximize the revenue that the firm can earn by using this fixed amount of labour.

Solution: The firm’s revenue maximization problem is

max ax + by subject to αx2 + βy2 ≤ L

The Lagrangian is L(x, y) = ax + by − λ(αx2 + βy2 − L), and the necessary conditions
for (x∗, y∗) to solve the problem are

(i) L′
x = a − 2λαx∗ = 0, (ii) L′

y = b − 2λβy∗ = 0

(iii) λ ≥ 0, and λ = 0 if α(x∗)2 + β(y∗)2 < L

We see that λ, x∗, and y∗ are all positive, and λ = a/2αx∗ = b/2βy∗. So

x∗ = a/2αλ, y∗ = b/2βλ (∗)

Because λ > 0, condition (iii) implies that α(x∗)2 +β(y∗)2 = L. Inserting the expressions
for x∗ and y∗ into the resource constraint yields a2/4αλ2 + b2/4βλ2 = L. It follows that

λ = 1
2L−1/2

√
a2/α + b2/β (∗∗)

Our recipe has produced the solution candidate with x∗ and y∗ given by (∗), and λ as in
(∗∗). The Lagrangian L is obviously concave, so we have found the solution.

E X A M P L E 2 Solve the problem

max f (x, y) = x2 + y2 + y − 1 subject to g(x, y) = x2 + y2 ≤ 1

5 In fact, as in the argument preceding Theorem 14.5.1, this proof shows that if the Lagrangian
achieves a (global) maximum at a point (x0, y0) that satisfies conditions (3) and (4) (whether or
not the Lagrangian is concave), then (x0, y0) solves the problem.
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Solution: The Lagrangian is L(x, y) = x2 + y2 + y − 1 − λ(x2 + y2 − 1). Here the
first-order conditions are:

(i) L′
1(x, y) = 2x − 2λx = 0 (ii) L′

2(x, y) = 2y + 1 − 2λy = 0

The complementary slackness condition is

λ ≥ 0, and λ = 0 if x2 + y2 < 1 (iii)

We want to find all pairs (x, y) that satisfy these conditions for some suitable value of λ.
Conditions (i) and (ii) can be written as 2x(1−λ) = 0 and 2y(1−λ) = −1, respectively.

The second of these implies that λ = 1, so the first implies that x = 0.
Suppose x2 + y2 = 1 and so y = ±1 because x = 0. Try y = 1 first. Then (ii) implies

λ = 3/2 and so (iii) is satisfied. Thus, (0, 1) with λ = 3/2 is a first candidate for optimality
(because all the conditions (i)–(iii) are satisfied). Next, try y = −1. Then condition (ii)
yields λ = 1/2 and (iii) is again satisfied. Thus, (0, −1) with λ = 1/2 is a second candidate
for optimality.

Consider, finally, the case when x = 0 and also x2 +y2 = y2 < 1—that is, −1 < y < 1.
Then (iii) implies that λ = 0, and so (ii) yields y = −1/2. Hence, (0, −1/2) with λ = 0 is
a third candidate for optimality.

We conclude that there are three candidates for optimality. Now

f (0, 1) = 1, f (0, −1) = −1, f (0, −1/2) = −5/4

Because we want to maximize a continuous function over a closed, bounded set, by the
extreme value theorem there is a solution to the problem. Because the only possible solutions
are the three points already found, we conclude that (x, y) = (0, 1) solves the maximization
problem. (The point (0, −1/2) solves the corresponding minimization problem. We solved
both these problems in Example 13.5.1.)

Why Does the Recipe Work?

Suppose (x∗, y∗) solves problem (1). Then either g(x∗, y∗) < c, in which case the constraint
g(x∗, y∗) ≤ c is said to be inactive or slack at (x∗, y∗), or else g(x∗, y∗) = c, in which case
the same inequality constraint is said to be active or binding at (x∗, y∗). The two different
cases are illustrated for two different values of c in Figs. 1 and 2, which both display the same
four level curves of the objective function f as well. This function is assumed to increase
as the level curves shrink. In Fig. 1, the solution (x∗, y∗) to problem (1) is an interior point
of the admissible set. On the other hand, in Fig. 2, the solution (x∗, y∗) is at the boundary
of the admissible set.

In case the solution (x∗, y∗) satisfies g(x∗, y∗) < c, as in Fig. 1, the point (x∗, y∗)
is usually an interior maximum of the function f . Then it is a stationary point at which
f ′

1(x
∗, y∗) = f ′

2(x
∗, y∗) = 0. In this case, if we set λ = 0, then conditions (2) to (4) of the

recipe are all satisfied.
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 f (x, y) � const.

 g (x, y) � c

 g (x, y) � c
y

x

P

 f (x, y) � const.

y

x

 g (x, y) � c

 g (x, y) � c

P

Figure 1 The point P = (x∗, y∗) is an
interior point of the admissible set.

Figure 2 The constraint g(x, y) ≤ c is
binding at P = (x∗, y∗).

On the other hand, in the case when the constraint is binding at (x∗, y∗), as in Fig. 2,
the point (x∗, y∗) solves the Lagrange problem max f (x, y) subject to g(x, y) = c with an
equality constraint. Provided that the conditions of Theorem 14.4.1 are all satisfied, there
will exist a unique Lagrange multiplier λ such that the Lagrangian satisfies the first-order
conditions (2) at (x∗, y∗). It remains to be shown that this Lagrange multiplier λ satisfies
λ ≥ 0, thus ensuring that (3) is also satisfied at (x∗, y∗).

To prove that λ ≥ 0, consider the two value functions

v(b) = max{f (x, y) : g(x, y) ≤ b} and f ∗(b) = max{f (x, y) : g(x, y) = b} (6)

for the versions of problem (1) in which the constant c has been replaced by the variable parameter
b, and where f ∗(b) arises from the problem where the inequality constraint has been replaced by the
corresponding equality constraint. Recall from (14.2.2) that λ = df ∗(c)/dc if f ∗ is differentiable
at c. We shall now show that f ∗(b) ≤ f ∗(c) when b ≤ c, thus implying that

λ = lim
c→b

f (c) − f (b)

c − b
= lim

c→b−
f (c) − f (b)

c − b
≥ 0

—at least when f ∗ is differentiable.
Indeed, (6) implies that f ∗(b) ≤ v(b) for all b, because the equality constraint g(x, y) = b is more

stringent than g(x, y) ≤ b, and imposing a more stringent constraint never allows a higher maximum
value. But also, in case b < c, the constraint g(x, y) ≤ b is more stringent than g(x, y) ≤ c, from
which it follows that v(b) ≤ v(c). Finally, because we are discussing the case when the constraint
g(x∗, y∗) = c binds at the solution to problem (1), we must have v(c) = f ∗(c). Thus, the chain
f ∗(b) ≤ v(b) ≤ v(c) = f ∗(c) is satisfied whenever b < c (and also when b = c). It follows that
f ∗(b) ≤ f ∗(c) whenever b ≤ c, as required.

P R O B L E M S F O R S E C T I O N 1 4 . 8

1. (a) Solve the problem max −x2 − y2 subject to x − 3y ≤ −10.

(b) The pair (x∗, y∗) that solves the problem in (a) also solves the minimization problem
min (x2 + y2) subject to x − 3y ≤ −10. Sketch the admissible set S and explain the
solution geometrically.
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2. (a) Solve the consumer demand problem

max
√

x + √
y subject to px + qy ≤ m

(b) Are the demand functions homogeneous of degree 0?

3. (a) Write down the Kuhn–Tucker conditions for the problem

max 4 − 1
2 x2 − 4y subject to 6x − 4y ≤ a

(b) Solve the problem.

(c) With V (a) as the value function, verify that V ′(a) = λ, where λ is the Lagrange multiplier
in (b).

4. (a) Write down the Lagrangian and conditions (2)–(3) for the problem

max x2 + 2y2 − x subject to x2 + y2 ≤ 1

(b) Find all pairs (x, y) that satisfy all the necessary conditions. (There are five candidates.)
Find the solution to the problem.

⊂SM⊃5. Consider the problem

max f (x, y) = 2 − (x − 1)2 − ey2
subject to x2 + y2 ≤ a

where a is a positive constant.

(a) Write down the Kuhn–Tucker conditions for the solution of the problem. Find the only
solution candidate. (You will need to distinguish between the cases a ∈ (0, 1) and a ≥ 1.)
Prove optimality by using Theorem 14.8.1.

(b) The optimal value of f (x, y) will depend on a. The resulting function f ∗(a) is called the
value function for the problem. Verify that df ∗(a)/da = λ in both cases.

6. Suppose a firm earns revenue R(Q) = aQ − bQ2 and incurs cost C(Q) = αQ + βQ2 as
functions of output Q ≥ 0, where a, b, α, and β are positive parameters. The firm maximizes
profit π(Q) = R(Q) − C(Q) subject to the constraint Q ≥ 0. Solve this one-variable problem
by the Kuhn–Tucker method, and find conditions for the constraint to bind at the optimum.

14.9 Multiple Inequality Constraints
A fairly general nonlinear programming problem is the following:

max f (x1, . . . , xn) subject to

⎧⎨
⎩

g1(x1, . . . , xn) ≤ c1

. . . . . . . . . . . . . . . . . . .

gm(x1, . . . , xn) ≤ cm

(1)

The set of vectors x = (x1, . . . , xn) that satisfy all the constraints is called the admissible
set or the feasible set. Here is a recipe for solving problem (1):
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Consider the problem

max f (x) subject to gj (x) ≤ cj , j = 1, . . . , m

where x denotes (x1, . . . , xn).

A. Write down the Lagrangian

L(x) = f (x) −
m∑

j=1

λj (gj (x) − cj )

with λ1, . . . , λm as the Lagrange multipliers associated with the m con-
straints.

B. Equate all the first-order partial derivatives of L(x) to 0:

∂L(x)

∂xi

= ∂f (x)

∂xi

−
m∑

j=1

λj

∂gj (x)

∂xi

= 0, i = 1, . . . , n

C. Impose the complementary slackness conditions:

λj ≥ 0, and λj = 0 if gj (x) < cj , j = 1, . . . , m

D. Require x to satisfy the constraints

gj (x) ≤ cj , j = 1, . . . , m

Find all the vectors x that, together with associated values of λ1, . . . , λm, satisfy
conditions B, C, and D. These are the solution candidates, at least one of which
solves the problem (if it has a solution). If the Lagrangian is concave in x, then
the conditions are sufficient for optimality. Even if L(x) is not concave, still any
vector x which happens to maximize the Lagrangian while also satisfying C and
D must be an optimum.

NOTE 1 Concavity and convexity for functions of several variables are discussed exten-
sively in FMEA. In order for the conditions to be truly necessary, a constraint qualification is
needed. See FMEA. The conditions in B and C are called the Kuhn–Tucker conditions. Note
that minimizing f (x) is equivalent to maximizing −f (x). Also an inequality constraint of
the form gj (x) ≥ cj can be rewritten as −gj (x) ≤ −cj , whereas an equality constraint
gj (x) = cj is equivalent to the double inequality constraint gj (x) ≤ cj and −gj (x) ≤ −cj .
In this way, most constrained optimization problems can be expressed in the form (1).

E X A M P L E 1 Consider the nonlinear programming problem

maximize x + 3y − 4e−x−y subject to

{
2 − x ≥ 2y

x − 1 ≤ −y
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(a) Write down the necessary Kuhn–Tucker conditions for a point (x∗, y∗) to be a solution
of the problem. Are the conditions sufficient for optimality?

(b) Solve the problem.

Solution: (a) The first (important) step is to write the problem in the same form as (1):

maximize x + 3y − 4e−x−y subject to

{
x + 2y ≤ 2

x + y ≤ 1

The Lagrangian is L(x, y) = x + 3y − 4e−x−y − λ1(x + 2y − 2) − λ2(x + y − 1). Hence,
the Kuhn–Tucker conditions for (x∗, y∗) to solve the problem are:

L′
1 = 1 + 4e−x∗−y∗ − λ1 − λ2 = 0 (i)

L′
2 = 3 + 4e−x∗−y∗ − 2λ1 − λ2 = 0 (ii)

λ1 ≥ 0, and λ1 = 0 if x∗ + 2y∗ < 2 (iii)

λ2 ≥ 0, and λ2 = 0 if x∗ + y∗ < 1 (iv)

These conditions are sufficient for optimality because the Lagrangian is easily seen to be
concave. (Look at the Hessian matrix of L.)

(b) Subtracting (ii) from (i) we get −2 +λ1 = 0 and so λ1 = 2. But then (iii) together with
x∗ + 2y∗ ≤ 2 yields

x∗ + 2y∗ = 2 (v)

Suppose λ2 = 0. Then from (i), 4e−x∗−y∗ = 1, so −x∗ −y∗ = ln(1/4), and then x∗ +y∗ =
ln 4 > 1, a contradiction. Thus λ2 has to be positive. Then from (iv) and x∗ + y∗ ≤ 1 we
deduce x∗ + y∗ = 1. Using (v) we see that x∗ = 0 and y∗ = 1. Inserting these values for
x∗ and y∗ into (i) and (ii) we find that λ2 = e−1(4 − e), which is positive. We conclude that
the solution is: x∗ = 0 and y∗ = 1, with λ1 = 2, λ2 = e−1(4 − e).

E X A M P L E 2 A worker chooses both consumption c and labour supply l in order to maximize the utility
function α ln c + (1 − α) ln(1 − l) of consumption c and leisure 1 − l, where 0 < α < 1.
The worker’s budget constraint is c ≤ wl + m, where m is unearned income. In addition,
the worker must choose l ≥ 0 (otherwise there would be no work!). Solve the worker’s
problem.

Solution: The worker’s constrained maximization problem is

max α ln c + (1 − α) ln(1 − l) subject to c ≤ wl + m, l ≥ 0

The Lagrangian is L(c, l) = α ln c + (1 − α) ln(1 − l) − λ(c − wl − m) − μl, and the
Kuhn–Tucker conditions for (c∗, l∗) to solve the problem are

L′
c = α

c∗ − λ = 0 (i)

L′
l = −(1 − α)

1 − l∗
+ λw + μ = 0 (ii)

λ ≥ 0, and λ = 0 if c∗ < wl∗ + m (iii)

μ ≥ 0, and μ = 0 if l∗ > 0 (iv)
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From (i) we have λ = α/c∗ > 0. Then (iii) together with the first constraint yield

c∗ = wl∗ + m (v)

Case I: μ = 0. Then from (ii) we get l∗ = α−(1−α)m/w. Using (v) next, c∗ = α(w+m),
with λ = α/c∗ = 1/(w + m). The Kuhn–Tucker conditions are all satisfied provided
l∗ = α − (1 − α)m/w ≥ 0, that is m ≤ αw/(1 − α).

Case II: μ > 0. Then l∗ = 0, c∗ = m, and λ = α/c∗ = α/m. From (ii) it follows that
μ = 1 − α − αw/m, and μ > 0 ⇐⇒ m > αw/(1 − α).

In the last two examples it was not too hard to find which constraints bind (i.e. hold with
equality) at the optimum. But with more complicated nonlinear programming problems,
this can be harder. A general method for finding all candidates for optimality in a nonlinear
programming problem with two constraints can be formulated as follows: First, examine the
case where both constraints bind. Next, examine the two cases where only one constraint
binds. Finally, examine the case where neither constraint binds. In each case, find all vectors
x, with associated values of the Lagrange multipliers, that satisfy all the relevant conditions—
if any do. Then calculate the value of the objective function for these values of x, and retain
those x with the highest values. Except for perverse problems, this procedure will find the
optimum. The next example illustrates how it works in practice.

E X A M P L E 3 Suppose your utility of consuming x1 units of good A and x2 units of good B is
U(x1, x2) = ln x1 + ln x2, and that the prices per unit of A and B are 10 and 5, respectively.
You have at most 350 to spend on the two goods. Suppose it takes 0.1 hours to consume
one unit of A and 0.2 hours to consume one unit of B. You have at most 8 hours to spend on
consuming the two goods. How much of each good should you buy in order to maximize
your utility?

Solution: The problem is

max U(x1, x2) = ln x1 + ln x2 subject to

{
10 x1 + 5x2 ≤ 350

0.1x1 + 0.2x2 ≤ 8

The Lagrangian is L = ln x1 + ln x2 − λ1(10x1 + 5x2 − 350) − λ2(0.1x1 + 0.2x2 − 8).
Necessary conditions for (x∗

1 , x∗
2 ) to solve the problem are that there exist numbers λ1 and

λ2 such that

L′
1 = 1/x∗

1 − 10λ1 − 0.1λ2 = 0 (i)

L′
2 = 1/x∗

2 − 5λ1 − 0.2λ2 = 0 (ii)

λ1 ≥ 0, and λ1 = 0 if 10x∗
1 + 5x∗

2 < 350 (iii)

λ2 ≥ 0, and λ2 = 0 if 0.1x∗
1 + 0.2x∗

2 < 8 (iv)

We start the systematic procedure:

(I) Both constraints bind. Then
10x∗

1 + 5x∗
2 = 350 (v)
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and 0.1x∗
1 + 0.2x∗

2 = 8. The solution is (x∗
1 , x∗

2 ) = (20, 30). Inserting these values
into (i) and (ii) yields the system 10λ1 + 0.1λ2 = 1/20 and 5λ1 + 0.2λ2 = 1/30,
with solution (λ1, λ2) = (1/225, 1/18). So we have found a candidate for optimality
because all the Kuhn–Tucker conditions are satisfied. (Note that it is important to check
that λ1 and λ2 are nonnegative.)

(II) Constraint 1 binds, 2 does not. Then (v) holds and 0.1x∗
1 + 0.2x∗

2 < 8. From (iv) we
obtain λ2 = 0. Now (i) and (ii) give x∗

2 = 2x∗
1 . Inserting this into (v), we get x∗

1 = 17.5
and then x∗

2 = 2x∗
1 = 35. But then 0.1x∗

1 + 0.2x∗
2 = 8.75, which violates the second

constraint. So no candidate arises in this case.

(III) Constraint 2 binds, 1 does not. Then 10x∗
1 + 5x∗

2 < 350 and 0.1x∗
1 + 0.2x∗

2 = 8. From
(iii), λ1 = 0, and (i) and (ii) yield 0.1x∗

1 = 0.2x∗
2 . Inserted into 0.1x∗

1 + 0.2x∗
2 = 8

this yields x∗
2 = 20 and so x∗

1 = 40. But then 10x∗
1 + 5x∗

2 = 500, violating the first
constraint. So no candidate arises in this case either.

(IV) None of the constraints bind. Then λ1 = λ2 = 0 and (i) and (ii) make no sense.

Conclusion: There is only one candidate for optimality, (20, 30). Since the Lagrangian is
easily seen to be concave, we have found the solution.

Properties of the Value Function

The optimal value of the objective f (x) in (1) obviously depends on c1, . . . , cm. The function
defined by

f ∗(c) = max{ f (x) : gj (x) ≤ cj , j = 1, . . . , m } (2)

assigns to each c = (c1, . . . , cm) the optimal value f ∗(c) of f . It is called the value function
for the problem. The following properties of f ∗ are very useful:

f ∗(c) is nondecreasing in each variable c1, . . . , cm (3)

If ∂f ∗(c)/∂cj exists, then it is equal to λj (c), j = 1, . . . , m (4)

Here property (3) follows immediately because if cj increases, and all the other ck are fixed,
then the admissible set becomes larger; hence, f ∗(c) cannot decrease.

Concerning property (4), each λj (c) is a Lagrange multiplier coming from the Kuhn–
Tucker conditions. However, there is a catch: The value function f ∗ need not be differen-
tiable. Even if f and g1, . . . , gm are all differentiable, the value function can have sudden
changes of slope. Such cases are studied in FMEA.

P R O B L E M S F O R S E C T I O N 1 4 . 9

1. (a) Write down the Lagrangian and the necessary Kuhn–Tucker conditions for the problem

max 1
2 x − y subject to x + e−x ≤ y, x ≥ 0

(b) Find the solution to the problem.
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⊂SM⊃2. Solve the following consumer demand problem where, in addition to the budget constraint, there
is an upper limit x̄ which rations how much of the first good can be bought:

max α ln x + (1 − α) ln y subject to px + qy ≤ m , x ≤ x̄

⊂SM⊃3. (a) Sketch the admissible set S for the problem

max x + y − ex − ex+y subject to x + y ≥ 4, x ≥ −1, y ≥ 1

(b) Find all pairs (x, y) that satisfy all the necessary conditions. Find the solution to the problem.

⊂SM⊃4. Consider the problem

max x + ay subject to x2 + y2 ≤ 1, x + y ≥ 0 (a is a constant)

(a) Sketch the admissible set and write down the necessary conditions.

(b) Find the solution for all values of the constant a.

⊂SM⊃5. Solve the following problem, assuming it has a solution:

max y − x2 subject to y ≥ 0, y − x ≥ −2, y2 ≤ x

⊂SM⊃6. (a) Sketch the admissible set for the problem

max − (
x + 1

2

)2 − 1
2 y2 subject to e−x − y ≤ 0 and y ≤ 2

3

(b) Write down the Kuhn–Tucker conditions, and find the solution of the problem.

7. Consider the problem

max xz + yz subject to x2 + y2 + z2 ≤ 1

(a) Write down the Kuhn–Tucker conditions.

(b) Solve the problem.

14.10 Nonnegativity Constraints
Consider the general nonlinear programming problem (14.9.1) once again. Often, variables
involved in economic optimization problems must be nonnegative by their very nature. It
is not difficult to incorporate such constraints in the formulation of (14.9.1). If x1 ≥ 0,
for example, this can be represented by the new constraint h1(x1, . . . , xn) = −x1 ≤ 0,
and we introduce an additional Lagrange multiplier to go with it. But in order not to have
too many Lagrange multipliers, the necessary conditions for the solution of nonlinear pro-
gramming problems with nonnegativity constraints are sometimes formulated in a slightly
different way.
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Consider first the problem

max f (x, y) subject to g(x, y) ≤ c, x ≥ 0, y ≥ 0 (1)

Here we introduce the functions h1(x, y) = −x and h2(x, y) = −y, so that the constraints
in problem (1) become g(x, y) ≤ c, h1(x, y) ≤ 0, and h2(x, y) ≤ 0. Applying the recipe
for solving (14.9.1), we introduce the Lagrangian

L(x, y) = f (x, y) − λ(g(x, y) − c) − μ1(−x) − μ2(−y)

The Kuhn–Tucker conditions are

L′
1 = f ′

1(x, y) − λg′
1(x, y) + μ1 = 0 (i)

L′
2 = f ′

2(x, y) − λg′
2(x, y) + μ2 = 0 (ii)

λ ≥ 0, and λ = 0 if g(x, y) < c (iii)

μ1 ≥ 0, and μ1 = 0 if x > 0 (iv)

μ2 ≥ 0, and μ2 = 0 if y > 0 (v)

From (i), we have f ′
1(x, y)−λg′

1(x, y) = −μ1. From (iv), we have −μ1 ≤ 0 and −μ1 = 0
if x > 0. Thus, (i) and (iv) are together equivalent to

f ′
1(x, y) − λg′

1(x, y) ≤ 0 (= 0 if x > 0) (vi)

In the same way, (ii) and (v) are together equivalent to

f ′
2(x, y) − λg′

2(x, y) ≤ 0 (= 0 if y > 0) (vii)

So the new Kuhn–Tucker conditions are (vi), (vii), and (iii). Note that after replacing (i) and
(iv) by (vi), as well as (ii) and (v) by (vii), only the multiplier λ associated with g(x, y) ≤ c

remains.
The same idea can obviously be extended to the n-variable problem

max f (x) subject to

⎧⎨
⎩

g1(x) ≤ c1

. . . . . . . . . .

gm(x) ≤ cm

, x1 ≥ 0, . . . , xn ≥ 0 (2)

Briefly formulated, the necessary conditions for the solution of (2) are that, for each i = 1,
. . . , n,

∂f (x)

∂xi

−
m∑

j=1

λj

∂gj (x)

∂xi

≤ 0 (= 0 if xi > 0) (3)

λj ≥ 0, with λj = 0 if gj (x) < cj , j = 1, . . . , m (4)

E X A M P L E 1 Consider the utility maximizing problem

maximize x + ln(1 + y) subject to px + y ≤ m, x ≥ 0, y ≥ 0

(a) Write down the necessary Kuhn–Tucker conditions for a point (x∗, y∗) to be a solution.

(b) Find the solution to the problem, for all positive values of p and m.
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Solution:
(a) The Lagrangian is L(x, y) = x + ln(1 + y) − λ(px + y − m), and the Kuhn–Tucker
conditions for (x∗, y∗) to be a solution are that there exists a λ such that

L′
1(x

∗, y∗) = 1 − pλ ≤ 0 , and 1 − pλ = 0 if x∗ > 0 (i)

L′
2(x

∗, y∗) = 1

1 + y∗ − λ ≤ 0 , and
1

1 + y∗ − λ = 0 if y∗ > 0 (ii)

λ ≥ 0 , and λ = 0 if px∗ + y∗ < m (iii)

In addition x∗ ≥ 0, y∗ ≥ 0, and the budget constraint has to be satisfied, so px∗ + y∗ ≤ m.

(b) Note that the Lagrangian is concave, so a point that satisfies the Kuhn–Tucker conditions
will be a maximum point. It is clear from (i) that λ cannot be 0. Therefore λ > 0, so (iii)
and px∗ + y∗ ≤ m imply that

px∗ + y∗ = m (iv)

There are four cases to consider:

I. Suppose x∗ = 0, y∗ = 0. Since m > 0, this is impossible because of (iv).

II. Suppose x∗ > 0, y∗ = 0. From (ii) and y∗ = 0 we get λ ≥ 1. Then (i) implies
that p = 1/λ ≤ 1. Equation (iv) gives x∗ = m/p, so we get one candidate for a
maximum point:

(x∗, y∗) = (m/p, 0), λ = 1/p, if 0 < p ≤ 1

III. Suppose x∗ = 0, y∗ > 0. By (iv) we have y∗ = m. Then (ii) yields λ = 1/(1 + y∗) =
1/(1 + m). From (i) we get p ≥ 1/λ = m + 1. This gives one more candidate:

(x∗, y∗) = (0, m), λ = 1/(1 + m), if p ≥ m + 1

IV. Suppose x∗ > 0, y∗ > 0. With equality in both (i) and (ii), λ = 1/p = 1/(1 + y∗). It
follows that y∗ = p − 1, and then p > 1 because y∗ > 0. Equation (iv) implies that
px∗ = m − y∗ = m − p + 1, so x∗ = (m + 1 − p)/p. Since x∗ > 0, we must have
p < m + 1. Thus we get one last candidate

(x∗, y∗) = ((m + 1 − p)/p , p − 1), λ = 1/p , if 1 < p < m + 1

Conclusion: Putting all this together, we see that the solution of the problem is

A. If 0 < p ≤ 1, then (x∗, y∗) = (m/p, 0), with λ = 1/p. (Case II.)

B. If 1 < p < m + 1, then (x∗, y∗) = ((m + 1 − p)/p, p − 1), with λ = 1/p. (Case IV.)

C. If p ≥ m + 1, then (x∗, y∗) = (0, m), with λ = 1/(m + 1). (Case III.)

Note that except in the intermediate case (B) when 1 < p < m+1, it is optimal to spend
everything on only the cheaper of the two goods — either x in case A, or y in case C. This
makes economic sense.
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E X A M P L E 2 (Peak Load Pricing) Consider a producer who generates electricity by burning a fuel
such as coal or natural gas. The demand for electricity varies between peak periods, during
which all the generating capacity is used, and off-peak periods when there is spare capacity.
We consider a certain time interval (say, a year) divided into n periods of equal length.
Suppose the amounts of electric power sold in these n periods are x1, x2, . . . , xn. Assume
that a regulatory authority fixes the corresponding prices at levels equal to p1, p2, . . . , pn.
The total operating cost over all n periods is given by the function C(x1, . . . , xn), and k is
the output capacity in each period. Let D(k) denote the cost of maintaining output capacity
at level k. The producer’s total profit is then

π(x1, . . . , xn, k) =
n∑

i=1

pixi − C(x) − D(k)

Because the producer cannot exceed capacity k in any period, it faces the constraints

x1 ≤ k, . . . , xn ≤ k (I)

We consider the problem of finding x1 ≥ 0, . . . , xn ≥ 0 and k ≥ 0 such that profit is
maximized subject to the capacity constraints (I).

This is a nonlinear programming problem with n + 1 variables and n constraints. The
Lagrangian L is

L(x1, . . . , xn, k) =
n∑

i=1

pixi − C(x1, . . . , xn) − D(k) −
n∑

i=1

λi(xi − k)

Following (4) and (5), the choice (x0
1 , . . . , x0

n, k0) ≥ 0 can solve the problem only if there
exist Lagrange multipliers λ1 ≥ 0, . . . , λn ≥ 0 such that

∂L

∂xi

= pi − C ′
i (x

0
1 , . . . , x0

n) − λi ≤ 0 ( = 0 if x0
i > 0), i = 1, . . . , n (i)

∂L

∂k
= −D′(k0) +

n∑
i=1

λi ≤ 0 ( = 0 if k0 > 0) (ii)

λi ≥ 0, and λi = 0 if x0
i < k0, i = 1, . . . , n (iii)

Suppose that i is such that x0
i > 0. Then (i) implies that

pi = C ′
i (x

0
1 , . . . , x0

n) + λi (iv)

If period i is an off-peak period, then x0
i < k0 and so λi = 0 by (iii). From (iv) it fol-

lows that pi = C ′
i (x

0
1 , . . . , x0

n). Thus, we see that the profit-maximizing pattern of output
(x0

1 , . . . , x0
n) will bring about equality between the regulator’s price in any off-peak period

and the corresponding marginal operating cost.
On the other hand, λj might be positive in a peak period when x0

j = k0. If k0 > 0, it
follows from (ii) that

∑n
i=1 λi = D′(k0). We conclude that the output pattern will be such

that in peak periods the price set by the regulator will exceed the marginal operating cost
by an additional amount λj , which is really the “shadow price” of the capacity constraint
x0
j ≤ k0. The sum of these shadow prices over all peak periods is equal to the marginal

capacity cost.
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P R O B L E M S F O R S E C T I O N 1 4 . 1 0

1. (a) Consider the utility maximization problem

maximize x + ln(1 + y) subject to 16x + y ≤ 495, x ≥ 0, y ≥ 0

Write down the necessary K–T conditions (with nonnegativity constraints) for a point
(x∗, y∗) to be a solution.

(b) Find the solution to the problem.

(c) Estimate by how much utility will increase if income is increased from 495 to 500.

⊂SM⊃2. Solve the following problem, assuming it has a solution:

max xey−x − 2ey subject to y ≤ 1 + x/2, x ≥ 0, y ≥ 0

⊂SM⊃3. Suppose that optimal capacity utilization by a firm requires that its output quantities x1 and x2,
along with its capacity level k, should be chosen to solve the problem

max (x1 + 3x2 − x2
1 − x2

2 − k2) subject to x1 ≤ k, x2 ≤ k, x1 ≥ 0, x2 ≥ 0, k ≥ 0

Show that k = 0 cannot be optimal, and then find the solution.

R E V I E W P R O B L E M S F O R C H A P T E R 1 4

1. (a) Solve the following problem using the Lagrange multiplier method:

max f (x, y) = 3x + 4y subject to g(x, y) = x2 + y2 = 225

(b) Suppose 225 is changed to 224. What is the approximate change in the optimal value of f ?

2. Using the result (∗∗) in Example 14.1.3, write down the solution to the problem

max f (x, y) subject to px + qy = m

in each of the cases:

(a) f (x, y) = 25x2y3 (b) f (x, y) = x1/5y2/5 (c) f (x, y) = 10
√

x 3
√

y

⊂SM⊃3. (a) By selling x tons of one commodity the firm gets a price per ton given by p(x). By selling
y tons of another commodity the price per ton is q(y). The cost of producing and selling
x tons of the first commodity and y tons of the second is given by C(x, y). Write down
the firm’s profit function and find necessary conditions for x∗ > 0 and y∗ > 0 to solve the
problem. Give economic interpretations of the necessary conditions.

(b) Suppose that the firm’s production activity causes so much pollution that the authorities
limit its output to no more than m tons of total output. Write down the necessary conditions
for x̂ > 0 and ŷ > 0 to solve the problem.
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4. (a) Suppose U(x, y) denotes the utility enjoyed by a person when having x hours of leisure
per day (24 hours) and y units per day of other goods. The person gets an hourly wage of
w and pays an average price of p per unit of the other goods, so that

py = w(24 − x) (∗)

assuming that the person spends all that is earned. Show that maximizing U(x, y) subject
to the constraint (∗) leads to the equation

pU ′
1(x, y) = wU ′

2(x, y) (∗∗)

(b) Suppose that the equations (∗) and (∗∗) define x and y as differentiable functions x(p, w),
y(p, w) of p and w. Show that, with appropriate conditions on U(x, y),

∂x

∂w
= (24 − x)(wU ′′

22 − pU ′′
12) + pU ′

2

p2U ′′
11 − 2pwU ′′

12 + w2U ′′
22

⊂SM⊃5. (a) Solve the problem

max(min) x2 + y2 − 2x + 1 subject to 1
4 x2 + y2 = b

where b is a constant > 4
9 . (The constraint has a graph that is an ellipse in the xy-plane. So

it defines a closed and bounded set.)

(b) If f ∗(b) denotes the value function for the maximization problem, verify that df ∗(b)/db =
λ, where λ is the corresponding Lagrange multiplier.

6. Consider the utility maximization problem (14.1.3) with a separable utility function u(x, y) =
v(x) + w(y), where v′(x) > 0, w′(y) > 0, v′′(x) ≤ 0, and w′′(y) ≤ 0.

(a) State the first-order conditions for utility maximization.

(b) Why are these conditions sufficient for optimality?

⊂SM⊃7. (a) Consider the problem

min f (x, y) = x2 − 2x + 1 + y2 − 2y subject to g(x, y) = (x + y)
√

x + y + b = 2
√

a

where a and b are positive constants and x and y are positive. Suppose that (x, y) solves
the problem. Show that x and y must then satisfy the equations

x = y and 2x3 + bx2 = a (∗)

(b) The equations in (∗) define x and y as differentiable functions of a and b. Find expressions
for ∂x/∂a, ∂2x/∂a2, and ∂x/∂b.

⊂SM⊃8. Solve the problem

max f (x, y) = 10 − (x − 2)2 − (y − 1)2 subject to g(x, y) = x2 + y2 ≤ a

for all a > 0.
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⊂SM⊃9. (a) Consider the nonlinear programming problem

maximize xy subject to

{
x2 + ry2 ≤ m

x ≥ 1

Here r and m are positive constants, m > 1. Write down the necessary Kuhn–Tucker
conditions for a point (x∗, y∗) to be a solution of the problem.

(b) Solve the problem.

(c) Let V (r, m) denote the value function. Compute ∂V (r, m)/∂m. Comment? Verify that
∂V (r, m)/∂r = ∂L/∂r , where L is the Lagrangian.

10. Suppose the firm of Example 8.5.1 earns revenue R(Q) and incurs cost C(Q) as functions of
output Q ≥ 0, where R′(Q) > 0, C ′(Q) > 0, R′′(Q) < 0, and C ′′(Q) > 0 for all Q ≥ 0.
The firm maximizes profit π(Q) = R(Q)−C(Q) subject to Q ≥ 0. Write down the first-order
conditions for the solution to this problem, and find sufficient conditions for the constraint to
bind at the optimum.

11. (a) A firm uses K and L units of two inputs to produce
√

KL units of a product, where K > 0,
L > 0. The input factor costs are r and w per unit, respectively. The firm wants to minimize
the costs of producing at least Q units. Formulate the nonlinear programming problem that
emerges. Reformulate it as a maximization problem, then write down the Kuhn–Tucker
conditions for the optimum. Solve these conditions to determine K∗ and L∗ as functions
of (r, w, Q).

(b) Define the minimum cost function as c∗(r, w, Q) = rK∗ +wL∗. Verify that ∂c∗/∂r = K∗
and ∂c∗/∂w = L∗, and give these results economic interpretations.
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15
M A T R I X A N D V E C T O R
A L G E B R A

Indeed, models basically play the same role in economics as in fashion.

They provide an articulated frame on which to show off your material to advantage,

. . . a useful role, but fraught with the dangers that the designer

may get carried away by his personal inclination for the model,

while the customer may forget that the model is more streamlined than reality.

—J. H. Drèze (1984)

Most mathematical models used by economists ultimately involve a system of several equa-

tions, which usually express how one or more endogenous variables depend on several

exogenous parameters. If these equations are all linear, the study of such systems belongs to

an area of mathematics called linear algebra. Even if the equations are nonlinear, much may

be learned from linear approximations around the solution we are interested in—for example,

how the solution changes in response to small shocks to the exogenous parameters. Indeed,

such models lie right at the heart of the econometric techniques that form the basis of most

modern empirical economic analysis.

The analysis and even the comprehension of systems of linear equations becomes much

easier if we use some key mathematical concepts such as matrices, vectors, and determinants.

These, as well as their application to economic models, will be introduced in this chapter and

in the next.

Actually, the usefulness of linear algebra extends far beyond its ability to solve systems of

linear equations. For instance, in the theory of differential and difference equations, in linear

and nonlinear optimization theory, in statistics and econometrics, the methods of linear algebra

are used extensively.

15.1 Systems of Linear Equations

Section 2.4 has already introduced systems of two simultaneous linear equations in two
variables. Subsequently in later chapters, notably Chapter 14, we have encountered up to
five linear equations in five unknowns. These systems were solved in an ad hoc manner. It
is now time to study systems of linear equations more systematically.

The first key step is to introduce suitable notation for what may be a large linear system
of equations. Specifically, we consider m equations in n unknowns, where m may be greater
than, equal to, or less than n. If the unknowns are denoted by x1, . . . , xn, we usually write
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such a system in the form

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · · + amnxn = bm

(1)

Here a11, a12, . . . , amn are called the coefficients of the system, and b1, . . . , bm are called
the right-hand sides. All are real numbers.

Note carefully the order of the subscripts. In general, aij is the coefficient in the ith
equation of the j th variable (xj ). One or more of these coefficients may be 0—indeed, the
system usually becomes easier to analyse and solve if a high proportion of the coefficients
are 0.

A solution of system (1) is an ordered set or list of numbers s1, s2, . . . , sn that satisfies
all the equations simultaneously when we put x1 = s1, x2 = s2, . . . , xn = sn. Usually, a
solution is written as (s1, s2, . . . , sn). Note that the order in which we write the components
is essential in the sense that if (s1, s2, . . . , sn) satisfies (1), then (sn, sn−1, . . . , s1), say, will
usually not be a solution.

If system (1) has at least one solution, it is said to be consistent. When the system has
no solution, it is said to be inconsistent.

E X A M P L E 1 To check your understanding of the notation used, write down the system of equations
(1) when n = m = 3 and aij = i + j for i, j = 1, 2, 3, while bj = j for j = 1, 2, 3. Verify
that (x1, x2, x3) = (2, −1, 0) is a solution, but that (x1, x2, x3) = (2, 0, −1) is not.

Solution: The coefficients are a11 = 1 + 1 = 2, a12 = 1 + 2 = 3, etc. Set out in full, the
system of equations is

2x1 + 3x2 + 4x3 = 1

3x1 + 4x2 + 5x3 = 2

4x1 + 5x2 + 6x3 = 3

Inserting (x1, x2, x3) = (2, −1, 0) we see that all the equations are satisfied, so this is a
solution. On the other hand, if we change the order of the numbers 2, −1 and 0 to form
the triple (x1, x2, x3) = (2, 0, −1), then 2x1 + 3x2 + 4x3 = 0, so the first equation is
not satisfied, and (2, 0, −1) is not a solution to the system. (In fact, the general solution is
(x1, x2, x3) = (2 + t, −1 − 2t, t), with t an arbitrary real number. In the terminology of
Section 12.5 the system has one degree of freedom.)

There are computer programs that make it easy to check whether a system like (1) is con-
sistent, and if it is, to find possible solutions, even if there are thousands of equations and
unknowns. Still, economists need to understand the general theory of such equation systems
so that they can follow theoretical arguments and conclusions related to linear models.
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1. Decide which of the following single equations in the variables x, y, z, and w are linear and
which are not. (In (f), a and b are nonnegative constants.)

(a) 3x − y − z − w = 50 (b)
√

3x + 8xy − z + w = 0

(c) 3(x + y − z) = 4(x − 2y + 3z) (d) 3.33x − 4y + 800

3
z = 3

(e) (x − y)2 + 3z − w = −3 (f) 2a2x − √
by + (2 + √

a)z = b2

2. Let x1, y1, x2, and y2 be given numbers and consider the following equations in the variables a,
b, c, and d. (In almost all other cases in this book, a, b, c, and d denote constants!)

ax2
1 + bx1y1 + cy2

1 + d = 0

ax2
2 + bx2y2 + cy2

2 + d = 0

Is this a linear system of equations in a, b, c, and d?

3. Write down the system of equations (1) when n = 4, m = 3, and aij = i + 2j + (−1)i for
i = 1, 2, 4, j = 1, 2, 3, while bj = 2j for j = 1, 2, 3.

4. Write system (1) out in full when n = m = 4 and aij = 1 for all i �= j , while aii = 0 for i = 1,
2, 3, 4. Sum the four equations to derive a simple equation for

∑4
i=1 xi , then solve the whole

system.

5. Consider a collection of n individuals, each of whom owns a definite quantity of m different
commodities. Let aij be the number of units of commodity i owned by individual j , where
i = 1, 2, . . . , m, while j = 1, 2, . . . , n.

(a) What does the list (a1j , a2j , . . . , amj ) represent?

(b) Explain in words what a11 + a12 + · · · + a1n and ai1 + ai2 + · · · + ain express.

(c) Let pi denote the price per unit of commodity i (i = 1, 2, . . . , m). What is the total value
of the commodities owned by individual j?

⊂SM⊃6. T. Haavelmo devised a model of the US economy for the years 1929–1941 based on the following
equations:

(i) c = 0.712y + 95.05 (ii) s = 0.158(c + x) − 34.30

(iii) y = c + x − s (iv) x = 93.53

Here x denotes total investment, y is disposable income, s is the total saving by firms, and c is
total consumption. Write the system of equations in the form (1) when the variables appear in
the order x, y, s, and c. Then find the solution of the system.



Essential Math. for Econ. Analysis, 4th edn EME4_C15.TEX, 16 May 2012, 14:24 Page 548

548 C H A P T E R 1 5 / M A T R I X A N D V E C T O R A L G E B R A

15.2 Matrices and Matrix Operations
A matrix is simply a rectangular array of numbers considered as one mathematical object.
When there are m rows and n columns in the array, we have an m-by-n matrix (written as
m × n). We usually denote a matrix with bold capital letters such as A, B, and so on. In
general, an m × n matrix is of the form

A =

⎛
⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

⎞
⎟⎟⎠ (1)

In this book any array like (1) will be enclosed with large parentheses surrounding the
numbers. Note, however, that some writers replace the parentheses in (1) with large square
brackets.

The matrix A in (1) is said to have order m × n. The mn numbers that constitute A are
called its elements or entries. In particular, aij denotes the element in the ith row and the
j th column. For brevity, the m × n matrix in (1) is often expressed as (aij )m×n, or more
simply as (aij ), if the order m × n is either obvious or unimportant.

A matrix with either only one row or only one column is called a vector. It is usual to
distinguish between a row vector, which has only one row, and a column vector, which
has only one column. It is usual to denote row or column vectors by small bold letters like
x or y rather than capital letters.

E X A M P L E 1 A =
(

3 −2
5 8

)
, B = ( −1, 2,

√
3, 16 ) , C =

⎛
⎜⎜⎝

−1 2
8 5
7 6
1 1

⎞
⎟⎟⎠

are matrices. Of these, A is 2 × 2, B is 1 × 4 (and so a row vector), and C is 4 × 2. Also
a21 = 5 and c32 = 6. Note that c23 is undefined because C only has two columns.

E X A M P L E 2 Construct the 4 × 3 matrix A = (aij )4×3 with aij = 2i − j .

Solution: The matrix A has 4 · 3 = 12 entries. Because aij = 2i − j , it follows that
a11 = 2 · 1 − 1 = 1, a12 = 2 · 1 − 2 = 0, a13 = 2 · 1 − 3 = −1, and so on. The complete
matrix is

A =

⎛
⎜⎜⎝

2 · 1 − 1 2 · 1 − 2 2 · 1 − 3
2 · 2 − 1 2 · 2 − 2 2 · 2 − 3
2 · 3 − 1 2 · 3 − 2 2 · 3 − 3
2 · 4 − 1 2 · 4 − 2 2 · 4 − 3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 −1
3 2 1
5 4 3
7 6 5

⎞
⎟⎟⎠

If m = n, so that the matrix has the same number of columns as rows, it is called a square
matrix of order n. If A = (aij )n×n, then the elements a11, a22, . . . , ann constitute the main
diagonal that runs from the top left (a11) to the bottom right (ann). For instance, the matrix
A in Example 1 is a square matrix of order 2, whose main diagonal consists of the numbers
3 and 8. Note that only a square matrix can have such a main diagonal.



Essential Math. for Econ. Analysis, 4th edn EME4_C15.TEX, 16 May 2012, 14:24 Page 549

S E C T I O N 1 5 . 2 / M A T R I C E S A N D M A T R I X O P E R A T I O N S 549

E X A M P L E 3 Consider the general linear system

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · · + amnxn = bm

(2)

of m equations in the unknown variables xj (j = 1, 2, . . . , n). It is natural to represent the
coefficients of the n unknowns in (2) by the m × n matrix A that is arranged as in (1). Then
A is called the coefficient matrix of (2). For instance, the coefficient matrix of

3x1 − 2x2 + 6x3 = 5

5x1 + x2 + 2x3 = −2
is

(
3 −2 6
5 1 2

)

One can also represent the numbers bi (i = 1, 2, . . . , m) on the right-hand side of (2) by an
m × 1 matrix, or column vector, often denoted by b.

E X A M P L E 4 Consider a chain of stores with four outlets labelled B1, B2, B3, and B4, each selling
eight different commodities, V1, V2, . . . , V8. Let aij denote the dollar value of the sales of
commodity Vi at outlet Bj during a certain month. A suitable way of recording this data is
in the 8 × 4 matrix or “spreadsheet”

A =

⎛
⎜⎜⎝

a11 a12 a13 a14

a21 a22 a23 a24
...

...
...

...

a81 a82 a83 a84

⎞
⎟⎟⎠

The 8 rows refer to the 8 commodities, whereas the 4 columns refer to the 4 outlets. For
instance, if a73 = 225, this means that the sales of commodity 7 at outlet 3 were worth $225
for the month in question.

Matrix Operations

So far matrices have been regarded as just rectangular arrays of numbers that can be useful
for storing information. The real motivation for introducing matrices, however, is that there
are useful rules for manipulating them that correspond (to some extent) with the familiar
rules of ordinary algebra.

First, let us agree how to define equality between matrices of the same order. If A =
(aij )m×n and B = (bij )m×n are both m×n matrices, then A and B are said to be equal, and
we write A = B, provided that aij = bij for all i = 1, 2, . . . , m, and j = 1, 2, . . . , n. Thus,
two matrices A and B are equal if they have the same order and if all their corresponding
entries are equal. If A and B are not equal, then we write A �= B.

E X A M P L E 5 When is

(
3 t − 1
2t u

)
=

(
t 2v

u + 1 t + w

)
?
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Solution: Both are 2 × 2 matrices. Since both have four elements, equality requires the
four equations 3 = t , t − 1 = 2v, 2t = u + 1, and u = t + w to be satisfied. By
solving these simultaneous equations, it follows that the two matrices are equal if and only

if t = 3, v = 1, u = 5, and w = 2. Then both matrices are equal to

(
3 2
6 5

)
.

Let us return to Example 4, where the 8 × 4 matrix A represents the dollar values of total
sales of the 8 commodities at the 4 outlets in a certain month. Suppose that the dollar values
of sales for the next month are given by a corresponding 8×4 matrix B = (bij )8×4. The total
sales revenues from each commodity in each of the outlets in the course of these 2 months
combined would then be given by a new 8 × 4 matrix C = (cij )8×4, where cij = aij + bij

for i = 1, . . . , 8 and for j = 1, . . . , 4. Matrix C is called the “sum” of A and B, and we
write C = A + B.

In general, if A = (aij )m×n and B = (bij )m×n are two matrices of the same order, we
define the sum of A and B as the m × n matrix (aij + bij )m×n. Thus,

A + B = (aij )m×n + (bij )m×n = (aij + bij )m×n (3)

So we add two matrices of the same order by adding their corresponding entries.
If α is a real number, we define αA by

αA = α(aij )m×n = (αaij )m×n (4)

Thus, to multiply a matrix by a scalar, multiply each entry in the matrix by that scalar.
Returning to the chain of stores, the matrix equation B = 2A would mean that all the
entries in B are twice the corresponding elements in A—that is, the sales revenue for each
commodity in each of the outlets has exactly doubled from one month to the next. (Of
course, this is a rather unlikely event.) Equivalently, 2A = A + A.

E X A M P L E 6 Compute A + B, 3A, and
(− 1

2

)
B, if A =

(
1 2 0
4 −3 −1

)
and B =

(
0 1 2
1 0 2

)
.

Solution:

A + B =
(

1 3 2
5 −3 1

)
, 3A =

(
3 6 0

12 −9 −3

)
,

(− 1
2

)
B =

(
0 − 1

2 −1
− 1

2 0 −1

)

The matrix (−1)A is usually denoted by −A, and the difference between the two matrices
A and B of the same dimension, A − B, means the same as A + (−1)B. In our chain
store example, B − A denotes the (net) change in sales revenue for each commodity from
each outlet between one month and the next. Positive components represent increases and
negative components represent decreases.

With the definitions given earlier, it is easy to derive some useful rules. Let A, B, and C
be arbitrary m × n matrices, and let α and β be real numbers. Also, let 0 denote the m × n

matrix consisting only of zeros, called the zero matrix. Then:
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(a) (A + B) + C = A + (B + C)

(b) A + B = B + A

(c) A + 0 = A

(d) A + (−A) = 0

(e) (α + β)A = αA + βA

(f) α(A + B) = αA + αB

(5)

Each of these rules follows directly from the definitions and the corresponding rules for
ordinary numbers.

Because of rule (5)(a), there is no need to put parentheses in expressions like A+B+C.
Note also that definitions (3) and (4) imply that A + A + A is equal to 3A.

P R O B L E M S F O R S E C T I O N 1 5 . 2

1. Construct the matrix A = (aij )3×3, where aii = 1 for i = 1, 2, 3, and aij = 0 for i �= j .

2. Evaluate A + B and 3A when A =
(

0 1
2 3

)
and B =

(
1 −1
5 2

)
.

3. For what values of u and v does

(
(1 − u)2 v2 3

v 2u 5
6 u −1

)
=

( 4 4 u

v −3v u − v

6 v + 5 −1

)
?

4. Evaluate A + B, A − B, and 5A − 3B when

A =
(

0 1 −1
2 3 7

)
and B =

(
1 −1 5
0 1 9

)

15.3 Matrix Multiplication
The rules we just gave for adding or subtracting matrices, and for multiplying a matrix by
a scalar, should seem quite natural. The rule for matrix multiplication, however, is more
subtle.1 We motivate it by considering how to manipulate an equation system.

1 It is tempting to define the product of two matrices A = (aij )m×n and B = (bij )m×n of the same
dimensions this way: The product of A and B is simply the matrix C = (cij )m×n where cij = aij bij

is obtained by multiplying the entries of the two matrices term by term. This is a respectable matrix
operation and, in fact, matrix C is called the Hadamard product of A and B. However, the definition
of matrix multiplication that we give is by far the one most used in linear algebra.
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Consider, for example, the following two linear equation systems:

(i)
z1 = a11y1 + a12y2 + a13y3

z2 = a21y1 + a22y2 + a23y3
(ii)

y1 = b11x1 + b12x2

y2 = b21x1 + b22x2

y3 = b31x1 + b32x2

The matrices of coefficients appearing on the right-hand sides of these two systems of
equations are, respectively,

A =
(

a11 a12 a13

a21 a22 a23

)
and B =

⎛
⎝ b11 b12

b21 b22

b31 b32

⎞
⎠

System (i) expresses the z variables in terms of the y’s, whereas in (ii), the y’s are expressed
in terms of the x’s. So the z variables must be related to the x variables. Indeed, take the
expressions for y1, y2, and y3 in (ii) and insert them into (i). The result is

z1 = a11(b11x1 + b12x2) + a12(b21x1 + b22x2) + a13(b31x1 + b32x2)

z2 = a21(b11x1 + b12x2) + a22(b21x1 + b22x2) + a23(b31x1 + b32x2)

Rearranging the terms yields

z1 = (a11b11 + a12b21 + a13b31)x1 + (a11b12 + a12b22 + a13b32)x2

z2 = (a21b11 + a22b21 + a23b31)x1 + (a21b12 + a22b22 + a23b32)x2

The coefficient matrix of this system is, therefore,

C =
(

a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32

a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32

)

The matrix A is 2 × 3 and B is 3 × 2. Thus, B has as many rows as A has columns. The
matrix C is 2 × 2. Note that if we let C = (cij )2×2, then the number

c11 = a11b11 + a12b21 + a13b31

in the first row and first column is obtained by multiplying each of the three elements in
the first row of A by the corresponding element in the first column of B, and then adding
these three products. We call the resulting expression a11b11 + a12b21 + a13b31 the “inner
product” of the first row in A with the first column in B. Likewise, c12 is the inner product
of the first row in A and the second column in B, and so on. Generally, each element cij is
the inner product of the ith row in A and the j th column in B.

The matrix C is called the (matrix) product of A and B, and we write C = AB. Here
is a numerical example.

E X A M P L E 1

(
1 0 3
2 1 5

) ⎛
⎝ 1 3

2 5
6 2

⎞
⎠ =

(
1 · 1 + 0 · 2 + 3 · 6 1 · 3 + 0 · 5 + 3 · 2
2 · 1 + 1 · 2 + 5 · 6 2 · 3 + 1 · 5 + 5 · 2

)
=

(
19 9
34 21

)
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In order to extend the argument to general matrices, assume that as in (i) the variables
z1, . . . , zm are expressed linearly in terms of y1, . . . , yn, and that as in (ii), the variables
y1, . . . , yn are expressed linearly in terms of x1, . . . , xp. Then z1, . . . , zm can be expressed
linearly in terms of x1, . . . , xp. Provided that the matrix B does indeed have as many rows
as A has columns, the result we get leads directly to the following definition:

M A T R I X M U L T I P L I C A T I O N

Suppose that A = (aij )m×n and that B = (bij )n×p. Then the product C = AB
is the m × p matrix C = (cij )m×p, whose element in the ith row and the j th
column is the inner product

cij =
n∑

r=1

airbrj = ai1b1j + ai2b2j + · · · + aikbkj + · · · + ainbnj

of the ith row of A and the j th column of B.

(1)

Note that to get cij we multiply each component air in the ith row of A by the corresponding
component brj in the j th column of B, then add all the products. One way of visualizing
matrix multiplication is this:

⎛
⎜⎜⎜⎜⎜⎜⎝

a11 . . . a1k . . . a1n

.

.

.
.
.
.

.

.

.
ai1 . . . aik . . . ain

.

.

.
.
.
.

.

.

.
am1 . . . amk . . . amn

⎞
⎟⎟⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎜⎝

b11 . . . b1j . . . b1p

.

.

.
.
.
.

.

.

.
bk1 . . . bkj . . . bkp

.

.

.
.
.
.

.

.

.
bn1 . . . bnj . . . bnp

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c11 . . . c1j . . . c1p

.

.

.
.
.
.

.

.

.
ci1 . . . cij . . . cip

.

.

.
.
.
.

.

.

.
cm1 . . . cmj . . . cmp

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

It bears repeating that the matrix product AB is defined only if the number of columns in A
is equal to the number of rows in B. Also, if A and B are two matrices, then AB might be
defined, even if BA is not. For instance, if A is 6 × 3 and B is 3 × 5, then AB is defined
(and is 6 × 5), whereas BA is not defined.

E X A M P L E 2 Let A =
⎛
⎝ 0 1 2

2 3 1
4 −1 6

⎞
⎠ and B =

⎛
⎝ 3 2

1 0
−1 1

⎞
⎠. Compute the matrix product AB. Is

the product BA defined?

Solution: A is 3 × 3 and B is 3 × 2, so AB is a 3 × 2 matrix:

AB =
⎛
⎝ 0 1 2

2 3 1
4 −1 6

⎞
⎠

⎛
⎝ 3 2

1 0
−1 1

⎞
⎠ =

⎛
⎝ −1 2

8 5
5 14

⎞
⎠

(We have indicated how the element in the second row and first column of AB is found. It is
the inner product of the second row in A and the first column in B; this is 2·3+3·1+1·(−1) =
8.) The matrix product BA is not defined because the number of columns in B (= 2) is not
equal to the number of rows in A (= 3).
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NOTE 1 In the previous example, AB was defined but BA was not. Even in cases in which
AB and BA are both defined, they are usually not equal. See Problem 1 and the subsection
“Errors to Avoid” in Section 15.4. When we write AB, we say that we premultiply B by
A, whereas in BA we postmultiply B by A.

E X A M P L E 3 Initially, three firms A, B, and C (numbered 1, 2, and 3) share the market for a certain
commodity. Firm A has 20% of the market, B has 60%, and C has 20%. In the course of
the next year, the following changes occur:

⎧⎨
⎩

A keeps 85% of its customers, while losing 5% to B and 10% to C

B keeps 55% of its customers, while losing 10% to A and 35% to C

C keeps 85% of its customers, while losing 10% to A and 5% to B

We can represent market shares of the three firms by means of a market share vector, defined
as a column vector s whose components are all nonnegative and sum to 1. Define the matrix
T and the initial market share vector s by

T =
⎛
⎝ 0.85 0.10 0.10

0.05 0.55 0.05
0.10 0.35 0.85

⎞
⎠ and s =

⎛
⎝ 0.2

0.6
0.2

⎞
⎠

Notice that tij is the percentage of j ’s customers who become i’s customers in the next
period. So T is called the transition matrix.

Compute the vector Ts, show that it is also a market share vector, and give an interpret-
ation. What is the interpretation of T(Ts), T(T(Ts)), . . . ?

Solution:

Ts =
⎛
⎝ 0.85 0.10 0.10

0.05 0.55 0.05
0.10 0.35 0.85

⎞
⎠

⎛
⎝ 0.2

0.6
0.2

⎞
⎠ =

⎛
⎝ 0.25

0.35
0.40

⎞
⎠

Because 0.25 + 0.35 + 0.40 = 1, the product Ts is also a market share vector. The first
entry in Ts is obtained from the calculation

0.85 · 0.2 + 0.10 · 0.6 + 0.10 · 0.2 = 0.25

Here 0.85 · 0.2 is A’s share of the market that it retains after 1 year, 0.10 · 0.6 is the share A

gains from B, and 0.10 ·0.2 is the share A gains from C. The sum is therefore A’s total share
of the market after 1 year. The other entries in Ts can be interpreted similarly, so Ts must
be the new market share vector after 1 year. Then T(Ts) is the market share vector after
one more year—that is, after 2 years, and so on. (In Problem 7, you are asked to compute
T(Ts).)
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Systems of Equations in Matrix Form

The definition of matrix multiplication was introduced in order to allow systems of equations
to be manipulated. Indeed, it turns out that we can write linear systems of equations very
compactly by means of matrix multiplication. For instance, consider the system

3x1 + 4x2 = 5

7x1 − 2x2 = 2

Now define A =
(

3 4
7 −2

)
, x =

(
x1

x2

)
, and b =

(
5
2

)
. Then we see that

Ax =
(

3 4
7 −2

) (
x1

x2

)
=

(
3x1 + 4x2

7x1 − 2x2

)

So the original system is equivalent to the matrix equation

Ax = b

Consider the general linear system (15.1.1) with m equations and n unknowns. Suppose
we define

A =

⎛
⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

⎞
⎟⎟⎠ , x =

⎛
⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎠ , b =

⎛
⎜⎜⎝

b1

b2
...

bm

⎞
⎟⎟⎠

So A is m × n and x is n × 1. The matrix product Ax is then defined and is m × 1. It
follows that

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · · + amnxn = bm

can be written as Ax = b

This very concise notation turns out to be extremely useful.

P R O B L E M S F O R S E C T I O N 1 5 . 3

1. Compute the products AB and BA, if possible, for the following:

(a) A =
(

0 −2
3 1

)
, B =

( −1 4
1 5

)
(b) A =

(
8 3 −2
1 0 4

)
, B =

( 2 −2
4 3
1 −5

)

(c) A =
( 0

−2
4

)
, B = ( 0, −2, 3 ) (d) A =

( −1 0
2 4

)
, B =

( 3 1
−1 1

0 2

)
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2. Given the matrices A =
(

2 4
1 2

)
, B =

( −2 4
1 −2

)
, C =

(
2 3
6 9

)
, D =

(
1 1
1 3

)
,

calculate (i) 3A + 2B − 2C + D (ii) AB (iii) C(AB).

3. Let A =
( 1 2 −3

5 0 2
1 −1 1

)
, B =

( 3 −1 2
4 2 5
2 0 3

)
, C =

( 4 1 2
0 3 2
1 −2 3

)
.

Find the matrices A + B, A − B, AB, BA, A(BC), and (AB)C.

4. Write out three matrix equations corresponding to the following systems:

(a)
x1 + x2 = 3

3x1 + 5x2 = 5
(b)

x1 + 2x2 + x3 = 4

x1 − x2 + x3 = 5

2x1 + 3x2 − x3 = 1

(c)
2x1 − 3x2 + x3 = 0

x1 + x2 − x3 = 0

5. Consider the three matrices A =
(

2 2
1 5

)
, B =

(
2 0
3 2

)
, and I =

(
1 0
0 1

)
.

(a) Find a matrix C satisfying (A − 2I)C = I.

(b) Is there a matrix D satisfying (B − 2I)D = I?

⊂SM⊃6. (a) If A is an m × n matrix and B is another matrix such that both products AB and BA are
defined, what must be the dimensions of B?

(b) Find all matrices B that “commute” with A =
(

1 2
2 3

)
in the sense that BA = AB.

7. In Example 3, compute T(Ts).

15.4 Rules for Matrix Multiplication
In Section 15.2 we set out some rather obvious algebraic rules for matrix addition and
multiplication by a scalar. Matrix multiplication is a more complicated operation, so we
must carefully examine what rules apply. We have already noticed that the commutative
law AB = BA does NOT hold in general. The following three important rules are generally
valid, however.

If A, B, and C are matrices whose dimensions are such that the given operations are
defined, and α is an arbitrary scalar, then:

R U L E S F O R M A T R I X M U L T I P L I C A T I O N

(AB)C = A(BC) (associative law) (1)

A(B + C) = AB + AC (left distributive law) (2)

(A + B)C = AC + BC (right distributive law) (3)

(αA)B = A(αB) = α(AB) (4)
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Note that both the left and right distributive laws are stated here because, unlike for numbers,
matrix multiplication is not commutative, and so A(B + C) �= (B + C)A in general.

E X A M P L E 1 Verify rules (1)–(4), where α is an arbitrary scalar, for the following matrices:

A =
(

1 2
0 1

)
, B =

(
0 −1
3 2

)
, C =

(
1 1
2 1

)

Solution: All operations of multiplication and addition are defined, with

AB =
(

6 3
3 2

)
, (AB)C =

(
6 3
3 2

) (
1 1
2 1

)
=

(
12 9

7 5

)

BC =
( −2 −1

7 5

)
, A(BC) =

(
1 2
0 1

) (−2 −1
7 5

)
=

(
12 9

7 5

)

Thus, (AB)C = A(BC) in this case. Moreover,

B + C =
(

1 0
5 3

)
, A(B + C) =

(
1 2
0 1

) (
1 0
5 3

)
=

(
11 6

5 3

)

and

AC =
(

5 3
2 1

)
, AB + AC =

(
6 3
3 2

)
+

(
5 3
2 1

)
=

(
11 6

5 3

)
So A(B + C) = AB + AC. You should verify the right distributive law (3), as well as rule
(4), for yourself.

Proof of (1): Suppose A = (aij )m×n, B = (bij )n×p , and C = (cij )p×q . It is easy to verify that these
dimensions imply that (AB)C and A(BC) are both defined as m× q matrices. We have to prove that
their corresponding elements are all equal.

The element in row i and column l of (AB)C is denoted by [(AB)C]il , and it is the inner product
of the ith row in AB and the lth column in C. Using the notation for sums, we see that

[(AB)C]il =
p∑

k=1

( n∑
j=1

aij bjk

)
ckl =

n∑
j=1

aij

( p∑
k=1

bjkckl

)
= [A(BC)]il

where the two double sums are equal because they both give the sum of all the pn terms aij bjkckl ,
where j runs from 1 to n and k runs from 1 to p. This proves (1).

Proving rule (1) involves checking in detail that each element of (AB)C equals the
corresponding element of A(BC). The same sort of check is required to prove the other
three rules. We leave these proofs to the reader.

Because of (1), parentheses are not required in a matrix product such as ABC. Of course,
a corresponding result is valid for products of more factors.

A useful technique in matrix algebra is to prove new results by using (1)–(4), rather
than examining individual elements. For instance, suppose we are asked to prove that if
A = (aij ) and B = (bij ) are both n × n matrices, then

(A + B)(A + B) = AA + AB + BA + BB (5)
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According to (2),
(A + B)(A + B) = (A + B)A + (A + B)B

By (3), one has (A + B)A = AA + BA and (A + B)B = AB + BB, from which we see that
(∗) follows.

Powers of Matrices

If A is a square matrix, the associative law (1) allows us to write AA as A2, and AAA as
A3, and so on. In general,

An = AA · · · A (A is repeated n times)

E X A M P L E 2 Let A =
(

1 −1
0 1

)
. Compute A2, A3, and A4. Then guess the general form of An, and

confirm your guess by induction on n. (For induction, see Section 3.7.)

Solution: We find that

A2 = AA =
(

1 −2
0 1

)
, A3 = A2A =

(
1 −3
0 1

)
, A4 = A3A =

(
1 −4
0 1

)

A reasonable guess, therefore, is that for all natural numbers n,

An =
(

1 −n

0 1

)
(∗)

We confirm this by induction on n. Formula (∗) is correct for n = 1. As the induction hypothesis,
we suppose that (∗) holds for n = k—that is,

Ak =
(

1 −k

0 1

)

Then

Ak+1 = AkA =
(

1 −k

0 1

) (
1 −1
0 1

)
=

(
1 −k − 1
0 1

)
This completes the induction step showing that, if (∗) holds for n = k, then it holds for n = k + 1.

It follows that (∗) holds for all natural numbers n.

E X A M P L E 3 Suppose P and Q are n × n matrices such that PQ = Q2P. Prove that (PQ)2 = Q6P2.

Solution: The proof is simple if we use (1) and PQ = Q2P repeatedly:

(PQ)2 = (PQ)(PQ) = (Q2P)(Q2P) = (Q2P)Q(QP) = Q2(PQ)(QP)

= Q2(Q2P)(QP) = Q2Q2(PQ)P = Q2Q2(Q2P)P = Q2Q2Q2P2 = Q6P2

It would be essentially impossible to prove this equality by looking at individual elements.
Note carefully that (PQ)2 is not equal to P2Q2.
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The Identity Matrix

The identity matrix of order n, denoted by In (or often just by I), is the n×n matrix having
ones along the main diagonal and zeros elsewhere:

In =

⎛
⎜⎜⎝

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎞
⎟⎟⎠

n×n

(identity matrix)

If A is any m × n matrix, it is easy to verify that AIn = A. Likewise, if B is any n × m

matrix, then InB = B. In particular,

AIn = InA = A (for every n × n matrix A) (6)

Thus, In is the matrix equivalent of 1 in the real number system. In fact, it is the only matrix
with this property. To prove this, suppose E is an arbitrary n × n matrix such that AE = A
for all n × n matrices A. Putting A = In in particular yields InE = In. But InE = E
according to (6). So E = In.

Errors to Avoid

The rules of matrix algebra make many arguments very easy. But it is essential to avoid using
rules that do not work when multiplying general matrices, even if they do work for numbers
(or for 1 × 1 matrices). For example, consider equation (5). It is tempting to simplify the
expression AA+AB+BA+BB on the right-hand side to AA+2AB+BB. This is wrong!
Even when AB and BA are both defined, AB is not necessarily equal to BA. As the next
example shows, matrix multiplication is not commutative.

E X A M P L E 4 Let A and B be the matrices A =
(

2 0
0 3

)
, B =

(
0 1
1 0

)
.

Show that AB �= BA.

Solution: AB =
(

0 2
3 0

)
and BA =

(
0 3
2 0

)
. Hence, AB �= BA.

If a and b are real numbers, then ab = 0 implies that either a or b is 0. The corresponding
result is not true for matrices. In fact, AB can be the zero matrix even if neither A nor B is
the zero matrix.

E X A M P L E 5 Let A =
(

3 1
6 2

)
, B =

(
1 2

−3 −6

)
. Compute AB.

Solution: AB =
(

3 1
6 2

) (
1 2

−3 −6

)
=

(
0 0
0 0

)
.
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For real numbers, if ab = ac and a �= 0, then b = c, because we can cancel by multiplying
each side of the equation by 1/a. The corresponding cancellation “rule” is not valid for
matrices. Example 5 illustrates this point also: There AB = A0 and A �= 0, yet B �= 0.

So we have found examples showing that in general:

AB �= BA (7)

AB = 0 does not imply that either A or B is 0 (8)

AB = AC and A �= 0 do not imply that B = C (9)

Here (7) says that matrix multiplication is not commutative in general, whereas (9) shows
us that the cancellation law is generally invalid for matrix multiplication. (The cancellation
law is valid if A has a so-called inverse. See Section 16.6.)

The following two examples illustrate natural applications of matrix multiplication.

E X A M P L E 6 A firm uses raw materials R1, R2, . . . , Rm to produce the commodities V1, V2, . . . , Vn.
For i = 1, . . . , m and j = 1, . . . , n, we let aij be the quantity of raw material Ri which is
needed to produce each unit of commodity Vj . These quantities form the matrix

A = (aij )m×n =

⎛
⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎞
⎟⎟⎠

Suppose that the firm plans a monthly production of uj units of each commodity Vj , j =
1, 2, . . . , n. This plan can be represented by an n × 1 matrix (column vector) u, called the
firm’s monthly production vector:

u =

⎛
⎜⎜⎝

u1

u2
...

un

⎞
⎟⎟⎠

Since ai1, in particular, is the amount of raw material Ri which is needed to produce one
unit of commodity V1, it follows that ai1u1 is the amount of raw material Ri which is needed
to produce u1 units of commodity V1. Similarly aijuj is the amount needed for uj units of
Vj (j = 2, . . . , n). The total monthly requirement of raw material Ri is therefore

ai1u1 + ai2u2 + · · · + ainun =
n∑

j=1

aijuj

This is the inner product of the ith row vector in A and the column vector u. The firm’s
monthly requirement vector r for all raw materials is therefore given by the matrix product
r = Au. Thus r is an m × 1 matrix, or a column vector.

Suppose that the prices of the m raw materials are respectively p1, p2, . . ., pm per unit. If
we define the price vector p = (p1, p2, . . . , pm), then the total monthly cost K of acquiring
the required raw materials to produce the vector u is

∑m
i=1 piri . This sum can also be written

as the matrix product pr. Hence, K = pr = p(Au) = pAu. (Since matrix multiplication
is associative, it is unnecessary to use parentheses.)
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E X A M P L E 7 Figure 1 indicates the number of daily international flights between major airports in
three different countries A, B, and C. The number attached to each connecting line shows
how many flights there are between the two airports. For instance, from airport b3 in country
B there are 4 flights to airport c3 in country C each day, but none to airport c2 in country C.

2
1
3

1
2
1

1

1
2
1

4
1

a1
c1

c2

c3

b1

b2

b3

b4

a2

Figure 1

The relevant data can also be represented by the two matrices

P :

( b1 b2 b3 b4

a1 2 1 0 1
a2 3 0 2 1

)
Q :

⎛
⎜⎜⎝

c1 c2 c3

b1 1 0 2
b2 1 0 0
b3 1 0 4
b4 0 1 0

⎞
⎟⎟⎠

Each element pij of the matrix P represents the number of daily flights between ai and bj ,
while each element qjk of Q represents the number of daily flights between bj and ck . How
many ways are there of getting from ai to ck using two flights, with one connection in country
B? Between a2 and c3, for example, there are 3 · 2 + 0 · 0 + 2 · 4 + 1 · 0 = 14 possibilities.
This is the inner product of the second row vector in P and the third column vector in Q.
The same reasoning applies for each ai and ck . So the total number of flight connections
between the different airports in countries A and C is given by the matrix product

R = PQ =
(

2 1 0 1
3 0 2 1

) ⎛
⎜⎜⎝

1 0 2
1 0 0
1 0 4
0 1 0

⎞
⎟⎟⎠ =

(
3 1 4
5 1 14

)

P R O B L E M S F O R S E C T I O N 1 5 . 4

1. Verify the distributive law A(B + C) = AB + AC when

A =
(

1 2
3 4

)
, B =

(
2 −1 1 0
3 −1 2 1

)
, C =

( −1 1 1 2
−2 2 0 −1

)

⊂SM⊃2. Compute the matrix product (x, y, z)

(
a d e

d b f

e f c

) (
x

y

z

)
.
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3. Verify by actual multiplication that (AB)C = A(BC) if

A =
(

a11 a12

a21 a22

)
, B =

(
b11 b12

b21 b22

)
, C =

(
c11 c12

c21 c22

)

4. Compute: (a)

( 1 0 0
0 1 0
0 0 1

) ( 5 3 1
2 0 9
1 3 3

)
(b) ( 1, 2, −3 )

( 1 0 0
0 1 0
0 0 1

)

5. If A and B are square matrices of order n, prove that, in general

(a) (A + B)(A − B) �= A2 − B2 (b) (A − B)(A − B) �= A2 − 2AB + B2

Find a necessary and sufficient condition for equality to hold in each case.

6. A square matrix A is said to be idempotent if A2 = A.

(a) Show that

( 2 −2 −4
−1 3 4

1 −2 −3

)
is idempotent.

(b) Show that if AB = A and BA = B, then A and B are both idempotent.

(c) Show that if A is idempotent, then An = A for all positive integers n.

7. Suppose that P and Q are n × n matrices and that P3Q = PQ. Prove that P5Q = PQ.

HARDER PROBLEM

⊂SM⊃8. (a) For the general 2 × 2 matrix A =
(

a b

c d

)
, prove that A2 = (a + d)A − (ad − bc)I2.

(b) Use (a) to find an example of a 2 × 2 matrix A such that A2 = 0, but A �= 0.

(c) Use part (a) to show that if any 2 × 2 matrix A satisfies A3 = 0, then A2 = 0. (Hint:
Multiply the equality in part (a) by A, and use the equality A3 = 0 to derive an equation,
which you should then multiply by A once again.)

15.5 The Transpose
Consider any m × n matrix A. The transpose of A, denoted by A′, is defined as the n × m

matrix whose first column is the first row of A, whose second column is the second row of
A, and so on. Thus,

A =

⎛
⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

⎞
⎟⎟⎠ �⇒ A′ =

⎛
⎜⎜⎝

a11 a21 . . . am1

a12 a22 . . . am2
...

...
...

a1n a2n . . . amn

⎞
⎟⎟⎠ (1)

So we can write A′ = (a′
ij ), where a′

ij = aji . The subscripts i and j have to be interchanged
because the j th row of A becomes the j th column of A′, whereas the ith column of A
becomes the ith row of A′.
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E X A M P L E 1 Let A =
⎛
⎝ −1 0

2 3
5 −1

⎞
⎠ , B =

(
1 −1 0 4
2 1 1 1

)
. Find A′ and B′.

Solution: A′ =
( −1 2 5

0 3 −1

)
, B′ =

⎛
⎜⎜⎝

1 2
−1 1

0 1
4 1

⎞
⎟⎟⎠.

The following rules apply to matrix transposition:

R U L E S F O R T R A N S P O S I T I O N

(a) (A′)′ = A

(b) (A + B)′ = A′ + B′

(c) (αA)′ = αA′

(d) (AB)′ = B′A′

(2)

Proof: Verifying the first three rules is very easy, and you should prove them in detail, using the
fact that a′

ij = aji for each i, j . To prove rule (d), suppose that A is m × n and B is n × p. Then A′
is n × m, B′ is p × n, AB is m × p, (AB)′ is p × m, and B′A′ is p × m. Thus, (AB)′ and B′A′ have
the same order. It remains to prove that corresponding elements in the two matrices are equal.

The rs element in (AB)′ is the sr element in AB, which is as1b1r + as2b2r + · · · + asnbnr . On
the other hand, the rs element in B′A′ is b1ras1 + b2ras2 + · · · + bnrasn. The two sums are clearly
equal. So we have proved rule (d).

E X A M P L E 2 Let x be the column vector (x1, x2, . . . , xn)
′. Then x′ is a row vector of n elements. The

product x′x is
∑n

i=1 x2
i . This equals ‖x‖2, the square of the norm of x. (See Section 13.6.)

The reverse product xx′, however, is an n × n matrix whose ij element is equal to xixj .

Symmetric Matrices

Square matrices with the property that they are symmetric about the main diagonal are called
symmetric. For example,( −3 2

2 0

)
,

⎛
⎝ 2 −1 5

−1 −3 2
5 2 8

⎞
⎠ ,

⎛
⎝ a b c

b d e

c e f

⎞
⎠

are all symmetric. Symmetric matrices are characterized by the fact that they are equal to
their own transposes:

The matrix A is symmetric ⇐⇒ A = A′

Hence, matrix A = (aij )n×n is symmetric iff aij = aji for all i, j .
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E X A M P L E 3 If X is an arbitrary m × n matrix, show that XX′ and X′X are both symmetric.

Solution: First, note that XX′ is m × m, whereas X′X is n × n. Using rules (d) and (a) in
(2), we find that

(XX′)′ = (X′)′X′ = XX′

This proves that XX′ is symmetric. Prove the other equality in a similar way.

P R O B L E M S F O R S E C T I O N 1 5 . 5

1. Find the transposes of A =
(

3 5 8 3
−1 2 6 2

)
, B =

⎛
⎜⎝

0
1

−1
2

⎞
⎟⎠ , C = ( 1, 5, 0, −1 ).

2. Let A =
(

3 2
−1 5

)
, B =

(
0 2
2 2

)
, and α = −2. Compute A′, B′, (A + B)′, (αA)′, AB,

(AB)′, B′A′, and A′B′. Then verify all the rules in (2) for these particular values of A, B, and α.

3. Show that A =
( 3 2 3

2 −1 1
3 1 0

)
and B =

( 0 4 8
4 0 13
8 13 0

)
are symmetric.

4. For what values of a is

(
a a2 − 1 −3

a + 1 2 a2 + 4
−3 4a −1

)
symmetric?

5. Is the product of two symmetric matrices necessarily symmetric?

⊂SM⊃6. If A1, A2, and A3 are matrices for which the given products are defined, show that

(A1A2A3)
′ = A′

3A′
2A′

1

Generalize to products of n matrices.

7. An n × n matrix P is said to be orthogonal if P′P = In.

(a) For λ = ±1/
√

2, show that P =
(

λ 0 λ

λ 0 −λ

0 1 0

)
is orthogonal.

(b) Show that the 2 × 2 matrix

(
p −q

q p

)
is orthogonal if and only if p2 + q2 = 1.

(c) Show that the product of two orthogonal n × n matrices is orthogonal.

⊂SM⊃8. Define the two matrices T and S by T =
⎛
⎝ p q 0

1
2 p 1

2
1
2 q

0 p q

⎞
⎠ , S =

(
p2 2pq q2

p2 2pq q2

p2 2pq q2

)
,

and assume that p + q = 1.

(a) Prove that T · S = S, T2 = 1
2 T + 1

2 S, and T3 = 1
4 T + 3

4 S.

(b) Conjecture formulas for constants αn, βn such that Tn = αnT +βnS for n = 2, 3, . . . , then
prove the formulas by induction.
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15.6 Gaussian Elimination
One way of solving simultaneous equations is by eliminating unknowns, introduced as
Method 2 in Section 2.4 for the case of two equations in two unknowns. This procedure can
be extended to larger equation systems. Because it is very efficient, it is the starting point
for computer programs. Consider first the following example.

E X A M P L E 1 Find all possible solutions of the system

2x2 − x3 = −7

x1 + x2 + 3x3 = 2

−3x1 + 2x2 + 2x3 = −10

(i)

Solution: The idea will be to eliminate one unknown x1 from both the second and third
equations, and then to eliminate x2 from the third equation, which remains with only the
unknown x3. We begin, however, by interchanging the first two equations, which certainly
will not alter the set of solutions. We obtain

x1 + x2 + 3x3 = 2

2x2 − x3 = −7

−3x1 + 2x2 + 2x3 = −10

(ii)

This has removed x1 from the second equation. The next step is to use the first equation
in (ii) to eliminate x1 from the third equation. This is done by adding three times the first
equation to the last equation. (The same result is obtained if we solve the first equation for
x1 to obtain x1 = −x2 − 3x3 + 2, and then substitute this into the last equation.) This gives

x1 + x2 + 3x3 = 2

2x2 − x3 = −7

5x2 + 11x3 = −4

(iii)

Having eliminated x1, the next step in the systematic procedure is to multiply the second
equation in (iii) by 1/2, so that the coefficient of x2 becomes 1. Thus,

x1 + x2 + 3x3 = 2

x2 − 1
2x3 = − 7

2

5x2 + 11x3 = −4

(iv)

Next, eliminate x2 from the last equation by multiplying the second equation by −5 and
adding the result to the last equation. This gives:

x1 + x2 + 3x2 = 2

x2 − 1
2x3 = − 7

2
27
2 x3 = 27

2

(v)

Finally, multiply the last equation by 2
27 to obtain x3 = 1. Now the other two unknowns

can easily be found by “back substitution”: Inserting x3 = 1 into the second equation in (v)
gives x2 = −3, and the first equation in (v) subsequently yields x1 = 2. Therefore the only
solution of the given system is (x1, x2, x3) = (2, −3, 1).
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Our elimination procedure led to a “staircase” in system (v), with x1, x2, and x3 as leading
entries. In matrix notation, we have⎛

⎝ 1 1 3
0 1 − 1

2

0 0 1

⎞
⎠

⎛
⎝ x1

x2

x3

⎞
⎠ =

⎛
⎝ 2

− 7
2

1

⎞
⎠

The matrix of coefficients on the left-hand side is upper triangular because all entries below
the main diagonal are 0. Moreover, the diagonal elements are all 1.

The solution method illustrated in this example is called Gaussian elimination. The
operations performed on the given system of equations in order to arrive at system (v) are
called elementary row operations. These come in three different kinds:

1. Interchange any pair of rows, as in the step from (i) to (ii) in the above solution.

2. Multiply any row by a scalar, as in the steps from (iii) to (iv) and from (iv) to (v) in the
above solution.

3. Add any multiple of one row to a different row, as in the steps from (ii) to (iii) and from
(iv) to (v) in the above solution.

Sometimes the elementary row operations are continued until we also obtain zeros above
the leading entries. In the example above, this takes three more operations of type 3. The
first is as indicated in

x1 + x2 + 3x3 = 2

x2 − 1
2x3 = − 7

2

x3 = 1

←
−1 (vi)

which results in

x1 + 7
2x3 = 11

2

x2 − 1
2x3 = − 7

2

x3 = 1

←
←

1
2 − 7

2

(vii)

The above display indicates the next two operations, affecting rows 1 and 2 respectively.
The result is the simple equation system x1 = 2, x2 = −3, and x3 = 1.

Let us apply this method to another example.

E X A M P L E 2 Find all possible solutions of the following system of equations:

x1 + 3x2 − x3 = 4

2x1 + x2 + x3 = 7

2x1 − 4x2 + 4x3 = 6

3x1 + 4x2 = 11
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Solution: We begin with three operations to remove x1 from equations 2, 3, and 4:

x1 + 3x2 − x3 = 4

2x1 + x2 + x3 = 7

2x1 − 4x2 + 4x3 = 6

3x1 + 4x2 = 11

−2 −2 −3

←
←
←

The result is

x1 + 3x2 − x3 = 4

−5x2 + 3x3 = −1

−10x2 + 6x3 = −2

−5x2 + 3x3 = −1

− 1
5

where we have also indicated the next operation of multiplying row 2 by − 1
5 . Further

operations on the result lead to

x1 + 3x2 − x3 = 4

x2 − 3
5x3 = 1

5

−10x2 + 6x3 = −2

−5x2 + 3x3 = −1

10 5

←
←

then

x1 + 3x2 − x3 = 4

x2 − 3
5x3 = 1

5

0 = 0

0 = 0

←
−3

We have now constructed the staircase. The last two equations are superfluous, and we
continue by creating zeros above the leading entry x2:

x1 + 4
5x3 = 17

5

x2 − 3
5x3 = 1

5

or
x1 = − 4

5x3 + 17
5

x2 = 3
5x3 + 1

5

(∗)

Clearly, x3 can be chosen freely, after which x1 and x2 are uniquely determined by (∗).
Putting x3 = t , we can represent the solution set as:

(x1, x2, x3) = (− 4
5 t + 17

5 , 3
5 t + 1

5 , t
)

(t is any real number)

We say that the solution set of the system has one degree of freedom, since one of the
variables can be freely chosen. (See Section 12.10.) If this variable is given a fixed value,
then the other two variables are uniquely determined.

G A U S S I A N E L I M I N A T I O N M E T H O D

(1) Make a staircase with 1 as the coefficient for each nonzero leading entry.

(2) Produce 0’s above each leading entry.

(3) The general solution is found by expressing the unknowns that occur as
leading entries in terms of those unknowns that do not. The latter unknowns
(if there are any) can be chosen freely. The number of unknowns that can be
chosen freely (possibly 0) is the number of degrees of freedom.
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This description of the recipe assumes that the system has solutions. However, the Gaussian
elimination method (also called the Gauss–Jordan method) can also be used to show that a
linear system of equations is inconsistent—that is, it has no solutions.

Before showing you an example of this, let us introduce a device that considerably
reduces the amount of notation needed. Looking back at the last two examples, we realize
that we only need to know the coefficients of the system of equations and the right-hand side
vector, while the variables only serve to indicate in which column the different coefficients
belong. Thus, Example 2 can be represented by augmented coefficient matrices (i.e. each
has the corresponding vector of right-hand sides as an extra column) as follows:⎛

⎜⎜⎝
1 3 −1 4
2 1 1 7
2 −4 4 6
3 4 0 11

⎞
⎟⎟⎠

−2 −2 −3
←
←
←

∼

⎛
⎜⎜⎝

1 3 −1 4
0 −5 3 −1
0 −10 6 −2
0 −5 3 −1

⎞
⎟⎟⎠ −1/5

∼

⎛
⎜⎜⎝

1 3 −1 4
0 1 −3/5 1/5

0 −10 6 −2
0 −5 3 −1

⎞
⎟⎟⎠ 10 5

←
←

∼

⎛
⎜⎜⎝

1 3 −1 4
0 1 −3/5 1/5

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

←
−3

∼

⎛
⎜⎜⎝

1 0 4/5 17/5

0 1 −3/5 1/5

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

We have performed elementary row operations on the different 4 × 4 augmented matrices,
and we have used the equivalence symbol ∼ between two matrices when the latter has
been obtained by using elementary operations on the former. This is justified because such
operations do always produce an equivalent system of equations. Note carefully how the
system of equations in Example 2 is represented by the first matrix, and how the last matrix
represents the system x1 + 4

5x3 = 17
5 , x2 − 3

5x3 = 1
5 .

E X A M P L E 3 For what values of the numbers a, b, and c does the following system have solutions?
Find the solutions when they exist.

x1 − 2x2 + x3 + 2x4 = a

x1 + x2 − x3 + x4 = b

x1 + 7x2 − 5x3 − x4 = c

Solution: We represent the system by its augmented matrix, then perform elementary row
operations as required by the Gaussian method:⎛

⎝ 1 −2 1 2 a

1 1 −1 1 b

1 7 −5 −1 c

⎞
⎠ −1 −1

←
←

∼
⎛
⎝ 1 −2 1 2 a

0 3 −2 −1 b − a

0 9 −6 −3 c − a

⎞
⎠ −3

←

∼
⎛
⎝ 1 −2 1 2 a

0 3 −2 −1 b − a

0 0 0 0 2a − 3b + c

⎞
⎠
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The last row represents the equation 0 ·x1 +0 ·x2 +0 ·x3 +0 ·x4 = 2a−3b+c. The system
therefore has solutions only if 2a − 3b + c = 0. In this case the last row has only zeros,
and we continue using elementary operations till we end up with the following matrix:⎛
⎜⎝

1 0 −1/3 4/3
1
3 (a + 2b)

0 1 −2/3 −1/3
1
3 (b − a)

0 0 0 0 0

⎞
⎟⎠ and thus

{
x1 − 1

3x3 + 4
3x4 = 1

3 (a + 2b)

x2 − 2
3x3 − 1

3x4 = 1
3 (b − a)

Here x3 and x4 can be freely chosen. Once they have been chosen, however, x1 and x2 are
uniquely determined linear functions of s = x3 and t = x4:

x1 = 1
3 (a + 2b) + 1

3 s − 4
3 t

x2 = 1
3 (b − a) + 2

3 s + 1
3 t

(s and t arbitrary real numbers, 2a − 3b + c = 0)

For 2a − 3b + c �= 0 the given system is inconsistent, so has no solutions.

P R O B L E M S F O R S E C T I O N 1 5 . 6

1. Solve the following systems by Gaussian elimination.

(a)
x1 + x2 = 3

3x1 + 5x2 = 5
(b)

x1 + 2x2 + x3 = 4

x1 − x2 + x3 = 5

2x1 + 3x2 − x3 = 1

(c)
2x1 − 3x2 + x3 = 0

x1 + x2 − x3 = 0

2. Use Gaussian elimination to discuss what are the possible solutions of the following system for
different values of a and b:

x + y − z = 1

x − y + 2z = 2

x + 2y + az = b

⊂SM⊃3. Find the values of c for which the system

2w + x + 4y + 3z = 1

w + 3x + 2y − z = 3c

w + x + 2y + z = c2

has a solution, and find the complete solution for these values of c.

⊂SM⊃4. Consider the two systems of equations:

(a)

ax + y + (a + 1)z = b1

x + 2y + z = b2

3x + 4y + 7z = b3

(b)

3
4 x + y + 7

4 z = b1

x + 2y + z = b2

3x + 4y + 7z = b3

Find the values of a for which (a) has a unique solution, and find all solutions to system (b).
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15.7 Vectors
Recall that a matrix with only one row is also called a row vector, and a matrix with only
one column is called a column vector. We refer to both types as vectors. As remarked in
Section 15.2, vectors are typically denoted by small bold letters. Thus, if a is a 1 × n row
vector, we write

a = (a1, a2, . . . , an)

Here, the numbers a1, a2, . . . , an are called the components (or coordinates) of the vector,
and ai is its ith component or ith coordinate. (Recall that when we consider a as a matrix,
a1, . . . , an are called entries or elements.) If we want to emphasize that a vector has n

components, we refer to it as an n-vector. Alternatively, if a is an n-vector, then we say that
it has dimension n.

It is clear that the row vector (7, 13, 4) and the column vector

( 7
13
4

)
contain exactly the

same information—the numbers and their order are the same, only the arrangement of the
numbers is different. In fact, following the ideas presented in Chapter 11, both the row and
the column vector are represented by the same point in 3-dimensional space �3. And any
n-vector is represented by a point in n-dimensional space �n.

Operations on Vectors

Since a vector is just a special types of matrix, the algebraic operations introduced for
matrices are equally valid for vectors. So:

(A) Two n-vectors a and b are equal if and only if all their corresponding components are
equal; we then write a = b.

(B) If a and b are two n-vectors, their sum, denoted by a + b, is the n-vector obtained by
adding each component of a to the corresponding component of b.2

(C) If a is an n-vector and t is a real number, we define ta as the n-vector whose components
are t times the corresponding components in a.

(D) The difference between two n-vectors a and b is defined as a − b = a + (−1)b.

If a and b are two n-vectors and t and s are real numbers, the n-vector ta + sb is said to be
a linear combination of a and b. In symbols, using column vectors,

t

⎛
⎜⎜⎝

a1

a2
...

an

⎞
⎟⎟⎠ + s

⎛
⎜⎜⎝

b1

b2
...

bn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ta1 + sb1

ta2 + sb2
...

tan + sbn

⎞
⎟⎟⎠

Here is an interpretation: Suppose a and b are commodity vectors, whose j th components
are quantities of commodity number j . Now, if t persons all buy the same commodity vector

2 If two vectors do not have the same dimension, their sum is simply not defined, nor is their
difference. Nor should one add a row vector to a column vector, even if they have the same
number of elements.
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a and s persons all buy commodity vector b, then the vector ta + sb represents the total
commodity vector bought by all t + s persons combined.

Of course, the rules for matrix addition and multiplication by scalars in (15.2.5) apply
to vectors also.

The Inner Product
Let us consider four different commodities—say, apples, bananas, cherries and dates. Sup-
pose you buy the commodity vector x = (5, 3, 6, 7). This means, of course, that you buy
5 units—say, kilos—of the first commodity, 3 kilos of the second commodity, etc. Sup-
pose the prices per kilo of these four different commodities are given by the price vector
p = (4, 5, 3, 8), meaning that the price per kilo of the first good is 4, that of the second is 5,
etc. Then the total value of the commodity vector you buy is 4 ·5+5 ·3+3 ·6+8 ·7 = 109.
The result of this operation on the two vectors p and x is often written as p·x and is called the
inner product or scalar product or dot product of p and x. In general, we have the following
definition (formulated for row vectors):

I N N E R P R O D U C T

The inner product of the n-vectors a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn)

is defined as

a · b = a1b1 + a2b2 + · · · + anbn =
n∑

i=1

aibi

(1)

Note that the inner (scalar) product of two vectors is not a vector but a number (or scalar).
It is obtained by simply multiplying all pairs (aj , bj ), j = 1, 2, . . . , n, of the corresponding
components in the two vectors a and b, and then finally adding the results. Note that a · b
is defined only if a and b are both of the same dimension.

In the case when p is a price vector whose components are measured in dollars per kilo,
and x is a commodity vector whose components are measured in kilos, then each product
pjxj is an amount of money measured in dollars, as is the inner product p · x = ∑n

j=1 pjxj .

E X A M P L E 1 If a = (1, −2, 3) and b = (−3, 2, 5), compute a · b.

Solution: We get a · b = 1 · (−3) + (−2) · 2 + 3 · 5 = 8.

Note that according to the definition of the matrix product AB, the ij th element of the
product is the inner product of the ith row vector of A and the j th column vector of B.

The inner product is defined for any two n-vectors. If a = (a1, . . . , an)
′ and b =

(b1, . . . , bn)
′ both happen to be n × 1 matrices, then the transpose a′ of a is a 1 × n matrix,

and the matrix product a′b is defined as a 1 × 1 matrix. In fact,

a′b = a1b1 + a2b2 + · · · + anbn
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Because 1 × 1 matrices behave exactly as ordinary numbers with respect to addition and
multiplication, we can regard the inner product of a and b as the matrix product a′b.

It is usual in economics to regard a typical vector x as a column vector, unless otherwise
specified. This is especially true if it is a quantity or commodity vector. Another common
convention is to regard a price vector as a row vector, often denoted by p′ to suggest that it
is the transpose of a column vector. Then p′x is the 1 × 1 matrix whose single element is
equal to the inner product p · x.

Important properties of the inner product follow:

R U L E S F O R T H E I N N E R P R O D U C T

If a, b, and c are n-vectors and α is a scalar, then

(a) a · b = b · a

(b) a · (b + c) = a · b + a · c

(c) (αa) · b = a · (αb) = α(a · b)

(d) a · a > 0 ⇐⇒ a �= 0

(2)

Proof: Rules (a) and (c) are easy consequences of the definition.
To prove rule (b), apply the distributive law for matrix multiplication (15.4.2) when a is

1 × n whereas b and c are n × 1.
To prove rule (d), it suffices to note that a · a = a2

1 + a2
2 + · · · + a2

n. This is always
nonnegative, and is zero only if all the ai’s are 0.

P R O B L E M S F O R S E C T I O N 1 5 . 7

1. Compute a + b, a − b, 2a + 3b, and −5a + 2b when a =
(

2
−1

)
and b =

(
3
4

)
.

2. Let a = (1, 2, 2), b = (0, 0, −3), and c = (−2, 4, −3). Find the following:

a + b + c , a − 2b + 2c , 3a + 2b − 3c

3. If 3(x, y, z) + 5(−1, 2, 3) = (4, 1, 3), find x, y, and z.

4. (a) If x + 0 = 0, what do you know about the components of x?

(b) If 0x = 0, what do you know about the components of x?

5. Express the vector (4, −11) as a linear combination of (2, −1) and (1, 4).

6. Solve the vector equation 4x − 7a = 2x + 8b − a for x in terms of a and b.
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7. If a =
(

2
−1

)
and b =

(
3
4

)
, find a ·a, a ·b, and a ·(a + b). Verify that a ·a+a ·b = a ·(a+b).

8. For what values of x is the inner product of (x, x − 1, 3) and (x, x, 3x) equal to 0?

9. A residential construction company plans to build several houses of three different types: 5 of
type A, 7 of type B, and 12 of type C. Write down a 3-dimensional vector x whose coordinates
give the number of houses of each type. Suppose that each house of type A requires 20 units of
timber, type B requires 18 units, and type C requires 25 units. Write down a vector u that gives
the different timber quantities required for one house of each of the three different types A, B,
and C. Find the total timber requirement by computing the inner product u · x.

10. A firm produces nonnegative output quantities z1, z2, . . . , zn of n different goods, using as inputs
the nonnegative quantities x1, x2, . . . , xn of the same n goods. For each good i (i = 1, . . . , n),
define yi = zi − xi as the net output of good i, and let pi be the price of good i. Let p =
(p1, . . . , pn), x = (x1, . . . , xn) (the input vector), y = (y1, . . . , yn) (the net output vector),
and z = (z1, . . . , zn) (the output vector).

(a) Calculate the firm’s revenue and its costs.

(b) Show that the firm’s profit is given by the inner product p · y. What if p · y is negative?

11. A firm produces the first of two different goods as its output, using the second good as its input.

Its net output vector (see Problem 10) is

(
2

−1

)
. The price vector it faces is (1, 3). Find the

firm’s (a) input vector, (b) output vector, (c) costs, (d) revenue, (e) value of net output, and (f)
profit or loss.

15.8 Geometric Interpretation of Vectors
Vectors, in contrast to general matrices, are easily interpreted geometrically. Actually, the
word “vector” is originally Latin and was used to mean both “carrier” and “passenger”.
In particular, the word is related to the act of moving a person or object from one place to
another. Following this idea, a biologist is likely to think of a “vector” as a carrier of disease,
such as mosquitoes are for malaria.

In the xy-plane, any shift can be described by the distance a1 moved in the x-direction and
by the distance a2 moved in the y-direction. A movement in the plane is therefore uniquely
determined by an ordered pair or 2-vector (a1, a2). Geometrically, such a movement can
be illustrated by an arrow from the start point P to the end point Q, as shown in Fig. 1.
If we make a parallel displacement of the arrow so that it starts at P ′ and ends at Q′, the
resulting arrow will represent exactly the same shift, because the x and y components are
still a1 and a2, respectively. The vector from P to Q is denoted by

−→
PQ, and we refer to it

as a geometric vector or directed line segment. Two geometric vectors that have the same
direction and the same length are said to be equal (in much the same way as the two fractions
2/6 and 1/3 are equal because they represent the same real number).
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P�

Q�

P

Q

a1

a2

a1

a2

Figure 1

Suppose that the geometric vector a involves a movement from P = (p1, p2) to Q =
(q1, q2). Then the pair (a1, a2) that describes the movement in both the x and y directions is
given by a1 = q1−p1, a2 = q2−p2, or by (a1, a2) = (q1, q2)−(p1, p2). This is illustrated
in Fig. 2. On the other hand, if the pair (a1, a2) is given, the corresponding shift is obtained
by moving a1 units in the direction of the x-axis, as well as a2 units in the direction of the
y-axis. If we start at the point P = (p1, p2), then we arrive at the point Q with coordinates
(q1, q2) = (p1 + a1, p2 + a2), also shown in Fig. 2.

This correspondence makes it a matter of convenience whether we think of a vector as
an ordered pair of numbers (a1, a2), or as a directed line segment such as

−→
PQ in Fig. 2.

P
a1

a2

p1 q1

p2

q2
Q � (q1 , q2) � (p1 � a1 , p2 � a2)

a

Figure 2

Vector Operations
If we represent vectors by directed line segments, the vector operations a + b, a − b, and ta
can be given interesting geometric interpretations. Let a = (a1, a2) and b = (b1, b2) both
start at the origin (0, 0) of the coordinate system.

a

b

(a1 , a2)

(b1 , b2)

(a1 � b1 , a2 � b2)

a � b

O S

P

Q

R

T

a1

a2

b1

b2

b2

a

b
a � b

Figure 3 Figure 4
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The sum a + b shown in Fig. 3 is the diagonal in the parallelogram determined by the two
sides a and b. The geometric reason for this can be seen from Fig. 4, in which the two
right-angled triangles OSR and PT Q are congruent. Thus, OR is parallel to PQ and has
the same length, so OPQR is a parallelogram. (This parallelogram law of adding vectors
will be familiar to those who have studied physics. If a and b represent two forces acting
on a particle at O, then the single combined force a + b acting on the particle will produce
the same result.) The parallelogram law of addition is also illustrated in Fig. 5. One way of
interpreting this figure is that if a takes you from O to P and b takes you on from P to Q,
then the combined movement a + b takes you from O to Q. Moreover, looking at Fig. 4
again, b takes you from O to R, whereas a takes you on from R to Q. So the combined
movement b + a takes you from O to Q. Of course, this verifies that a + b = b + a.

Figure 6 gives a geometric interpretation to the vector a−b. Note carefully the direction
of the geometric vector a − b. And note that b + (a − b) = a = (a − b) + b.

O

P

Q

a

ba � b

a

b

b � (a � b) � a

a � b

Figure 5 Figure 6

The geometric interpretation of ta, where t is any real number, is also straightforward. If
t > 0, then ta is the vector with the same direction as a and whose length is t times the
length of a. If t < 0, the direction is reversed and the length is multiplied by the absolute
value of t . Indeed, multiplication by t is like rescaling the vector a; that is why the number
t is often called a scalar.

3-Space and n-Space
The plane is often also called 2-space and denoted �2. We represent a point or a vector in a
plane by a pair of real numbers using two mutually orthogonal coordinate lines.

In a similar way, any point or vector in 3-space �3 can be represented by a triple of real
numbers using three mutually orthogonal coordinate lines, as explained in Section 11.3. Any
3-vector (a1, a2, a3) can be considered in an obvious way as a geometric vector or movement
in 3-space �3. As with ordered pairs in the plane, there is a natural correspondence between
ordered triples (a1, a2, a3) and geometric vectors regarded as directed line segments. The
parallelogram law of addition remains valid in �3, as does the geometric interpretation of
the multiplication of a vector by a scalar.

The set �n of all n-vectors was introduced in Section 11.5. When n ≥ 4, it has no natural
spatial interpretation. Nevertheless, geometric language is sometimes still used to discuss
properties of �n, because many properties of �2 and �3 carry over to �n. In particular, the
rules for addition, subtraction, and scalar multiplication of vectors remain exactly the same.
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Lengths of Vectors and the Cauchy–Schwarz Inequality

If a = (a1, a2, . . . , an), we define the length (or norm) of the vector a, denoted by ‖a‖, as
‖a‖ = √

a · a, or

‖a‖ =
√

a2
1 + a2

2 + · · · + a2
n (1)

According to (13.6.2), ‖a‖ is the distance from the origin (0, 0, . . . , 0) to (a1, a2, . . . , an).
In Problem 4.6.9 you were asked to prove a famous inequality. Using the notation we have
just introduced, this inequality can be expressed as (a · b)2 ≤ ‖a‖2‖b‖2, or equivalently, as

|a · b| ≤ ‖a‖ · ‖b‖ (Cauchy–Schwarz inequality) (2)

E X A M P L E 1 For the two vectors a = (1, −2, 3) and b = (−3, 2, 5), check the Cauchy–Schwarz
inequality.

Solution: We find that

‖a‖ =
√

12 + (−2)2 + 32 = √
14, ‖b‖ =

√
(−3)2 + 22 + 52 = √

38

In Example 15.7.1 we found the inner product of these vectors to be 8. So inequality (2)
says that 8 ≤ √

14
√

38, which is certainly true because
√

14 > 3 and
√

38 > 6.

Orthogonality

Consider Fig. 7, which exhibits three vectors, a, b, and a − b in �2 or �3.

θ
O A

B

a

b a � b

Figure 7

According to Pythagoras’s theorem, the angle θ between the two vectors a and b is a right
angle (= 90◦) if and only if (OA)2 + (OB)2 = (AB)2, or ‖a‖2 + ‖b‖2 = ‖a − b‖2. This
implies that θ = 90◦ if and only if

a · a + b · b = (a − b) · (a − b) = a · a − a · b − b · a + b · b (∗)

Because a · b = b · a, equality (∗) requires 2a · b = 0, and so a · b = 0. When the angle
between two vectors a and b is 90◦, they are said to be orthogonal, and we write a ⊥ b.
Thus, we have proved that two vectors in �2 or �3 are orthogonal if and only if their inner
product is 0. In symbols:

a ⊥ b ⇐⇒ a · b = 0 (3)
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For pairs of vectors in �n, we define orthogonality between a and b by (3).

NOTE 1 (This relies on some elementary trigonometry.) Let a and b be two nonzero vectors in �n.
Define the angle θ between them by

cos θ = a · b
‖a‖ · ‖b‖ (θ ∈ [0, π ]) (4)

Definition (4) makes sense because the Cauchy–Schwarz inequality implies that the right-hand side
has an absolute value ≤ 1. Note also that according to (4), cos θ = 0 iff a · b = 0. This agrees with
(3) because for θ ∈ [0, π ], we have cos θ = 0 iff θ = π/2.

E X A M P L E 2 Suppose we repeatedly observe a commodity’s price and the quantity demanded. After n obser-
vations we have n pairs (p1, d1), (p2, d2), . . . , (pn, dn), where pi represents the price and di is the
demand at observation i, i = 1, 2, . . . , n. Define the statistical means

p̄ = 1

n

n∑
i=1

pi , d̄ = 1

n

n∑
i=1

di

and
a = (p1 − p̄, p2 − p̄, . . . , pn − p̄), b = (d1 − d̄, d2 − d̄, . . . , dn − d̄)

In statistics, the ratio cos θ defined by (4) is called the correlation coefficient, often denoted by
ρ. It is a measure of the degree of “correlation” between the prices and demand quantities in the
data. When ρ = 1, there is a positive constant α > 0 such that di − d̄ = α(pi − p̄), implying
that demand and price are perfectly correlated. It is more plausible, however, that ρ = −1 because
this relationship holds for some α < 0. Generally, if ρ > 0 the variables are positively correlated,
whereas if ρ < 0 the variables are negatively correlated, and if ρ = 0 they are uncorrelated.

E X A M P L E 3 (Orthogonality in econometrics) In the earlier example of linear regression (Example 13.4.4),
the regression coefficients α and β were chosen to minimize the mean squared error loss function

L(α, β) = 1

T

T∑
t=1

e2
t = 1

T

T∑
t=1

(yt − α − βxt )
2

This required choosing α̂ = μy − (σxy/σxx)μx and β̂ = σxy/σxx , where μx and μy denote the means
of xt and yt respectively, whereas σxx is the variance of xt , and σxy is the covariance of xt with yt .
The resulting errors become êt = yt − α̂ − β̂xt = yt − μy − (σxy/σxx)(xt − μx). By definition of
μx and μy , one has

1

T

T∑
t=1

êt = 0 (∗)

In addition,

1

T

T∑
t=1

êt xt = 1

T

T∑
t=1

xtyt − μxμy − σxy

σxx

(
1

T

T∑
t=1

x2
t − μ2

x

)
= σxy − σxy

σxx

σxx = 0 (∗∗)

Define the vectors 1 = (1, 1 . . . , 1), x = (x1, . . . , xT ), and ê = (ê1, . . . , êT ). Then equation (∗)

shows that the inner product of ê and 1 is 0. Moreover, equation (∗∗) shows that the inner product
of ê and x is 0.
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Note that L(α, β) = (1/T )‖y − α1 − βx‖2. Geometrically, the scalars α̂ and β̂ are chosen so
that the vector ŷ = α̂1 + β̂x in the plane containing the vectors 0, 1, and x is as close as possible to y
in the T -dimensional space �T .3 This involves having the vector y − ŷ = ê be orthogonal to 1 and x,
and to every other vector α1 + βx in this plane. Accordingly, ŷ is called the orthogonal projection
of y onto this plane.

P R O B L E M S F O R S E C T I O N 1 5 . 8

1. Let a = (5, −1) and b = (−2, 4). Compute a + b and − 1
2 a, and illustrate with geometric

vectors starting at the origin.

⊂SM⊃2. (a) Let a = (3, 1) and b = (−1, 2). Define x = λa + (1 − λ)b. Compute x when λ = 0, 1/4,
1/2, 3/4, and 1. Illustrate.

(b) If λ ∈ [0, 1], what set of points does x = λa + (1 −λ)b trace out? Show that if λ ∈ �, then
x traces out the whole straight line through (3, 1) and (−1, 2).

3. Let a = (1, 2, 2) , b = (0, 0, −3), and c = (−2, 4, −3). Compute ‖a‖, ‖b‖, and ‖c‖, and
verify that (2) holds for a and b.

4. (a) Let a = (1, 2, 1), b = (−3, 0, −2). Find numbers x1 and x2 such that x1a+x2b = (5, 4, 4).

(b) Prove that there are no real numbers x1 and x2 satisfying x1a + x2b = (−3, 6, 1).

5. Check which of these pairs of vectors are orthogonal:

(a) (1, 2) and (−2, 1) (b) (1, −1, 1) and (−1, 1, −1) (c) (a, −b, 1) and (b, a, 0)

6. For what values of x are (x, −x − 8, x, x) and (x, 1, −2, 1) orthogonal?

HARDER PROBLEMS

7. Show that any two different columns of an orthogonal matrix (see Problem 15.5.7) are orthogonal
vectors, as are any two different rows.

8. If a and b are n-vectors, prove the triangle inequality ‖a + b‖ ≤ ‖a‖ + ‖b‖.
(Hint: ‖a + b‖2 = (a + b) · (a + b). Then use (2).)

15.9 Lines and Planes
Let a = (a1, a2, a3) and b = (b1, b2, b3) be two distinct vectors in �3. We can think of
them as arrows from the origin to the points with coordinates (a1, a2, a3) and (b1, b2, b3),
respectively. The straight line L passing through these two points is shown in Fig. 1.

3 Planes are discussed in the next section.
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L

b a

x

a � b

z

y

x

Figure 1

Let t be a real number and put x = b + t (a − b) = ta + (1 − t)b. Then t = 0 gives
x = b and t = 1 gives x = a. As t decreases, the point x moves to the left in Fig. 1; as t

increases, x moves to the right. By the geometric rule for adding vectors extended from �2

to �3, the vector marked x in Fig. 1 is approximately b + 2.5(a − b). As t runs through all
the real numbers, so x describes the whole straight line L.

For �n, we introduce the following definition:

L I N E I N N - S P A C E

The line L in �n through the two distinct points a = (a1, . . . , an) and b =
(b1, . . . , bn) is the set of all x = (x1, . . . , xn) satisfying

x = ta + (1 − t)b for some real number t

(1)

By using the coordinates of a and b, (1) is equivalent to

x1 = ta1 + (1 − t)b1, x2 = ta2 + (1 − t)b2, . . . , xn = tan + (1 − t)bn (2)

x3

x1

x2
(1, 2,2)

1

1

1 (3, 5,0)

(�1, �1,4)

L

Figure 2

E X A M P L E 1 Describe the straight line in �3 through the two points (1, 2, 2) and (−1, −1, 4). Where
does it meet the x1x2-plane?
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Solution: According to (2), the straight line is given by the equations:

x1 = t · 1 + (1 − t)(−1) = 2t − 1

x2 = t · 2 + (1 − t)(−1) = 3t − 1

x3 = t · 2 + (1 − t) · 4 = 4 − 2t

This line intersects the x1x2-plane when x3 = 0. Then 4 − 2t = 0, so t = 2, implying that
x1 = 3 and x2 = 5. It follows that the line meets the x1x2-plane at the point (3, 5, 0), as
shown in Fig. 2.

Suppose p = (p1, . . . , pn) ∈ �n. The straight line L passing through (p1, . . . , pn) in the
same direction as the vector a = (a1, . . . , an) is given by

x = p + ta (t is any real number) (3)

Hyperplanes

As shown in Fig. 3, a plane P in �3 is defined by one point a = (a1, a2, a3) in the plane,
as well as one vector p = (p1, p2, p3) �= (0, 0, 0) which is orthogonal or perpendicular
to any line in the plane. Then the vector p is said to be a normal to the plane. Thus, if
x = (x1, x2, x3) is any point in P other than a, then the vector x − a is in a direction
orthogonal to p. Therefore, the inner product of p and x − a must be 0, so that

p · (x − a) = 0 or (p1, p2, p3) · (x1 − a1, x2 − a2, x3 − a3) = 0 (4)

a

x

p

P

x1

x2

x3

x � a

Figure 3

So (4) is the general equation of a plane in �3 passing through the point a with normal
p �= 0.

E X A M P L E 2 Find the equation for the plane in �3 through a = (2, 1, −1) with p = (−1, 1, 3) as a
normal. Does the line in Example 1 intersect this plane?
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Solution: Using (4), the equation is

−1 · (x1 − 2) + 1 · (x2 − 1) + 3(x3 − (−1)) = 0 or − x1 + x2 + 3x3 = −4

The line is given by the three equations x1 = 2t − 1, x2 = 3t − 1, and x3 = 4 − 2t . If it
meets this plane, then we must have

−(2t − 1) + (3t − 1) + 3(4 − 2t) = −4

Solving this equation for t yields t = 16/5, and so the point of intersection is given by

x1 = 32/5 − 1 = 27/5, x2 = 43/5, x3 = −12/5

Motivated by this characterization of a plane in �3, we introduce the following general
definition in �n.

H Y P E R P L A N E I N N - S P A C E

The hyperplane H in �n through a = (a1, . . . , an) which is orthogonal to the
nonzero vector p = (p1, . . . , pn) is the set of all points x = (x1, . . . , xn) satis-
fying

p · (x − a) = 0

(5)

Note that if the normal vector p is replaced by the scalar multiple sp, where s �= 0, then
precisely the same set of vectors x will satisfy the hyperplane equation.

Using the coordinate representation of the vectors, the hyperplane has the equation

p1(x1 − a1) + p2(x2 − a2) + · · · + pn(xn − an) = 0 (6)

or

p1x1 + p2x2 + · · · + pnxn = A, where A = p1a1 + p2a2 + · · · + pnan

E X A M P L E 3 A person has an amount m to spend on n different commodities, whose prices per
unit are p1, p2, . . . , pn, respectively. This person can afford any commodity vector x =
(x1, x2, . . . , xn) that satisfies the budget inequality

p1x1 + p2x2 + · · · + pnxn ≤ m (7)

When (7) is satisfied with equality, it describes the budget (hyper)plane whose normal is
the price vector (p1, p2, . . . , pn).

Usually, it is implicitly assumed that x1 ≥ 0, x2 ≥ 0, . . ., xn ≥ 0. See Fig. 11.4.1 for the
case n = 3. Note that in this figure the vector (p, q, r) is normal to the plane.
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1. Find the equation for the line:

(a) that passes through points (3, −2, 2) and (10, 2, 1).

(b) that passes through point (1, 3, 2) and has the same direction as (0, −1, 1).

2. The line L is given by x1 = −t + 2, x2 = 2t − 1, and x3 = t + 3.

(a) Verify that the point a = (2, −1, 3) lies on L, but that (1, 1, 1) does not.

(b) Find the equation for the plane P through a that is orthogonal to L.

(c) Find the point P where L intersects the plane 3x1 + 5x2 − x3 = 6.

⊂SM⊃3. Find the equation for the plane through the points (1, 0, 2), (5, 2, 1), and (2, −1, 4).

4. The price vector is (2, 3, 5) and you can afford the commodity vector (10, 5, 8). What inequality
describes your budget constraint? (See Example 3.)

5. (a) Show that a = (−2, 1, −1) is a point in the plane −x + 2y + 3z = 1.

(b) Find the equation for the normal at a to the plane in part (a).

R E V I E W P R O B L E M S F O R C H A P T E R 1 5

1. Construct the two matrices A = (aij )2×3, where (a) aij = i + j and (b) aij = (−1)i+j .

2. Using the matrices

A =
(

2 0
−1 1

)
, B =

( −1 2
1 −1

)
, C =

(
2 3
1 4

)
, D =

(
1 1 1
1 3 4

)

calculate (where possible),

(a) A − B (b) A + B − 2C (c) AB (d) C(AB) (e) AD (f) DC

3. Using the matrices in Problem 2, compute (where possible),

(a) 2A − 3B (b) (A − B)′ (c) (C′A′)B′ (d) C′(A′B′) (e) D′D′ (f) D′D

4. Write the following systems of equations in matrix notation:

(a)
2x1 − 5x2 = 3

5x1 + 8x2 = 5
(b)

x + y + z + t = a

x + 3y + 2z + 4t = b

x + 4y + 8z = c

2x + z − t = d

(c)

ax + y + (a + 1)z = b1

x + 2y + z = b2

3x + 4y + 7z = b3

5. Let A =
( 0 1 −2

3 4 5
−6 7 15

)
, B =

( 0 −5 3
5 2 −1

−4 2 0

)
, C =

( 6 −2 −3
2 0 1
0 5 7

)
.

Find the matrices A + B, A − B, AB, BA, A(BC), and (AB)C.
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6. Find real numbers a, b, and x such that

(
a b

x 0

) (
2 1
1 1

)
−

(
1 0
2 1

) (
a b

x 0

)
=

(
2 1
4 4

)
.

7. (a) Let A =
(

a b 0
−b a b

0 −b a

)
, where a and b are arbitrary constants. Find AA = A2.

(b) A square matrix B is called skew-symmetric if B = −B′, where B′ is the transpose of B.
Show that if C is an arbitrary matrix such that C′BC is defined, then C′BC is skew-symmetric
if B is. When is the matrix A defined in (a) skew-symmetric?

(c) If A is any square matrix, prove that A1 = 1
2 (A+A′) is symmetric and that A2 = 1

2 (A−A′)
is skew-symmetric. Verify that A = A1 + A2, and explain in your own words what you
have proved.

⊂SM⊃8. Solve the following equation systems by Gaussian elimination.

(a)
x1 + 4x2 = 1

2x1 + 2x2 = 8
(b)

2x1 + 2x2 − x3 = 2

x1 − 3x2 + x3 = 0

3x1 + 4x2 − x3 = 1

(c)
x1 + 3x2 + 4x3 = 0

5x1 + x2 + x3 = 0

9. Use Gaussian elimination to find for what values of a the following system has solutions. Then
find all the possible solutions.

x + ay + 2z = 0

−2x − ay + z = 4

2ax + 3a2y + 9z = 4

10. Let a = (−1, 5, 3) , b = (1, 1, −3), and c = (−1, 2, 8). Compute ‖a‖, ‖b‖, and ‖c‖. Then
verify that the Cauchy–Schwarz inequality holds for a and b.

⊂SM⊃11. A firm has two plants that produce outputs of three different goods. Its total labour force is
fixed. When a fraction λ of its labour force is allocated to its first plant and a fraction 1 − λ to
its second plant (with 0 ≤ λ ≤ 1), the total output of the three different goods are given by the
vector λ(8, 4, 4) + (1 − λ)(2, 6, 10) = (6λ + 2, −2λ + 6, −6λ + 10).

(a) Is it possible for the firm to produce either of the two output vectors a = (5, 5, 7) and
b = (7, 5, 5) if output cannot be thrown away?

(b) How do your answers to part (a) change if output can be thrown away?

(c) How will the revenue-maximizing choice of the fraction λ depend upon the selling prices
(p1, p2, p3) of the three goods? What condition must be satisfied by these prices if both
plants are to remain in use?

⊂SM⊃12. If P and Q are n × n matrices with PQ − QP = P, prove that P2Q − QP2 = 2 P2 and
P3Q − QP3 = 3 P3. Then use induction to prove that PkQ − QPk = k Pk for k = 1, 2, . . . .
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16
D E T E R M I N A N T S A N D
I N V E R S E M A T R I C E S

You know we all became mathematicians

for the same reason: We were lazy.

—Max Rosenlicht (1949)

This chapter continues the study of linear algebra. The first topic discussed is the determinant

of a square matrix. It is one number that does indeed determine some key properties of

the n2 elements of an n × n matrix. Some economists regard determinants as almost obsolete

because calculations that rely on them are very inefficient when the matrix is large. Nevertheless,

they are important in several areas of mathematics that interest economists.

After introducing determinants, we consider the fundamentally important concept of the

inverse of a square matrix and its main properties. Inverse matrices play a major role in the study

of systems of linear equations, and in econometrics, for deriving a linear relationship that fits

a data set as well as possible. Cramer’s rule for the solution of a system of n linear equations

and n unknowns is discussed next. Although it is not efficient for solving systems of equations

with more than 3 unknowns, Cramer’s rule is often used in theoretical studies. An important

theorem on homogeneous systems of equations is also discussed. The chapter concludes with

a brief introduction to the Leontief model.

16.1 Determinants of Order 2
Consider the pair of linear equations with its associated coefficient matrix:

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2
, A =

(
a11 a12

a21 a22

)
(1)

Solving the equation system (1) in the usual way (see Section 2.4) yields

x1 = b1a22 − b2a12

a11a22 − a21a12
, x2 = b2a11 − b1a21

a11a22 − a21a12
(2)
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The two fractions have a common denominator D, equal to a11a22 −a21a12. The number D

must be nonzero for (2) to be valid, in which case system (1) has a unique solution specified
by (2). In this sense, the value of the denominator determines whether system (1) has a
unique solution. In fact, D = a11a22 − a21a12 is called the determinant of the matrix A.
The determinant of A is denoted by either det(A) or, more usually as in this book, by |A|.
Thus,

|A| =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12 (3)

for any 2 × 2 matrix A. Such a determinant is said to have order 2. For the special case of
order 2 determinants, the rule for calculating |A| is: (a) multiply the elements on the main
diagonal; (b) multiply the off-diagonal elements; (c) subtract the product of the off-diagonal
elements from the product of the diagonal elements.

E X A M P L E 1

∣∣∣∣ 4 1
3 2

∣∣∣∣ = 4·2−3·1 = 5,

∣∣∣∣ b1 a12

b2 a22

∣∣∣∣ = b1a22−b2a12,

∣∣∣∣ a11 b1

a21 b2

∣∣∣∣ = b2a11−b1a21

NOTE 1 Geometrically, each of the two equations in (1) represents the graph of a straight
line. If |A| �= 0, then the two lines intersect at a unique point (x1, x2) given by (2). If
|A| = 0, the expressions for x1 and x2 become meaningless—indeed, in this case, equation
system (1) either has no solution (because the two lines are parallel), or else has infinitely
many solutions (because the two lines coincide).

From Example 1, we see that the numerators of the expressions for x1 and x2 in (2) can also
be written as determinants. Indeed, provided that |A| �= 0, one has

x1 =

∣∣∣∣ b1 a12

b2 a22

∣∣∣∣
|A| , x2 =

∣∣∣∣ a11 b1

a21 b2

∣∣∣∣
|A| (4)

This is a special case of a result referred to as Cramer’s rule.1 It is quite convenient when
there are only two equations in two unknowns. But it is easier to solve many macroeconomic
equation systems in particular by simple substitution. (See Problem 8.)

E X A M P L E 2 Use (4) to find the solutions of

2x1 + 4x2 = 7

2x1 − 2x2 = −2

Solution:

x1 =

∣∣∣∣ 7 4
−2 −2

∣∣∣∣∣∣∣∣ 2 4
2 −2

∣∣∣∣
= −6

−12
= 1

2
, x2 =

∣∣∣∣ 2 7
2 −2

∣∣∣∣∣∣∣∣ 2 4
2 −2

∣∣∣∣
= −18

−12
= 3

2

Check by substitution that x1 = 1/2, x2 = 3/2 really is a solution.

1 Named after the Swiss mathematician Gabriel Cramer, 1704–1752.
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E X A M P L E 3 Use (4) to find QD
1 and QD

2 in terms of the parameters when

2(b + β1)Q
D
1 + bQD

2 = a − α1

bQD
1 + 2(b + β2)Q

D
2 = a − α2

Solution: The determinant of the coefficient matrix is

� =
∣∣∣∣ 2(b + β1) b

b 2(b + β2)

∣∣∣∣ = 4(b + β1)(b + β2) − b2

Provided � �= 0, by (4) the solution for QD
1 is

QD
1 =

∣∣∣∣ a − α1 b

a − α2 2(b + β2)

∣∣∣∣
�

= 2(b + β2)(a − α1) − b(a − α2)

�

with a similar expression for QD
2 .

In the next section Cramer’s rule is extended to 3 equations in 3 unknowns, and then in
Section 16.8 to n equations in n unknowns.

A Geometric Interpretation
Determinants of order 2 have a nice geometric interpretation. If the two rows of the matrix are repre-
sented as the vectors shown in Fig. 1, then its determinant equals the shaded area of the parallelogram.
If we interchange the two rows, however, the determinant becomes a negative number equal to minus
this shaded area.

Figure 2 illustrates why the result claimed in Fig. 1 is true. We want to find area T . Note that
2T1 +2T2 +2T3 +T = (a11 +a21)(a12 +a22), where T1 = a12a21, T2 = 1

2 a21a22, and T3 = 1
2 a11a12.

Hence T = a11a22 − a21a12, by elementary algebra.

T

(a21 , a22)

(a11 , a12) P

Q

Ra21

a22

a12 � a22

a12

a11

T1

T2

T3

T1

T2

T3

a11 � a21

T

Figure 1 The area T is the absolute

value of the determinant

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣
Figure 2 2T1 + 2T2 + 2T3 + T =
(a11 + a21)(a12 + a22)

P R O B L E M S F O R S E C T I O N 1 6 . 1

1. Calculate the following determinants:

(a)

∣∣∣∣ 3 0
2 6

∣∣∣∣ (b)

∣∣∣∣ a a

b b

∣∣∣∣ (c)

∣∣∣∣ a + b a − b

a − b a + b

∣∣∣∣ (d)

∣∣∣∣ 3t 2t

3t−1 2t−1

∣∣∣∣
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2. Illustrate the geometric interpretation in Fig. 1 for the determinant in Problem 1(a).

3. Use Cramer’s rule (4) to solve the following systems of equations for x and y. Test the answers
by substitution.

(a)
3x − y = 8

x − 2y = 5
(b)

x + 3y = 1

3x − 2y = 14
(c)

ax − by = 1

bx + ay = 2

4. Given the matrix A =
(

a 3
b 1

)
. Find numbers a and b such that tr(A) = 0 and |A| = −10.

(The trace of a square matrix A is the sum of its diagonal elements, denoted by tr(A).)

5. Find the solutions to the equation

∣∣∣∣ 2 − x 1
8 −x

∣∣∣∣ = 0

6. Let A =
(

a11 a12

a21 a22

)
and B =

(
b11 b12

b21 b22

)
. Show that |AB| = |A| · |B|.

7. Find two 2 × 2 matrices A and B such that |A + B| �= |A| + |B| .

8. Use Cramer’s rule to find Y and C when

Y = C + I0 + G0, C = a + bY

where Y is the national product and C is private consumption. The symbols I0 (private invest-
ment), G0 (public consumption and investment), a, and b all represent constants, with b < 1.
(Actually, this is a typical case in which one should not use Cramer’s rule, because Y and C can
be found much more simply. How?)

HARDER PROBLEM

⊂SM⊃9. (a) Consider the following linked macroeconomic model of two nations, i = 1, 2, that trade
only with each other:

Y1 = C1 + A1 + X1 − M1; C1 = c1Y1; M1 = m1Y1 = X2

Y2 = C2 + A2 + X2 − M2; C2 = c2Y2; M2 = m2Y2 = X1

Here, for i = 1, 2, Yi is income, Ci is consumption, Ai is (exogenous) autonomous ex-
penditure, Xi denotes exports, and Mi denotes imports of country i. Interpret the two
equations M1 = X2 and M2 = X1.

(b) Given the system of 8 equations in 8 unknowns in part (a), use substitution to reduce it to
a pair of simultaneous equations in the endogenous variables Y1 and Y2. Then solve for the
equilibrium values of Y1, Y2 as functions of the exogenous variables A1, A2.

(c) How does an increase in A1 affect Y2? Interpret your answer.
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16.2 Determinants of Order 3
Consider the system of three linear equations in three unknowns

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

(1)

Here the coefficient matrix A is 3 × 3. By applying the method of elimination along with
some rather heavy algebraic computation, this system can be solved eventually for x1, x2,
and x3 except in a degenerate case. The resulting expression for x1 is

x1 = b1a22a33 − b1a23a32 − b2a12a33 + b2a13a32 + b3a12a23 − b3a22a13

a11a22a33 − a11a23a32 + a12a23a31 − a12a21a33 + a13a21a32 − a13a22a31

We shall not triple the demands on the reader’s patience and eyesight by giving the corres-
ponding expressions for x2 and x3. However, we do claim that these expressions share the
same denominator as that given for x1. This common denominator is called the determinant
of A, denoted by det(A) or |A|, which is zero in the degenerate case. Thus, the determinant
is defined as

|A| =
∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ =
{

a11a22a33 − a11a23a32 + a12a23a31

− a12a21a33 + a13a21a32 − a13a22a31
(2)

Expansion by Cofactors
Consider the sum of the six terms in (2). It looks quite messy, but the method of expansion
by cofactors makes it easy to write down all the terms. First, note that each of the three
elements a11, a12, and a13 in the first row of A appears in exactly two terms of (2). In fact,
|A| can be written as

|A| = a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

Applying the rule for evaluating determinants of order 2, we see that this is the same as

|A| = a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣ − a12

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣ + a13

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣ (3)

In this way, the computation of a determinant of order 3 can be reduced to calculating
three determinants of order 2. Note that a11 is multiplied by the second-order determinant
obtained by deleting the first row and the first column of |A|. Likewise, a12, with a minus
sign attached to it, is multiplied by the determinant obtained by deleting the first row and
the second column of |A|. Finally, a13 is multiplied by the determinant obtained by deleting
the first row and the third column of |A|.

E X A M P L E 1 Use (3) to calculate |A| =
∣∣∣∣∣∣

3 0 2
−1 1 0

5 2 3

∣∣∣∣∣∣.
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Solution:

|A| = 3 ·
∣∣∣∣ 1 0

2 3

∣∣∣∣ − 0 ·
∣∣∣∣ −1 0

5 3

∣∣∣∣ + 2 ·
∣∣∣∣ −1 1

5 2

∣∣∣∣ = 3 · 3 − 0 + 2 · (−2 − 5) = −5.

E X A M P L E 2 Use (3) to prove that |A| =
∣∣∣∣∣∣

1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣ = (b − a)(c − a)(c − b).

Solution:

|A| = 1 ·
∣∣∣∣ b b2

c c2

∣∣∣∣ − a ·
∣∣∣∣ 1 b2

1 c2

∣∣∣∣ + a2 ·
∣∣∣∣ 1 b

1 c

∣∣∣∣ = bc2 − b2c − ac2 + ab2 + a2c − a2b

You are not supposed to “see” that these six terms can be written as (b − a)(c − a)(c − b).
Rather, you should expand (b − a)[(c − a)(c − b)] and verify the equality that way.

A careful study of the numerator in the expression for x1 in the beginning of this section
reveals that it can also be written as a determinant. The same is true of the corresponding
formulas for x2 and x3. In fact, if |A| �= 0, then one has

x1 =

∣∣∣∣∣∣
b1 a12 a13

b2 a22 a23

b3 a32 a33

∣∣∣∣∣∣
|A| , x2 =

∣∣∣∣∣∣
a11 b1 a13

a21 b2 a23

a31 b3 a33

∣∣∣∣∣∣
|A| , x3 =

∣∣∣∣∣∣
a11 a12 b1

a21 a22 b2

a31 a32 b3

∣∣∣∣∣∣
|A| (4)

This is Cramer’s rule for the solution of (1). (See Section 16.8 for a full proof of (4) for the
general case of n equations in n unknowns.)

NOTE 1 In the determinants appearing in the numerators of x1, x2, and x3 of (4), observe
how the right-hand column in (1), ⎛

⎝ b1

b2

b3

⎞
⎠

shifts from the first column when solving for x1, to the second column when solving for
x2, and then to the third column when solving for x3. This makes it very easy to remember
Cramer’s rule.

NOTE 2 The method in (3) for calculating the value of a 3×3 determinant is called cofactor
expansion along row 1. If we focus on the elements in row i instead of row 1, we again
find that |A| = ai1Ci1 + ai2Ci2 + ai3Ci3, where for j = 1, 2, 3, the factor Cij equals
(−1)i+j times the determinant of the 2 × 2 matrix we get by deleting row i and column j

from A. Thus, we can also find the value of the determinant by cofactor expansion along
row i for any i = 1, 2, 3. Moreover, it turns out that for j = 1, 2, or 3, we also have
|A| = a1jC1j + a2jC2j + a3jC3j . In other words, we can calculate the determinant by
cofactor expansion along column j . See Section 16.5 for more about cofactor expansion.
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E X A M P L E 3 Solve the following system of equations by using Cramer’s rule:

2x1 + 2x2 − x3 = −3

4x1 + 2x3 = 8

6x2 − 3x3 = −12

Solution: In this case, the determinant |A| in (4) is seen to be

|A| =
∣∣∣∣∣∣

2 2 −1
4 0 2
0 6 −3

∣∣∣∣∣∣ = −24

The numerators in (4) are (verify!)∣∣∣∣∣∣
−3 2 −1

8 0 2
−12 6 −3

∣∣∣∣∣∣ = −12 ,

∣∣∣∣∣∣
2 −3 −1
4 8 2
0 −12 −3

∣∣∣∣∣∣ = 12 ,

∣∣∣∣∣∣
2 2 −3
4 0 8
0 6 −12

∣∣∣∣∣∣ = −72

Hence, (4) yields the solution x1 = (−12)/(−24) = 1/2, x2 = 12/(−24) = −1/2, and
x3 = (−72)/(−24) = 3. Inserting this into the original system of equations verifies that
this is a correct answer.

A Geometric Interpretation
Like determinants of order 2, those of order 3 also have a geometric interpretation which is shown
and explained in Fig. 1.

(a31 , a32 , a33)

(a21 , a22 , a23)

(a11 , a12 , a13)

a11
a21
a31

a12
a22
a32

a13
a23
a33

z

y

x

the volume of the
“box” spanned by
the three vectors

�  �

Figure 1

The rows of the determinant correspond to three different 3-vectors represented in the diagram. These
vectors determine a box which is not rectangular with right-angles at each of its six corners, but a
distorted “parallelepiped” which has six faces that are all parallelograms whose opposite edges are
parallel.

Sarrus’s Rule
Here is an alternative way of evaluating determinants of order 3 that many people find convenient.
Write down the determinant twice, except that the last column in the second determinant should be
omitted:

a11�
a12�

a13�
a11 a12

a21 a22�
�

a23�
�

a21�
�

a22

a31
�

a32
�

a33
�

a31 a32

(5)
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First, multiply along the three lines falling to the right, giving all these products a plus sign:

a11a22a33 + a12a23a31 + a13a21a32

Then multiply along the three lines rising to the right, giving all these products a minus sign:

−a11a23a32 − a12a21a33 − a13a22a31

The sum of all the six terms is exactly equal to formula (2) for |A|. It is important to note that this
rule, known as Sarrus’s rule, does not generalize to determinants of order higher than 3.

P R O B L E M S F O R S E C T I O N 1 6 . 2

⊂SM⊃1. Use (3) or Sarrus’s rule to calculate the following determinants:

(a)

∣∣∣∣∣
1 −1 0
1 3 2
1 0 0

∣∣∣∣∣ (b)

∣∣∣∣∣
1 −1 0
1 3 2
1 2 1

∣∣∣∣∣ (c)

∣∣∣∣∣
a b c

0 d e

0 0 f

∣∣∣∣∣ (d)

∣∣∣∣∣
a 0 b

0 e 0
c 0 d

∣∣∣∣∣

2. Let A =
( 1 −1 0

1 3 2
1 2 1

)
and B =

( 1 2 3
2 3 4
0 1 −1

)
.

Calculate AB, |A|, |B|, |A| · |B|, and |AB|. (Note that |AB| = |A| · |B|.)

⊂SM⊃3. Use Cramer’s rule to solve the following systems of equations. Check your answers.

(a)

x1 − x2 + x3 = 2

x1 + x2 − x3 = 0

−x1 − x2 − x3 = −6

(b)

x1 − x2 = 0

x1 + 3x2 + 2x3 = 0

x1 + 2x2 + x3 = 0

(c)

x + 3y − 2z = 1

3x − 2y + 5z = 14

2x − 5y + 3z = 1

4. Show that

∣∣∣∣∣
1 + a 1 1

1 1 + b 1
1 1 1 + c

∣∣∣∣∣ = abc + ab + ac + bc.

5. Given the matrix A =
(

a 1 0
0 −1 a

−b 0 b

)
, find numbers a and b such that tr(A) = 0 and |A| = 12.

(tr(A) is the sum of the diagonal elements.)

6. Solve the equation: ∣∣∣∣∣
1 − x 2 2

2 1 − x 2
2 2 1 − x

∣∣∣∣∣ = 0

7. (a) Calculate the determinant of At =
( 1 t 0

−2 −2 −1
0 1 t

)
, and show that it is never 0.

(b) Show that for a certain value of t , one has A3
t = I3.

⊂SM⊃8. Consider the simple macro model described by the three equations

(i) Y = C + A0 (ii) C = a + b(Y − T ) (iii) T = d + tY
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where Y is income, C is consumption, T is tax revenue, A0 is the constant (exogenous) autonom-
ous expenditure, and a, b, d , and t are all positive parameters. Find the equilibrium values of the
endogenous variables Y , C, and T by: (A) successive elimination or substitution; (B) writing
the equations in matrix form and applying Cramer’s rule.

16.3 Determinants of Order n
This section gives a definition of determinant that is particularly useful when proving general results.
If you are not so interested in these proofs, you might skip this section and rely instead on expansion
by cofactors (explained in Section 16.5) in all your work on determinants.

For a 3 × 3 matrix A = (aij )3×3, the determinant can be written as the sum

a11a22a33 − a11a23a32 + a12a23a31 − a12a21a33 + a13a21a32 − a13a22a31 (1)

A closer examination of this sum reveals a definite pattern. Each term is the product of three different
elements of the matrix. Each product contains one element from each row of A. Moreover, these
elements all lie in different columns of the matrix. In fact, the elements in the six terms are chosen
from the matrix A according to the pattern shown by the circles in Fig. 1 (disregard the lines for a
moment).

� � � � � �
Figure 1

In a 3 × 3 matrix, there are precisely 6 different ways of picking three elements with one element
from each row and one element from each column. All the 6 corresponding products appear in (1).
How do we determine the sign of each term in (1)? In Fig. 1, we have joined each pair of circles in
every box by a line, which is solid if the line rises to the right, but dashed if the line falls to the right.
Using the solid lines drawn in each of the 6 boxes, the following rule emerges:

T H E S I G N R U L E

To determine the sign of any term in the sum, mark in the array all the elements appearing
in that term. Join all possible pairs of these elements with lines. These lines will then either
fall or rise to the right. If the number of the rising lines is even, then the corresponding
term is assigned a plus sign; if it is odd, it is assigned a minus sign.

(2)

Let us apply this rule to the six boxes in Fig. 1. In the first box, for example, no lines rise, so a11a22a33

has a plus sign. In box 4, exactly one line rises, so a12a21a33 has a minus sign. And so on.
Suppose A = (aij )n×n is an arbitrary n×n matrix. Suppose we pick n elements from A, including

exactly one element from each row and exactly one element from each column. Take the product of
these n elements, giving an expression of the form

a1r1 · a2r2 · . . . · anrn
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where the second subscripts r1, r2, . . . , rn represent a shuffling (or permutation) of the numbers
1, 2, . . . , n. The numbers 1, 2, . . . , n can be permuted in n! = 1 · 2 . . . (n − 1)n different ways: For
the first element, there are n choices; for each of these first choices, there are n − 1 choices for the
second element; and so on. So there are n! different products of n factors to consider.

Now we define the determinant of A, det(A) or |A|, as follows:

D E F I N I T I O N O F D E T E R M I N A N T

Let A be an n × n matrix. Then |A| is a sum of n! terms where:

1. Each term is the product of n elements of the matrix, with one element from each row
and one element from each column. Moreover, every product of n factors, in which
each row and each column is represented exactly once, must appear in this sum.

2. The sign of each term is found by applying the sign rule (2).

Using (±) to denote the appropriate choice of either a plus or minus sign, one can write

|A| =

∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣ =
∑

(±)a1r1a2r2 . . . anrn (3)

E X A M P L E 1 Consider the determinant of an arbitrary 4 × 4 matrix A = (
aij

)
4×4:

|A| =

∣∣∣∣∣∣∣∣
a11 a12 a13 a14

a21 ����
a22 a23 a24

a31 a32
�
�

a33 a34

a41 a42 a43 a44

∣∣∣∣∣∣∣∣
It consists of 4! = 4 · 3 · 2 · 1 = 24 terms. One of these terms is a13a21a32a44, and the corresponding
factors are the boxed elements in the array. What sign should this term have? According to the sign
rule, the term should have the plus sign because there are two rising lines. (We have omitted the
dashed lines, because these do not count.)

Check that the four indicated terms in the following sum have been given the correct sign:

|A| = a11a22a33a44 − a12a21a33a44 + · · · + a13a21a32a44 − · · · + a14a23a32a41

Note that there are 20 other terms which we have left out.
The determinant of an n × n matrix is called a determinant of order n. In general, it is difficult

to evaluate determinants by using the definition directly, even if n is only 4 or 5. If n > 5, the
work is usually enormous. For example, if n = 6, then n! = 720, and so there are 720 terms in
the sum defining the determinant. Fortunately there are other methods based on the elementary row
operations discussed in Section 15.6 that reduce the work considerably. There are several standard
computer programs for evaluating determinants.

In a few special cases, it is easy to evaluate a determinant even if the order is high. For instance,∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

0 a22 . . . a2n

...
...

. . .
...

0 0 . . . ann

∣∣∣∣∣∣∣∣ = a11a22 . . . ann (4)
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Here all the elements below the main diagonal are 0. The matrix whose determinant is given in (4)
is called upper triangular because all the nonzero terms lie in the triangle on or above the main
diagonal. Such a determinant can be evaluated by taking the product of all the elements on the main
diagonal. To see why, note that in order to have a term that is not 0, we have to choose a11 from
column 1. From column 2, we cannot choose a12, because we have already picked the element a11

from the first row. Hence, from column 2, we have to pick a22 in order to have a term different from 0.
From the third column, we have to pick a33, and so on. Thus, only the term a11a22 . . . ann can be �= 0.
The sign of this term is plus because no line joining any pair of elements appearing in the product
rises to the right.

If a matrix is a transpose of an upper triangular matrix, so that all elements above the main diagonal
are 0, then the matrix is lower triangular. By using essentially the same argument as for (4), we see
that the determinant of a lower triangular matrix is also equal to the product of the elements on its
main diagonal: ∣∣∣∣∣∣∣∣

a11 0 . . . 0
a21 a22 . . . 0
...

...
. . .

...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣ = a11a22 . . . ann (5)

P R O B L E M S F O R S E C T I O N 1 6 . 3

⊂SM⊃1. Use the definition of determinant to calculate the following:

(a)

∣∣∣∣∣∣∣
1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

∣∣∣∣∣∣∣ (b)

∣∣∣∣∣∣∣
1 0 0 1
0 1 0 0
0 0 1 0
a b c d

∣∣∣∣∣∣∣ (c)

∣∣∣∣∣∣∣
1 0 0 2
0 1 0 −3
0 0 1 4
2 3 4 11

∣∣∣∣∣∣∣
2. Suppose that the two n×n matrices A and B are both upper triangular. Show that |AB| = |A||B|.
3. The determinant of the following 5 × 5 matrix consists of 5! = 120 terms. One of them is the

product of the boxed elements. Write this term with its correct sign.∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

∣∣∣∣∣∣∣∣∣∣
4. Write the term indicated by the marked boxes with its correct sign. (See the previous problem.)∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

∣∣∣∣∣∣∣∣∣∣
5. Solve the following equation for x:∣∣∣∣∣∣∣

2 − x 0 3 0
1 2 − x 0 3
0 0 2 − x 0
0 0 1 2 − x

∣∣∣∣∣∣∣ = 0
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16.4 Basic Rules for Determinants
The definition of the determinant of an n×n matrix A implies a number of important prop-
erties. All are of theoretical interest, but they also make it simpler to evaluate determinants.

T H E O R E M 1 6 . 4 . 1 ( R U L E S F O R D E T E R M I N A N T S )

Let A be an n × n matrix. Then:

A. If all the elements in a row (or column) of A are 0, then |A| = 0.

B. |A′| = |A|, where A′ is the transpose of A.

C. If all the elements in a single row (or column) of A are multiplied by a
number α, the determinant is multiplied by α.

D. If two rows (or two columns) of A are interchanged, the determinant changes
sign, but the absolute value remains unchanged.

E. If two of the rows (or columns) of A are proportional, then |A| = 0.

F. The value of the determinant of A is unchanged if a multiple of one row (or
one column) is added to a different row (or column) of A.

G. The determinant of the product of two n×n matrices A and B is the product
of the determinants of each of the factors:

|AB| = |A| · |B| (1)

H. If α is a real number,
|αA| = αn|A| (2)

NOTE 1 It should be recalled that (usually) the determinant of a sum is not the sum of the
determinants:

|A + B| �= |A| + |B| (in general) (3)

An example of this general inequality was asked for in Problem 16.1.7.

NOTE 2 Our geometric interpretations of determinants of order 2 and 3 support several of
these rules. For example, rule C with (say) α = 2, reflects the fact that if one of the vectors
in Figure 16.1.1 (16.2.1) is doubled in length, then the area (volume) is twice as big. Try to
give geometric interpretations of rules A, B, D, E, and H.

Proofs for most of these properties are given at the end of this section. First, however, let
us illustrate them in some special cases of 2 × 2 matrices.

Rule A:

∣∣∣∣ a11 a12

0 0

∣∣∣∣ = a11 · 0 − a12 · 0 = 0

Rule B: |A| =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21, |A′| =
∣∣∣∣ a11 a21

a12 a22

∣∣∣∣ = a11a22 − a12a21
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We see that |A′| has exactly the same terms as |A|. In particular, |A′| = |A|.

Rule C:

∣∣∣∣ a11 a12

αa21 αa22

∣∣∣∣ = a11(αa22) − a12(αa21) = α(a11a22 − a12a21) = α

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣
Rule D:

∣∣∣∣ a21 a22

a11 a12

∣∣∣∣ = a21a12 − a11a22 = −(a11a22 − a12a21) = −
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣
Rule E:

∣∣∣∣ a11 a12

βa11 βa12

∣∣∣∣ = a11(βa12) − a12(βa11) = β(a11a12 − a11a12) = 0

Let us also see how rule E helps to confirm (partly) the result in Example 16.2.2. Note that
the product (b − a)(c − a)(c − b) is 0 if b = a, c = a, or c = b, and in each of these three
cases, two rows of the matrix are proportional, in fact equal.

Rule F: Multiply each entry in the first row of a determinant of order 2 by α and add it to
the corresponding entry in the second row. Then the determinant does not change its value.
(Note carefully the way in which we indicate this operation—see also Section 15.6.)∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ α

← =
∣∣∣∣ a11 a12

a21 + αa11 a22 + αa12

∣∣∣∣ = a11(a22 + αa12) − a12(a21 + αa11)

= a11a22 + αa11a12 − a12a21 − αa12a11 = a11a22 − a12a21

=
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣
Rule G: Problem 16.1.6 has already asked for a proof of this rule for 2 × 2 matrices.

Rule H:

∣∣∣∣ αa11 αa12

αa21 αa22

∣∣∣∣ = αa11αa22 − αa12αa21 = α2(a11a22 − a12a21) = α2

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣
Theorem 16.4.1 exhibits some of the most important rules for determinants. Confidence in
dealing with them comes only from doing many problems.

Rule F is particularly useful for evaluating large or complicated determinants.2 The idea
is to convert the matrix into one that is (upper or lower) triangular. This is just the same
procedure as that used in the Gaussian elimination method described in Section 15.6. We
give two examples involving 3 × 3 matrices.

E X A M P L E 1

∣∣∣∣∣∣
1 5 −1

−1 1 3
3 2 1

∣∣∣∣∣∣
1

← =
∣∣∣∣∣∣

1 5 −1
−1 + 1 1 + 5 3 + (−1)

3 2 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 5 −1
0 6 2
3 2 1

∣∣∣∣∣∣
−3

←

=
∣∣∣∣∣∣
1 5 −1
0 6 2
0 −13 4

∣∣∣∣∣∣ 13
6

←
=

∣∣∣∣∣∣
1 5 −1
0 6 2
0 0 25/3

∣∣∣∣∣∣ = 1 · 6 · 25

3
= 50

2 To calculate a general 10 × 10 determinant using the definition directly requires no fewer than
10! − 1 = 3 628 799 operations of addition or multiplication! Systematic use of rule F can reduce
the required number of operations to about 380.
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Here, 1 times the first row has been added to the second row in order to obtain a zero in the
first column. Then (−3) times the first row has been added to the third, which gives a second
zero in the first column. Thereafter, 13/6 times the second row has been added to the third,
which creates an extra zero in the second column. Note the way in which we have indicated
these operations. In the end, they produce an upper triangular matrix whose determinant is
easy to evaluate by means of formula (16.3.4).

In the next example, the first two steps involve more than one operation simultaneously.

E X A M P L E 2

∣∣∣∣∣∣
a + b a a

a a + b a

a a a + b

∣∣∣∣∣∣
← ←

1
1

=
∣∣∣∣∣∣
3a + b 3a + b 3a + b

a a + b a

a a a + b

∣∣∣∣∣∣
= (3a + b)

∣∣∣∣∣∣
1 1 1
a a + b a

a a a + b

∣∣∣∣∣∣
−a −a

←
←

= (3a + b)

∣∣∣∣∣∣
1 1 1
0 b 0
0 0 b

∣∣∣∣∣∣
= (3a + b) · 1 · b · b = b2(3a + b)

E X A M P L E 3 Check that |AB| = |A| · |B| when A =
⎛
⎝ 1 5 −1

−1 1 3
3 2 1

⎞
⎠ , B =

⎛
⎝ 3 0 2

−1 1 0
5 2 3

⎞
⎠.

Solution: Here |A| = 50 (as in Example 1) and you should verify that |B| = −5. Moreover,
multiplying the two matrices yields

AB =
⎛
⎝ −7 3 −1

11 7 7
12 4 9

⎞
⎠

Using Sarrus’s rule, or otherwise, we find that |AB| = −250. Thus |AB| = |A| · |B|.

On the proof of Theorem 16.4.1:

Rule A: Each of the n! terms in the determinant must take one element from the row (or column)
consisting of only zeros, so the whole determinant is 0.

Rule B: Each term in |A| is the product of entries chosen from A to include exactly one element
from each row and one element from each column. Exactly the same terms, therefore, must appear
in |A′| also. One can prove that the signs are also the same, but we skip the proof. (The proof of this
property and the others we leave unproved are found in most books on linear algebra.)

Rule C: Let B be the matrix obtained from A by multiplying every element in a certain row (or
column) of A by α. Then each term in the sum defining |B| is the corresponding term in the sum
defining |A| multiplied by α. Hence, |B| = α|A|.
Rule D: If two rows are interchanged, or two columns, the terms involved in the definition of
determinant in Section 16.3 remain the same, except that the sign of each term is reversed. Showing
this, however, involves a somewhat intricate argument, so we offer only this brief explanation.
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Rule E: By using rule C, the factor of proportionality can be put outside the determinant. The
determinant then has two equal rows (columns). If we interchange the two rows that are equal, the
determinant will be exactly the same. But according to rule D, the determinant has changed its sign.
Hence, |A| = −|A|, which means that 2|A| = 0, and so |A| = 0.

Rule F: Symbolically, the proof of this rule is as follows, for the case when the scalar multiple α of
row i is added to row j :

∑
(±)a1r1 . . . airi . . . (ajrj + αairj ) . . . anrn

=
∑

(±)a1r1 . . . airi . . . ajrj . . . anrn + α
∑

(±)a1r1 . . . airi . . . airj . . . anrn

= |A| + α · 0 = |A|

(The last sum is zero because it is equal to a determinant with rows i and j equal.)

Rule G: The proof of this rule for the case n = 2 is the object of Problem 16.1.6. The case when
A and B are both upper triangular is covered in Problem 16.3.2. One can prove the general case by
using elementary row and column operations to convert A and B as well as AB to upper triangular
form, but we omit the proof.

Rule H: The matrix αA is obtained by multiplying each entry in A by α. By rule C, |αA| is then
equal to αn|A|, because each of the n rows has α as a factor in each entry.

P R O B L E M S F O R S E C T I O N 1 6 . 4

1. Let A =
(

1 2
3 4

)
, B =

(
3 4
5 6

)
.

(a) Calculate AB, BA, A′B′, and B′A′.

(b) Show that |A| = |A′| and |AB| = |A| · |B|. Is |A′B′| = |A′| · |B′|?

2. Let A =
( 2 1 3

1 0 1
1 2 5

)
. Write down A′, then show that |A| = |A′|.

3. Evaluate the following determinants as simply as possible:

(a)

∣∣∣∣∣
3 0 1
1 0 −1
2 0 5

∣∣∣∣∣ (b)

∣∣∣∣∣∣∣
1 2 3 4
0 −1 2 4
0 0 3 −1

−3 −6 −9 −12

∣∣∣∣∣∣∣ (c)

∣∣∣∣∣∣∣
a1 − x a2 a3 a4

0 −x 0 0
0 1 −x 0
0 0 1 −x

∣∣∣∣∣∣∣
4. Let A and B be 3 × 3 matrices with |A| = 3 and |B| = −4. Where it is possible, determine the

unique numerical value of |AB|, 3|A|, |−2B|, |4A|, |A| + |B|, and |A + B|. Which, if any, have
an undetermined numerical value?

5. If A =
(

a 1 4
2 1 a2

1 0 −3

)
, calculate A2 and |A|.
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6. Prove that each of the following determinants is zero:

(a)

∣∣∣∣∣
1 2 3
2 4 5
3 6 8

∣∣∣∣∣ (b)

∣∣∣∣∣
1 a b + c

1 b c + a

1 c a + b

∣∣∣∣∣ (c)

∣∣∣∣∣
x − y x − y x2 − y2

1 1 x + y

y 1 x

∣∣∣∣∣

7. Let X =

⎛
⎜⎝

1 0 0
1 1 1
1 2 0
1 0 1

⎞
⎟⎠. Calculate X′X and |X′X|.

8. If Aa =
(

a 2 2
2 a2 + 1 1
2 1 1

)
, calculate |Aa | and |A6

1|.

9. Show that an orthogonal matrix P (see Problem 15.5.7) must have determinant 1 or −1.

10. A square matrix A of order n is called involutive if A2 = In.

(a) Show that the determinant of an involutive matrix is 1 or −1.

(b) Show that

( −1 0
0 −1

)
and

(
a 1 − a2

1 −a

)
are involutive (for all a).

(c) Show that A is involutive ⇐⇒ (In − A)(In + A) = 0.

11. Determine which of the following equalities are (generally) true/false:

(a)

∣∣∣∣ a b

c d

∣∣∣∣ = −
∣∣∣∣ a −b

c −d

∣∣∣∣ = 2

∣∣∣∣ 1
2 a 1

2 b
1
2 c 1

2 d

∣∣∣∣ (b)

∣∣∣∣ a b

c d

∣∣∣∣ =
∣∣∣∣ a b

0 0

∣∣∣∣ +
∣∣∣∣ 0 0
c d

∣∣∣∣
(c)

∣∣∣∣ a b

c d

∣∣∣∣ =
∣∣∣∣ 0 b

0 d

∣∣∣∣ +
∣∣∣∣ a b

c d

∣∣∣∣ =
∣∣∣∣∣

a 0 b

−1 1 0
c 0 d

∣∣∣∣∣ (d)

∣∣∣∣ a b

c d

∣∣∣∣ =
∣∣∣∣ a b

c − 2a d − 2b

∣∣∣∣
12. Let B be a given n×n matrix. An n×n matrix P is said to commute with B if BP = PB. Show

that if P and Q both commute with B, then PQ will also commute with B.

HARDER PROBLEMS

13. Without computing the determinants, show that

∣∣∣∣∣
b2 + c2 ab ac

ab a2 + c2 bc

ac bc a2 + b2

∣∣∣∣∣ =
∣∣∣∣∣

0 c b

c 0 a

b a 0

∣∣∣∣∣
2

⊂SM⊃14. Prove the following useful result: Dn =

∣∣∣∣∣∣∣∣
a + b a . . . a

a a + b . . . a
...

...
. . .

...

a a . . . a + b

∣∣∣∣∣∣∣∣ = bn−1(na + b) .

(Hint: Study Example 2.)
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16.5 Expansion by Cofactors
According to the definition in Section 16.3, the determinant of an n × n matrix A = (aij )

is a sum of n! terms. Each term contains one element from each row and one element from
each column. Consider in particular row i: pick out all the terms that have ai1 as a factor,
then all the terms that have ai2 as a factor, and so on. Because all these terms have precisely
one factor from row i, in this way we get all the terms of |A|. So we can write

|A| = ai1Ci1 + ai2Ci2 + · · · + aijCij + · · · + ainCin (1)

This is called the expansion of |A| in terms of the elements of the ith row. The coefficients
Ci1, . . . , Cin are the cofactors of the elements ai1, . . . , ain, and equation (1) is called the
cofactor expansion of |A| along row i.

Similarly, one has the cofactor expansion of |A| down column j , which is

|A| = a1jC1j + a2jC2j + · · · + aijCij + · · · + anjCnj (2)

What makes expansions (1) and (2) extremely useful is that in general each cofactor Cij

can be found by applying the following procedure to the determinant |A|: First, delete row
i and column j to arrive at a determinant of order n − 1, which is called a minor. Second,
multiply the minor by the factor (−1)i+j . This gives the cofactor.

In symbols, the cofactor Cij is given by

Cij = (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1,j−1 a1j a1,j+1 . . . a1n

a21 . . . a2,j−1 a2j a2,j+1 . . . a2n

...
...

...
...

...

ai1 . . . ai,j−1 aij ai,j+1 . . . ain

...
...

...
...

...

an1 . . . an,j−1 anj an,j+1 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3)

where lines have been drawn through row i and column j , which are to be deleted from the
matrix. We skip the proof. If we look back at (16.2.3), however, it confirms (3) in a special
case. Indeed, put |A| = a11C11 + a12C12 + a13C13. Then

C11 = (−1)1+1

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣ , C12 = (−1)1+2

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣ , C13 = (−1)1+3

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣
precisely in accordance with (16.2.3).

Generally, formula (3) is rather complicated. Test your understanding of it by studying
the following example.

E X A M P L E 1 Check that the cofactor of the element c in the determinant

|A| =

∣∣∣∣∣∣∣∣
3 0 0 2
6 1 c 2

−1 1 0 0
5 2 0 3

∣∣∣∣∣∣∣∣ is C23 = (−1)2+3

∣∣∣∣∣∣
3 0 2

−1 1 0
5 2 3

∣∣∣∣∣∣
Find the value of |A| by using (2) and Example 16.2.1.
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Solution: Because the element c is in row 2 and column 3, its cofactor has been written
correctly. To find the numerical value of |A| we use the cofactor expansion down its third
column (because it has so many zeros). This yields

|A| = a23C23 = c (−1)2+3

∣∣∣∣∣∣
3 0 2

−1 1 0
5 2 3

∣∣∣∣∣∣ = c (−1)(−5) = 5c

Example 1 shows a case in which expansion by cofactors is particularly simple because
there are many zeros in the third column. If the zeros are not there initially, we can often
create them by appealing to rule F in Theorem 16.4.1. Two examples illustrate the method.

E X A M P L E 2

∣∣∣∣∣∣
3 −1 2
0 −1 −1
6 1 2

∣∣∣∣∣∣
−2

←
=

∣∣∣∣∣∣
3 −1 2
0 −1 −1
0 3 −2

∣∣∣∣∣∣
(∗)= 3

∣∣∣∣ −1 −1
3 −2

∣∣∣∣ = 3(2 + 3) = 15

To derive the equality labelled (∗), expand by column 1.

E X A M P L E 3

∣∣∣∣∣∣∣∣
2 0 3 −1
0 4 0 0
0 1 −1 2
3 2 5 −3

∣∣∣∣∣∣∣∣
(∗)= (−1)2+2 · 4

∣∣∣∣∣∣
2 3 −1
0 −1 2
3 5 −3

∣∣∣∣∣∣
−3/2

←

= 4

∣∣∣∣∣∣
2 3 −1
0 −1 2
0 1/2 −3/2

∣∣∣∣∣∣
(∗∗)= 4 · 2

∣∣∣∣ −1 2
1/2 −3/2

∣∣∣∣ = 8
( 3

2 − 2
2

) = 4

For equality (∗), expand by row 2. For equality (∗∗), expand by column 1.

Expansion by Alien Cofactors

According to the cofactor expansions (1) and (2), if each element aij in any row (or column)
of a determinant is multiplied by the corresponding cofactor Cij and then all the products are
added, the result is the value of the determinant. What happens if we multiply the elements
of a row by the cofactors of a different (alien) row? Or the elements of a column by the
cofactors of an alien column? Consider the following example.

E X A M P L E 4 If A = (aij )3×3, then the cofactor expansion of |A| along the second row is

|A| = a21C21 + a22C22 + a23C23

Suppose we replace the elements a21, a22, and a23 by a, b, and c. Then C21, C22, and C23

remain unchanged, so the cofactor expansion of the new determinant along its second row is∣∣∣∣∣∣
a11 a12 a13

a b c

a31 a32 a33

∣∣∣∣∣∣ = aC21 + bC22 + cC23 (∗)
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In particular, if we replace a, b, and c by a11, a12, and a13, or by a31, a32, and a33, then the
determinant in (∗) is 0 because two rows are equal. Hence,

a11C21 + a12C22 + a13C23 = 0

a31C21 + a32C22 + a33C23 = 0

That is, the sum of the products of the elements in either row 1 or row 3 multiplied by the
cofactors of the elements in row 2 is zero.

Obviously, the argument used in this example can be generalized: If we multiply the
elements of any row by the cofactors of an alien row, and then add the products, the result
is 0. Similarly if we multiply the elements of a column by the cofactors of an alien column,
then add.

We summarize all the results in this section in the following theorem:

T H E O R E M 1 6 . 5 . 1 ( C O F A C T O R E X P A N S I O N O F A D E T E R M I N A N T )

Let A = (aij )n×n. Suppose that the cofactors Cij are defined as in (3). Then:

ai1Ci1 + ai2Ci2 + · · · + ainCin = |A|
ai1Ck1 + ai2Ck2 + · · · + ainCkn = 0 (k �= i)

a1jC1j + a2jC2j + · · · + anjCnj = |A|
a1jC1k + a2jC2k + · · · + anjCnk = 0 (k �= j)

Theorem 16.5.1 says that an expansion of a determinant by row i in terms of the cofactors of
row k vanishes when k �= i, and is equal to |A| if k = i. Likewise, an expansion by column
j in terms of the cofactors of column k vanishes when k �= j , and is equal to |A| if k = j .

P R O B L E M S F O R S E C T I O N 1 6 . 5

⊂SM⊃1. Calculate the following determinants:

(a)

∣∣∣∣∣
1 2 4
1 3 9
1 4 16

∣∣∣∣∣ (b)

∣∣∣∣∣∣∣
1 2 3 4
0 −1 0 11
2 −1 0 3

−2 0 −1 3

∣∣∣∣∣∣∣ (c)

∣∣∣∣∣∣∣
2 1 3 3
3 2 1 6
1 3 0 9
2 4 1 12

∣∣∣∣∣∣∣
2. Calculate the following determinants:

(a)

∣∣∣∣∣
0 0 a

0 b 0
c 0 0

∣∣∣∣∣ (b)

∣∣∣∣∣∣∣
0 0 0 a

0 0 b 0
0 c 0 0
d 0 0 0

∣∣∣∣∣∣∣ (c)

∣∣∣∣∣∣∣∣∣

0 0 0 0 1
0 0 0 5 1
0 0 3 1 2
0 4 0 3 4
6 2 3 1 2

∣∣∣∣∣∣∣∣∣
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16.6 The Inverse of a Matrix
Suppose that α is a real number different from 0. Then there is a unique number α−1 with the
property that αα−1 = α−1α = 1. We call α−1 the (multiplicative) inverse of α. We saw in
Section 15.4 that the identity matrix I (with 1’s along the main diagonal and 0’s elsewhere) is
the matrix equivalent of 1 in the real number system.3 This makes the following terminology
seem natural.

Given a matrix A, we say that X is an inverse of A if there exists a matrix X such that

AX = XA = I (1)

Then A is said to be invertible. Because XA = AX = I, the matrix A is also an inverse of
X—that is, A and X are inverses of each other. Note that the two matrix products AX and
XA are defined and equal only if A and X are square matrices of the same order. Thus, only
square matrices can have inverses. But not even all square matrices have inverses, as (b) in
the following example shows.

E X A M P L E 1 (a) Show that A =
(

5 6
5 10

)
and X =

(
1/2 −3/10

−1/4 1/4

)
are inverses of each other.

(b) Show that A =
(

1 0
0 0

)
has no inverse.

Solution:

(a)

(
5 6
5 10

) (
1/2 −3/10

−1/4 1/4

)
=

(
5/2 − 6/4 −15/10 + 6/4

5/2 − 10/4 −15/10 + 10/4

)
=

(
1 0
0 1

)

and likewise we verify that XA = I.

(b) Observe that for all real numbers x, y, z, and w,

(
1 0
0 0

) (
x y

z w

)
=

(
x y

0 0

)

So there is no way of choosing x, y, z, and w to make the product of these two matrices

equal to I. Thus,

(
1 0
0 0

)
has no inverse.

The following questions arise:

A. Which matrices have inverses?

B. Can a given matrix have more than one inverse?

C. How do we find the inverse if it exists?

As for question A, it is easy to find a necessary condition for a matrix A to have an inverse.
In fact, from (1) and rule G in Theorem 16.4.1, it follows that |AX| = |A| · |X| = |I|. Using

3 From now on, we write I instead of In whenever the order n of the identity matrix seems obvious.
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(16.3.4), we see that the identity matrix of any order has determinant 1. Thus, if X is an
inverse of A, then |A| · |X| = 1. We conclude from this equation that |A| �= 0 is a necessary
condition for A to have an inverse, because |A| = 0 would lead to a contradiction.

As we shall see in the next section, the condition |A| �= 0 is also sufficient for A to have
an inverse. Hence, for any square matrix A,

A has an inverse ⇐⇒ |A| �= 0 (2)

A square matrix A is said to be singular if |A| = 0 and nonsingular if |A| �= 0. According
to (2), a matrix has an inverse if and only if it is nonsingular.

Concerning question B, the answer is no—a matrix cannot have more than one inverse.
Indeed, suppose that X satisfies (1) and that AY = I for some other square matrix Y. Then

Y = IY = (XA)Y = X(AY) = XI = X

A similar argument shows that if YA = I, then Y = X. Thus, the inverse of A is unique if
it exists.

If the inverse of A exists, it is usually written A−1. Whereas for numbers we can write
a−1 = 1/a, the symbol I/A has no meaning. There are no rules for dividing matrices. Note
also that even if the product A−1B is defined, it is usually quite different from BA−1 because
matrix multiplication is not commutative, in general.

The full answer to question C is given in the next section. Here we only consider the
case of 2 × 2 matrices.

E X A M P L E 2 Find the inverse of A =
(

a b

c d

)
(when it exists).

Solution: We find a 2 × 2 matrix X such that AX = I, after which it is easy to check that
XA = I. Solving AX = I requires finding numbers x, y, z, and w such that(

a b

c d

) (
x y

z w

)
=

(
1 0
0 1

)
Matrix multiplication implies that

ax + bz = 1 , ay + bw = 0

cx + dz = 0 , cy + dw = 1

Note that we have two different systems of equations here. One is given by the two equations
on the left, and the other by the two equations on the right. Both these systems have A as a
common coefficient matrix. If |A| = ad − bc �= 0, solving the two pairs of simultaneous
equations separately using Cramer’s rule from Section 16.1 yields

x = d

ad − bc
, z = −c

ad − bc
, y = −b

ad − bc
, w = a

ad − bc
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Hence, we have proved the following result, assuming that |A| = ad − bc �= 0:

A =
(

a b

c d

)

⇒ A−1 = 1

ad − bc

(
d −b

−c a

)
(3)

Note that in the inverse matrix, the diagonal elements of the original 2 × 2 matrix are
switched, whereas the off-diagonal elements just change sign.

For square matrices of order 3, one can use Cramer’s rule (16.2.4) to derive a formula for
the inverse. Again, the requirement for the inverse to exist is that the determinant of the
coefficient matrix is not 0. Full details will be given in Section 16.7.

Some Useful Implications

If A−1 is the inverse of A, then A−1A = I and AA−1 = I. Actually, each of these equations
implies the other, in the sense that

AX = I 
⇒ X = A−1 (4)

YA = I 
⇒ Y = A−1 (5)

To prove (4), suppose AX = I. Then |A| · |X| = 1, and so |A| �= 0. Hence, by (2), A−1

exists. Multiplying AX = I from the left by A−1 yields X = A−1. The proof of (5) is almost
the same.

Implications (4) and (5) are used repeatedly in proving properties of the inverse. Here
are two examples.

E X A M P L E 3 Find the inverse of the n × n matrix A if A − A2 = I.

Solution: The matrix equation A − A2 = I yields A(I − A) = I. But then it follows from
(4) that A has the inverse A−1 = I − A.

E X A M P L E 4 Let B be a n × n matrix such that B2 = 3B. Prove that there exists a number s such that
I + sB is the inverse of I + B.

Solution: Because of (5), it suffices to find a number s such that (I + sB)(I + B) = I.
Now,

(I + sB)(I + B) = II + IB + sBI + sB2 = I + B + sB + 3sB = I + (1 + 4s)B

which is equal to I provided 1 + 4s = 0. The right choice of s is thus s = −1/4.
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Properties of the Inverse
We shall now prove some useful rules for the inverse.

T H E O R E M 1 6 . 6 . 1 ( P R O P E R T I E S O F T H E I N V E R S E )

Let A and B be invertible n × n matrices. Then:

(a) A−1 is invertible, and (A−1)−1 = A.

(b) AB is invertible, and (AB)−1 = B−1A−1.

(c) The transpose A′ is invertible, and (A′)−1 = (A−1)′.
(d) (cA)−1 = c−1A−1 whenever c is a number �= 0.

Proof: In each case, we use (4):

(a) We have A−1A = I, so A = (A−1)−1.

(b) To prove that X = B−1A−1 is the inverse of AB, we just verify that (AB)X is equal
to I. In fact, (AB)X = (AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I.

(c) Applying rule (15.5.2)(d) with B = A−1 gives (A−1)′A′ = (AA−1)′ = I′ = I. By (5),
it follows that (A′)−1 = (A−1)′.

(d) Here rule (15.4.4) implies that (cA)(c−1A−1) = cc−1AA−1 = 1 · I = I, so c−1A−1 =
(cA)−1.

NOTE 1 It is important to think carefully through the implications of the four rules in
Theorem 16.6.1 and to understand their uses. A somewhat dramatic but possibly mythical
story might help you to appreciate rule (c). Some decades ago a team of (human) calculators
was working in a central bureau of statistics. After 3 weeks of hard work, they finally found
the inverse A−1 of a 20 × 20 matrix A. Then the boss came along and said: “Sorry, I was
really interested in the inverse of the transpose of A”. Panic—until they realized that property
(c) would save them from having to redo all the calculations. They simply transposed the
inverse matrix that it had taken 3 weeks to find, because according to (c), the inverse of the
transpose is the transpose of the inverse.

NOTE 2 Suppose that A is invertible and also symmetric—that is, A′ = A. Then rule (c)
implies that (A−1)′ = (A′)−1 = A−1, so A−1 is symmetric. The inverse of a symmetric
matrix is symmetric.

NOTE 3 Rule (b) can be extended to products of several matrices. For instance, if A, B,
and C are all invertible n × n matrices, then

(ABC)−1 = [(AB)C)]−1 = C−1(AB)−1 = C−1(B−1A−1) = C−1B−1A−1

where rule (b) has been used twice. Note the assumption in (b) that A and B are both n × n

matrices. In statistics and econometrics, we often consider products of the form XX′, where
X is n×m, with n �= m. Then XX′ is n×n. If the determinant |XX′| is not 0, then (XX′)−1

exists, but (b) does not apply because X−1 and X′−1 are only defined if n = m.
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NOTE 4 It is a common fallacy to misinterpret (d). For instance, a correct application of
(d) yields

( 1
2 A

)−1 = 2A−1.

Solving Equations by Matrix Inversion
Let A be any n×n matrix. If B is an arbitrary matrix, we consider whether there are matrices
X and Y of suitable order such that

(∗) AX = B (∗∗) YA = B

In case (∗), the matrix B must have n rows, while in case (∗∗), B must have n columns.
Provided these conditions are satisfied, we have the following result:

T H E O R E M 1 6 . 6 . 2

Provided that |A| �= 0, one has:

AX = B ⇐⇒ X = A−1B (6)

YA = B ⇐⇒ Y = BA−1 (7)

Proof: Provided that |A| �= 0, we can multiply each side of the equation AX = B in (6)
on the left by A−1. This yields A−1(AX) = A−1B. Because (A−1A)X = IX = X, we
conclude that X = A−1B is the only possible solution of the equation. On the other hand,
by substituting X = A−1B into AX = B, we see that it really satisfies the equation.

The proof of (7) is similar—postmultiply each side of YA = B by A−1.

E X A M P L E 5 Solve the following system of equations by using Theorem 16.6.2:

2x + y = 3

2x + 2y = 4

Solution: Suppose we define the matrices

A =
(

2 1
2 2

)
, x =

(
x

y

)
, b =

(
3
4

)

Then the system is equivalent to the matrix equation Ax = b. Because |A| = 2 �= 0, matrix
A has an inverse, and according to Theorem 16.6.2, x = A−1b. Hence(

x

y

)
= A−1

(
3
4

)
=

(
1 −1/2

−1 1

) (
3
4

)
=

(
1
1

)

where we have used (3) to find A−1. The solution is therefore x = 1, y = 1. (Check by
substitution that this really is the correct solution. Clearly, solving by systematic elimination
is easier.)
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P R O B L E M S F O R S E C T I O N 1 6 . 6

1. Prove that: (a)

(
3 0
2 −1

)−1

=
(

1/3 0
2/3 −1

)
(b)

( 1 1 −3
2 1 −3
2 2 1

)−1

=
( − 1 1 0

8/7 −1 3/7
−2/7 0 1/7

)

2. Find numbers a and b that make A the inverse of B when

A =
( 2 −1 −1

a 1/4 b

1/8 1/8 −1/8

)
and B =

( 1 2 4
0 1 6
1 3 2

)

3. Solve the following systems of equations by using Theorem 16.6.2. (See Example 5.)

(a)
2x − 3y = 3

3x − 4y = 5
(b)

2x − 3y = 8

3x − 4y = 11
(c)

2x − 3y = 0

3x − 4y = 0

4. Let A = 1

2

( −1 −√
3√

3 −1

)
. Show that A3 = I2. Use this to find A−1.

5. (a) Given A =
( 0 1 0

0 1 1
1 0 1

)
, calculate |A|, A2, A3, and A3 − 2A2 + A − I3. Use the last

calculation to show that A has an inverse and A−1 = (A − I3)
2.

(b) Find a matrix P such that P2 = A. Are there other matrices with this property?

6. (a) Let A =
(

2 1 4
0 −1 3

)
. Calculate AA′, |AA′|, and (AA′)−1.

(b) The matrices AA′ and (AA′)−1 in part (a) are both symmetric. Is this a coincidence?

7. (a) If A, P, and D are square matrices such that A = PDP−1, show that A2 = PD2P−1.

(b) Show by induction that Am = PDmP−1 for any positive integer m.

⊂SM⊃8. Given B =
( −1/2 5

1/4 −1/2

)
, calculate B2 + B, B3 − 2B + I, and then find B−1.

9. Suppose that X is an m × n matrix and that |X′X| �= 0. Show that the matrix

A = Im − X(X′X)−1X′

is idempotent—that is, A2 = A. (See Problem 15.4.6.)

10. Given A =
( −2 0 1

1 −1 5

)
, B =

( 3 1
0 1

−1 2

)
, C =

(
1 2
3 4

)
, D =

( −9 3
−8 17

)
.

Find a matrix X that satisfies AB + CX = D.

11. (a) Let C be an n × n matrix that satisfies C2 + C = I. Show that C−1 = I + C.

(b) Show that C3 = −I + 2C and C4 = 2I − 3C.
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16.7 A General Formula for the Inverse
The previous section presents the most important facts about the inverse and its properties. As such,
it contains “what every economist should know”. It is less important for most economists to know
much about how to calculate the inverses of large matrices, because powerful computer programs
are available.

Nevertheless, this section presents an explicit formula for the inverse of any nonsingular n × n

matrix A. Though this formula is extremely inefficient for computing inverses of large matrices, it
does have theoretical interest. The key to this formula are the rules for the cofactor expansion of
determinants.

Let C11, . . . , Cnn denote the cofactors of the elements in A. By Theorem 16.5.1, cofactor expan-
sion yields n2 equations of the form

ai1Ck1 + ai2Ck2 + · · · + ainCkn =
{ |A| if i = k

0 if i �= k
(∗)

for i, k = 1, . . . , n. The sums on the left-hand side look very much like those appearing in matrix
products. In fact, the n2 different equations in (∗) reduce to the single matrix equation

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 . . . a1n

...
...

...

ai1 ai2 . . . ain

...
...

...

an1 an2 . . . ann

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

C11 . . . Ck1 . . . Cn1

C12 . . . Ck2 . . . Cn2
...

...
...

C1n . . . Ckn . . . Cnn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

|A| 0 . . . 0
0 |A| . . . 0
...

...
. . .

...

0 0 . . . |A|

⎞
⎟⎟⎠

Here the matrix on the right-hand equals |A|·In. Let C+ = (Cij ) denote the matrix of cofactors. Then
the second matrix in the product on the left-hand side has its row and column indices interchanged.
Thus, it is the transpose (C+)′ of that matrix, which is called the adjoint of A, and denoted by adj(A).
Thus,

adj (A) = (C+)′ =

⎛
⎜⎜⎝

C11 . . . Ck1 . . . Cn1

C12 . . . Ck2 . . . Cn2
...

...
...

C1n . . . Ckn . . . Cnn

⎞
⎟⎟⎠ (1)

The previous equation, therefore, can be written as A adj (A) = |A| ·I. In case |A| �= 0, this evidently
implies that A−1 = (1/|A|) · adj (A). We have proved the general formula for the inverse:

T H E O R E M 1 6 . 7 . 1 ( G E N E R A L F O R M U L A F O R T H E I N V E R S E )

Any square matrix A = (
aij

)
n×n

with determinant |A| �= 0 has a unique inverse A−1

satisfying AA−1 = A−1A = I. This is given by

A−1 = 1

|A| · adj (A)

If |A| = 0, then there is no matrix X such that AX = XA = I.

E X A M P L E 1 Let A =
( 2 3 4

4 3 1
1 2 4

)
. Show that A has an inverse and find the inverse.

Solution: According to Theorem 16.7.1, A has an inverse if and only if |A| �= 0. Here we find that
|A| = −5, so the inverse exists. The cofactors are
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C11 =
∣∣∣∣ 3 1

2 4

∣∣∣∣ = 10,

C21 = −
∣∣∣∣ 3 4

2 4

∣∣∣∣ = −4,

C31 =
∣∣∣∣ 3 4

3 1

∣∣∣∣ = −9,

C12 = −
∣∣∣∣ 4 1

1 4

∣∣∣∣ = −15,

C22 =
∣∣∣∣ 2 4

1 4

∣∣∣∣ = 4,

C32 = −
∣∣∣∣ 2 4

4 1

∣∣∣∣ = 14,

C13 =
∣∣∣∣ 4 3

1 2

∣∣∣∣ = 5

C23 = −
∣∣∣∣ 2 3

1 2

∣∣∣∣ = −1

C33 =
∣∣∣∣ 2 3

4 3

∣∣∣∣ = −6

Hence, the inverse of A is

A−1 = 1

|A|

(
C11 C21 C31

C12 C22 C32

C13 C23 C33

)
= −1

5

( 10 −4 −9
−15 4 14

5 −1 −6

)

(Check the result by showing that AA−1 = I.)

Finding Inverses by Elementary Row Operations
Theorem 16.7.1 presented a general formula for the inverse of a nonsingular matrix. Although this
formula is important theoretically, it is computationally useless for matrices much larger than 2 × 2.
An efficient way of finding the inverse of an invertible n × n matrix A is based on using elementary
operations in a systematic way: First form the n × 2n matrix (A : I) by writing down the n columns
of A followed by the n columns of I. Then apply elementary row operations to this matrix in order
to transform it to an n × 2n matrix (I : B) whose first n columns are all the columns of I. It will
follow that B = A−1. If it is impossible to perform such row operations, then A has no inverse. The
method is illustrated by the following example.

E X A M P L E 2 Find the inverse of A =
( 1 3 3

1 3 4
1 4 3

)
.

Solution: First, write down the 3 × 6 matrix whose first three columns are the columns of A and
whose next three columns are the columns of the 3 × 3 identity matrix:( 1 3 3 1 0 0

1 3 4 0 1 0
1 4 3 0 0 1

)

The idea is now to use elementary operations on this matrix so that, in the end, the three first columns
constitute an identity matrix. Then the last three columns constitute the inverse of A.

To start, we multiply the first row by −1 and add the result to the second row. This gives a zero
in the second row and the first column. You should be able then to understand the other operations
used and why they are chosen.( 1 3 3 1 0 0

1 3 4 0 1 0
1 4 3 0 0 1

) −1
← ∼

( 1 3 3 1 0 0
0 0 1 −1 1 0
1 4 3 0 0 1

) −1

←

∼
( 1 3 3 1 0 0

0 0 1 −1 1 0
0 1 0 −1 0 1

) ←

−3
∼

( 1 0 3 4 0 −3
0 0 1 −1 1 0
0 1 0 −1 0 1

) ←
−3

∼
( 1 0 0 7 −3 −3

0 0 1 −1 1 0
0 1 0 −1 0 1

)
←
←

∼
( 1 0 0 7 −3 −3

0 1 0 −1 0 1
0 0 1 −1 1 0

)
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We conclude that

A−1 =
( 7 −3 −3

−1 0 1
−1 1 0

)

(Check that AA−1 = I.)

P R O B L E M S F O R S E C T I O N 1 6 . 7

⊂SM⊃1. Use Theorem 16.7.1 to calculate the inverses of the following matrices, if they exist:

(a) A =
(

2 3
4 5

)
(b) B =

( 1 0 2
2 −1 0
0 2 −1

)
(c) C =

( 1 0 0
−3 −2 1

4 −16 8

)

2. Find the inverse of A =
( −2 3 2

6 0 3
4 1 −1

)
.

⊂SM⊃3. Let A =
( 0.2 0.6 0.2

0 0.2 0.4
0.2 0.2 0

)
. Find (I − A)−1.

⊂SM⊃4. Repeated observations of an empirical phenomenon lead to p different systems of equations

a11x1 + · · · + a1nxn = b1k

. . . . . . . . . . . . . . . . . . . . . . .

an1x1 + · · · + annxn = bnk

(k = 1, . . . , p) (∗)

which all share the same n × n coefficient matrix
(
aij

)
. Explain how to find the solutions

(xk1, . . . , xkn) (k = 1, . . . , p) of all the systems simultaneously by using row operations to get

⎛
⎜⎝

a11 . . . a1n b11 . . . b1p

...
. . .

...
...

...

an1 . . . ann bn1 . . . bnp

⎞
⎟⎠ ∼

⎛
⎜⎝

1 . . . 0 b∗
11 . . . b∗

1p

...
. . .

...
...

...

0 . . . 1 b∗
1n . . . b∗

np

⎞
⎟⎠

What then is the solution of the system of equations (∗) for k = r?

⊂SM⊃5. Use the method in Example 2 to calculate the inverses (provided they exist) of the following
matrices (check each result by verifying that AA−1 = I).

(a) A =
(

1 2
3 4

)
(b) A =

( 1 2 3
2 4 5
3 5 6

)
(c) A =

( 3 2 −1
−1 5 8
−9 −6 3

)
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16.8 Cramer’s Rule
Cramer’s rule for solving n linear equations in n unknowns is a direct generalization of the
same rule for systems of equations with 2 or 3 unknowns. Consider the system

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1x1 + an2x2 + · · · + annxn = bn

(1)

Let Dj denote the determinant obtained from |A| by replacing the j th column vector with
the column vector whose components are b1, b2, . . . , bn. Thus,

Dj =

∣∣∣∣∣∣∣∣∣

a11 . . . a1j−1 b1 a1j+1 . . . a1n

a21 . . . a2j−1 b2 a2j+1 . . . a2n

...
...

...
...

...

an1 . . . anj−1 bn anj+1 . . . ann

∣∣∣∣∣∣∣∣∣
, j = 1, . . . , n (2)

The cofactor expansion of Dj down its j th column gives

Dj = C1j b1 + C2j b2 + · · · + Cnjbn (3)

where the cofactors Cij are given by (16.5.3). Now we have the following result:

T H E O R E M 1 6 . 8 . 1 ( C R A M E R ’ S R U L E )

The general linear system of equations (1) with n equations and n unknowns has
a unique solution if and only if A is nonsingular (|A| �= 0 ). The solution is

x1 = D1

|A| , x2 = D2

|A| , . . . , xn = Dn

|A| (4)

where D1, D2, . . . , Dn are defined by (2).

Proof of the “if” part: Suppose |A| �= 0. System (1) can be written in the form

⎛
⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

b1

b2
...

bn

⎞
⎟⎟⎠

Using the formula for the inverse of the coefficient matrix yields

⎛
⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎠ = 1

|A|

⎛
⎜⎜⎝

C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

...
. . .

...

C1n C2n · · · Cnn

⎞
⎟⎟⎠

⎛
⎜⎜⎝

b1

b2
...

bn

⎞
⎟⎟⎠ (∗)
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where the cofactors Cij are given by (16.5.3). From (∗), we have

xj = 1

|A| [C1j b1 + C2j b2 + · · · + Cnjbn] = Dj

|A| , j = 1, 2, . . . , n

where the last equality follows from the previous equation (3). This proves (4).
The “only if” part will be discussed in Note 2 below, and proved in FMEA.

E X A M P L E 1 Find the solutions of the following system for all values of p.

px + y = 1

x − y + z = 0

2y − z = 3

Solution: The coefficient matrix has determinant

|A| =
∣∣∣∣∣∣
p 1 0
1 −1 1
0 2 −1

∣∣∣∣∣∣ = 1 − p

According to Theorem 16.8.1, the system has a unique solution if 1 − p �= 0—that is, if
p �= 1. In this case, the determinants in (2) are

D1 =
∣∣∣∣∣∣

1 1 0
0 −1 1
3 2 −1

∣∣∣∣∣∣ , D2 =
∣∣∣∣∣∣
p 1 0
1 0 1
0 3 −1

∣∣∣∣∣∣ , D3 =
∣∣∣∣∣∣
p 1 1
1 −1 0
0 2 3

∣∣∣∣∣∣
whose numerical values are D1 = 2, D2 = 1 − 3p, and D3 = −1 − 3p. Then (4) yields
for p �= 1

x = D1

|A| = 2

1 − p
, y = D2

|A| = 1 − 3p

1 − p
, z = D3

|A| = −1 − 3p

1 − p

On the other hand, in case p = 1, the first equation becomes x + y = 1. Yet adding the
last two of the original equations implies that x + y = 3. There is no solution to these two
contradictory equations in case p = 1.

NOTE 1 It might be instructive to solve this problem by using Gaussian elimination, starting
by interchanging the first two equations.

Homogeneous Systems of Equations

Consider the special case in which the right-hand side of the system of equations (1) consists
only of zeros. The system is then called homogeneous. A homogeneous system will always
have the so-called trivial solution x1 = x2 = · · · = xn = 0. In many problems, one is
interested in knowing when a homogeneous system has nontrivial solutions.
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T H E O R E M 1 6 . 8 . 2 ( N O N T R I V I A L S O L U T I O N S O F H O M O G E N E O U S S Y S T E M S )

The homogeneous linear system of equations with n equations and n unknowns

a11x1 + a12x2 + · · · + a1nxn = 0

a21x1 + a22x2 + · · · + a2nxn = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1x1 + an2x2 + · · · + annxn = 0

(5)

has nontrivial solutions if and only if the coefficient matrix A = (
aij

)
n×n

is

singular (that is, if and only if |A| = 0).

Proof of the “only if” part: Suppose that |A| �= 0. Then, by Cramer’s rule, x1, . . . , xn are given by
(4). But the numerator in each of these fractions is 0, because each of the determinants D1, . . . , Dn

contains a column consisting entirely of zeros. Then the system only has the trivial solution. In other
words: System (5) has nontrivial solutions only if the determinant |A| vanishes.

As for the “if” part, concepts from FMEA can be used to show that, if |A| = 0, then the rank
of A is less than n, so system (5) has at least one degree of freedom. That is, apart from the trivial
solution, there are infinitely many nontrivial solutions which take the form αx where x �= 0, and α

is an arbitrary nonzero scalar.

NOTE 2 We now consider the “only if” part of Theorem 16.8.1. In case |A| = 0, there are
two possibilities. First, the equation system (1), which we write in matrix form Ax = b,
may have no solutions. Second, it may have at least one particular solution xP . But the
homogeneous system has solutions αx satisfying Aαx = 0. So all vectors of the form
xP + αx are also solutions of the equation system. In particular, (1) has a unique solution
only if |A| �= 0.

E X A M P L E 2 Examine for what values of λ the following system of equations has nontrivial solutions.

5x + 2y + z = λx

2x + y = λy

x + z = λz

Solution: The variables x, y, and z appear on both sides of the equations, so we start by
putting the system into standard form:

(5 − λ)x + 2y + z = 0

2x + (1 − λ)y = 0

x + (1 − λ)z = 0

According to Theorem 16.8.2, this system has a nontrivial solution if and only if the coeffi-
cient matrix is singular: ∣∣∣∣∣∣

5 − λ 2 1
2 1 − λ 0
1 0 1 − λ

∣∣∣∣∣∣ = 0
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The value of the determinant is found to be λ(1−λ)(λ−6). Hence, system (1) has nontrivial
solutions if and only if λ = 0, 1, or 6.

NOTE 3 Actually, using terminology explained in FMEA, this example asks us to find the

eigenvalues of the matrix

⎛
⎝ 5 2 1

2 1 0
1 0 1

⎞
⎠.

P R O B L E M S F O R S E C T I O N 1 6 . 8

⊂SM⊃1. Use Cramer’s rule to solve the following two systems of equations:

(a)

x + 2y − z = −5

2x − y + z = 6

x − y − 3z = −3

(b)

x + y = 3

x + z = 2

y + z + u = 6

y + u = 1

2. Use Theorem 16.8.1 to prove that the following system of equations has a unique solution for
all values of b1, b2, b3, and find the solution.

3x1 + x2 = b1

x1 − x2 + 2x3 = b2

2x1 + 3x2 − x3 = b3

⊂SM⊃3. Prove that the homogeneous system of equations

ax + by + cz = 0

bx + cy + az = 0

cx + ay + bz = 0

has a nontrivial solution if and only if a3 + b3 + c3 − 3abc = 0.

16.9 The Leontief Model
In order to illustrate why linear systems of equations are important in economics, we briefly
discuss a simple example of the Leontief model.

E X A M P L E 1 Once upon a time, in an ancient land perhaps not too far from Norway, an economy
consisted of three industries—fishing, forestry, and boat building.

To produce 1 ton of fish requires the services of α fishing boats.
To produce 1 ton of timber requires β tons of fish, as extra food for the energetic
foresters.
To produce 1 fishing boat requires γ tons of timber.
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These are the only inputs needed for each of these three industries. Suppose there is no final
(external) demand for fishing boats. Find what gross outputs each of the three industries
must produce in order to meet the final demands of d1 tons of fish to feed the general
population, plus d2 tons of timber to build houses.

Solution: Let x1 denote the total number of tons of fish to be produced, x2 the total number
of tons of timber, and x3 the total number of fishing boats.

Consider first the demand for fish. Because βx2 tons of fish are needed to produce x2

units of timber, and because the final demand for fish is d1, we must have x1 = βx2 + d1.
(Producing fishing boats does not require fish as an input, so there is no term with x3.) In the
case of timber, a similar argument shows that the equation x2 = γ x3 + d2 must be satisfied.
Finally, for boat building, only the fishing industry needs boats; there is no final demand in
this case, and so x3 = αx1. Thus, the following three equations must be satisfied:

(i) x1 = βx2 + d1 (ii) x2 = γ x3 + d2 (iii) x3 = αx1 (∗)

One way to solve these equations begins by using (iii) to insert x3 = αx1 into (ii). This
gives x2 = γαx1 + d2, which inserted into (i) yields x1 = αβγ x1 + βd2 + d1. Solving this
last equation for x1 gives x1 = (d1 + βd2)/(1 − αβγ ). The corresponding expressions for
the two other variables are easily found, and the results are:

x1 = d1 + βd2

1 − αβγ
, x2 = αγ d1 + d2

1 − αβγ
, x3 = αd1 + αβd2

1 − αβγ
(∗∗)

Clearly, this solution for (x1, x2, x3) only makes sense when αβγ < 1. In fact, if αβγ ≥ 1,
it is impossible for this economy to meet any positive final demands for fish and timber—
production in the economy is too inefficient.

The General Leontief Model

In Example 1 we considered a simple example of the Leontief model. More generally, the
Leontief model describes an economy with n interlinked industries, each of which produces
a single good using only one process of production. To produce its good, each industry
must use inputs from at least some other industries. For example, the steel industry needs
goods from the iron mining and coal industries, as well as from many other industries. In
addition to supplying its own good to other industries that need it, each industry also faces
an external demand for its product from consumers, governments, foreigners, and so on.
The amount needed to meet this external demand is called the final demand.

Let xi denote the total number of units of good i that industry i is going to produce in a
certain year. Furthermore, let

aij = the number of units of good i needed to produce one unit of good j (1)

We assume that input requirements are directly proportional to the amount of the output
produced. Then

aij xj = the number of units of good i needed to produce xj units of good j (2)
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In order that x1 units of good 1, x2 units of good 2, . . . , xn units of good n can all be
produced, industry i needs to supply a total of

ai1x1 + ai2x2 + · · · + ainxn

units of good i. If we require industry i also to supply bi units to meet final demand, then
equilibrium between supply and demand requires that

xi = ai1x1 + ai2x2 + · · · + ainxn + bi

This goes for all i = 1, 2, . . . , n. So we arrive at the following system of equations:

x1 = a11x1 + a12x2 + · · · + a1nxn + b1

x2 = a21x1 + a22x2 + · · · + a2nxn + b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xn = an1x1 + an2x2 + · · · + annxn + bn

(3)

Note that in the first equation, x1 appears on the left-hand side as well as in the first term on
the right-hand side. In the second equation, x2 appears on the left-hand side as well as in
the second term on the right-hand side, and so on. Moving all terms involving x1, . . . , xn

to the left-hand side and rearranging gives the system of equations

(1 − a11)x1 − a12x2 − · · · − a1nxn = b1

− a21x1 + (1 − a22)x2 − · · · − a2nxn = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

− an1x1 − an2x2 − · · · + (1 − ann)xn = bn

(4)

This system of equations is called the Leontief system. The numbers a11, a12, . . . , ann

are called input (or technical) coefficients. Given any collection of final demand quanti-
ties (b1, b2, . . . , bn), a solution (x1, x2, . . . , xn) of (4) will give outputs for each industry
such that the combined interindustry and final demands can just be met. Of course, only
nonnegative values for xi make sense.

It is natural to use matrix algebra to study the Leontief model. Define the following
matrices:

A =

⎛
⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

⎞
⎟⎟⎠ , x =

⎛
⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎠ , b =

⎛
⎜⎜⎝

b1

b2
...

bn

⎞
⎟⎟⎠ (5)

The elements of the matrix A are the input coefficients, so it is called the input or Leontief
matrix. Recall that the element aij denotes the number of units of commodity i which is
needed to produce one unit of commodity j .

With these definitions, system (3) can expressed as

x = Ax + b (6)
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This equation is evidently equivalent to the equation x − Ax = b. If In denotes the identity
matrix of order n, then (In − A)x = Inx − Ax = x − Ax, so that (3) is equivalent to

(In − A)x = b (7)

which is the matrix equivalent of system (4). (Note in particular that “x − Ax = (1 − A)x”
is meaningless, since 1 − A (where 1 is the number 1) is meaningless.)

Suppose now that we introduce prices into the Leontief model, and that

pi is the price of a unit of commodity i

Because aij denotes the number of units of commodity i needed to produce one unit of
commodity j , the sum

a1jp1 + a2jp2 + · · · + anjpn

is the total cost of the n commodities needed to produce one unit of commodity j . The
expression

pj − a1jp1 − a2jp2 − · · · − anjpn

is the difference between the price of one unit of commodity j and the cost of producing
that unit. This is called unit value added in sector j . If we denote this unit value added by
vj , then for all sectors:

p1 − a11p1 − a21p2 − · · · − an1pn = v1

p2 − a12p1 − a22p2 − · · · − an2pn = v2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pn − a1np1 − a2np2 − · · · − annpn = vn

(8)

Note that the input–output coefficients aij appear in transposed order. If we define

p =

⎛
⎜⎜⎝

p1

p2
...

pn

⎞
⎟⎟⎠ and v =

⎛
⎜⎜⎝

v1

v2
...

vn

⎞
⎟⎟⎠ (9)

we see that (8) can be written in the matrix form p − A′p = v, or

(In − A′)p = v (10)

By using the rules for transposition in (15.5.2), we can express (10) in an alternative way.
Transposing each side of (10) gives

p′(In − A) = v′ (11)

since I′
n = In and (A′)′ = A. We see that the two systems (7) and (11) are closely related.
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P R O B L E M S F O R S E C T I O N 1 6 . 9

1. In Example 1 let α = 1/2, β = 1/4, γ = 2, d1 = 100, and d2 = 80. Write down system (∗) in
this case and find the solution of the system. Confirm the results by using the general formulas
in (∗∗).

2. Consider an economy divided into an agricultural sector (A) and an industrial sector (I ). To
produce one unit in sector A requires 1/6 unit from A and 1/4 unit from I . To produce one unit
in sector I requires 1/4 unit from A and 1/4 unit from I . Suppose final demands in each of the
two sectors are 60 units.

(a) Write down the Leontief system for this economy.

(b) Find the number of units that have to be produced in each sector in order to meet the final
demands.

3. Consider the Leontief model (4).

(a) What is the interpretation of the condition that aii = 0 for all i?

(b) What is the interpretation of the sum ai1 + ai2 + · · · + ain?

(c) What is the interpretation of the vector of input coefficients (a1j , a2j , . . . , anj )?

(d) Can you give any interpretation to the sum a1j + a2j + · · · + anj ?

4. Write down system (4) when n = 2, a11 = 0.2, a12 = 0.3, a21 = 0.4, a22 = 0.1, b1 = 120, and
b2 = 90. What is the solution to this system?

5. Consider an input–output model with three sectors. Sector 1 is heavy industry, sector 2 is
light industry, and sector 3 is agriculture. Suppose that the input requirements are given by the
following table:

Heavy industry Light industry Agriculture

Units of heavy a11 = 0.1 a12 = 0.2 a13 = 0.1
industry goods

Units of light a21 = 0.3 a22 = 0.2 a23 = 0.2
industry goods

Units of agri- a31 = 0.2 a32 = 0.2 a33 = 0.1
cultural goods

Suppose the final demands for the three goods are 85, 95, and 20 units, respectively. If x1, x2,
and x3 denote the number of units that have to be produced in the three sectors, write down the
Leontief system for the problem. Verify that x1 = 150, x2 = 200, and x3 = 100 is a solution.

6. Write down the input matrix for the simple Leontief model of Example 1. Compare the condition
for efficient production discussed in that example with the requirement that the sum of the
elements of each column in the input matrix be less than 1.

7. Suppose that x = x0 is a solution of (7) and that p′ = p′
0 is a solution of (11). Prove that

p′
0b = v′x0.
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1. Calculate the following determinants:

(a)

∣∣∣∣ 5 −2
3 −2

∣∣∣∣ (b)

∣∣∣∣ 1 a

a 1

∣∣∣∣ (c)

∣∣∣∣ (a + b)2 a − b

(a − b)2 a + b

∣∣∣∣ (d)

∣∣∣∣ 1 − λ 2
2 4 − λ

∣∣∣∣
2. Calculate the determinants:

(a)

∣∣∣∣∣
2 2 3
0 3 5
0 4 6

∣∣∣∣∣ (b)

∣∣∣∣∣
4 5 6
5 6 8
6 7 9

∣∣∣∣∣ (c)

∣∣∣∣∣
31 32 33
32 33 35
33 34 36

∣∣∣∣∣
(Hint: In (b) and (c) you should perform suitable elementary operations.)

3. Find A when (A−1 − 2I2)
′ = −2

(
1 1
1 0

)
.

4. Let At =
( 1 0 t

2 1 t

0 1 1

)
and B =

( 1 0 0
0 0 1
0 1 0

)
.

(a) For what values of t does At have an inverse?

(b) Find a matrix X such that B + XA−1
1 = A−1

1 .

⊂SM⊃5. Define the two 3 × 3 matrices A =
(

q −1 q − 2
1 −p 2 − p

2 −1 0

)
, E =

( 1 1 1
1 1 1
1 1 1

)
.

Calculate |A| and |A + E|. For what values of p and q does A + E have an inverse? Why does
BE not have an inverse for any 3 × 3 matrix B?

6. For what values of t does the system of equations

−2x + 4y − tz = t − 4

−3x + y + tz = 3 − 4t

(t − 2)x − 7y + 4z = 23

have a unique solution for the three variables x, y, and z? (Use Cramer’s rule.)

7. Prove that if A is an n × n matrix such that A4 = 0, then (I − A)−1 = I + A + A2 + A3.

⊂SM⊃8. (a) Let U be the n × n matrix where all the elements are 1. Show that

(In + aU)(In + bU) = In + (a + b + nab)U

for all real numbers a and b.

(b) Use the result in (a) to find the inverse of A =
( 4 3 3

3 4 3
3 3 4

)
.

9. Let A, B, C, X, and Y be n × n matrices, with |A| �= 0, which satisfy the two equations

(i) AX + Y = B (ii) X + 2A−1Y = C

Find X and Y expressed in terms of A, B, and C.
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⊂SM⊃10. (a) For what values of a does the system of equations

ax + y + 4z = 2

2x + y + a2z = 2

x − 3z = a

(∗)

have one, none, or infinitely many solutions?

(b) Replace the right-hand sides 2, 2, and a in (∗) by b1, b2, and b3, respectively. Find a
necessary and sufficient condition for the new system of equations to have infinitely many
solutions.

11. (a) Let A =
(

11 −6
18 −10

)
. Compute |A|. Show that there exists a real number c such that

A2 + cA = 2I2, and then find the inverse of A.

(b) Show that there is no 2 × 2 matrix B such that B2 = A.

12. Suppose that A and B are invertible n × n matrices. Show that if A′A = In, then (A′BA)−1 =
A′B−1A.

13. Examine for what values of the constants a and b the system of equations

ax + y = 3

x + z = 2

y + az + bu = 6

y + u = 1

has a unique solution in the unknowns x, y, z, and u. When it exists, find this unique solution
(expressed in terms of a and b).

HARDER PROBLEMS

14. The 3 × 3 matrix B satisfies the equation B3 = −B. Show that B cannot have an inverse. (Hint:
Use (16.4.1).)

⊂SM⊃15. (a) Prove that

∣∣∣∣ a + x b + y

c d

∣∣∣∣ =
∣∣∣∣ a b

c d

∣∣∣∣ +
∣∣∣∣ x y

c d

∣∣∣∣.
(b) Suppose A, B, and C are n × n matrices that differ only in the rth row, and suppose the rth

row in C is obtained by adding the entries in the rth row of A to the corresponding entries
in the rth row of B. Prove that then |A| + |B| = |C|. (Hint: Expand according to the rth
row of C.)

⊂SM⊃16. Solve the following equation for x:

∣∣∣∣∣∣∣
x a x b

b x a x

x b x a

a x b x

∣∣∣∣∣∣∣ = 0.
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L I N E A R
P R O G R A M M I N G

If one would take statistics about which mathematical problem is

using up most of the computer time in the world, then (not

counting database handling problems like sorting and searching)

the answer would probably be linear programming.

—L. Lovász (1980)

Linear programming is the name used to describe constrained optimization problems in which

the objective is to maximize or minimize a linear function subject to linear inequality con-

straints. Because of its extensive use in economic decision problems, all economists should know

something about the basic theory of linear programming.

In principle, any linear programming problem (often called an LP problem) can be solved

numerically, provided that a solution exists. This is because the simplex method introduced by

G. B. Dantzig in 1947 provides a very efficient numerical algorithm that finds the solution in

a finite number of steps. As the above quotation from Lovász indicates, the simplex method

has made linear programming a mathematical technique of immense practical importance. It

is reported that when Mobil Oil Company’s multimillion-dollar computer system was installed

in 1958, it paid off this huge investment in two weeks by doing linear programming.1 That

said, the simplex method will not be discussed in this book. After all, faced with a nontrivial LP

problem, it is natural to use one of the great number of available LP computer programs to find

the solution. In any case, it is probably more important for economists to understand the basic

theory of LP than the details of the simplex method.

Indeed, the importance of LP extends even beyond its practical applications. In particular,

the duality theory of linear programming is a basis for understanding key theoretical properties

of more complicated optimization problems with an even larger range of interesting economic

applications.

17.1 A Graphical Approach
A general linear programming problem with only two decision variables involves maxi-
mizing or minimizing a linear function

z = c1x1 + c2x2 (objective function)

1 Joel Franklin, “Mathematical methods of economics”, The American Mathematical Monthly, 1983,
Vol. 90, no. 4.
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subject to m linear constraints

a11x1 + a12x2 ≤ b1

a21x1 + a22x2 ≤ b2

. . . . . . . . . . . . . . . . . .

am1x1 + am2x2 ≤ bm

(inequality constraints)

Usually, we also impose explicit nonnegativity constraints on x1 and x2:

x1 ≥ 0, x2 ≥ 0 (nonnegativity constraints)

Note that having a ≤ sign rather than ≥ in each inequality constraint is merely a convention
because any inequality of the alternative form ax1 + bx2 ≥ c is equivalent to the inequality
−ax1 − bx2 ≤ −c.

LP problems with only two decision variables can be solved by a simple graphical method.

E X A M P L E 1 A baker has 150 kilograms of flour, 22 kilos of sugar, and 27.5 kilos of butter with which
to make two types of cake. Suppose that making one dozen A cakes requires 3 kilos of flour,
1 kilo of sugar, and 1 kilo of butter, whereas making one dozen B cakes requires 6 kilos of
flour, 0.5 kilo of sugar, and 1 kilo of butter. Suppose that the profit from one dozen A cakes
is 20 and from one dozen B cakes is 30. How many dozen A cakes (x1) and how many
dozen B cakes (x2) will maximize the baker’s profit?

Solution: An output of x1 dozen A cakes plus x2 dozen B cakes needs a total of 3x1 + 6x2

kilos of flour. Because there are only 150 kilos of flour, the inequality

3x1 + 6x2 ≤ 150 (flour constraint)

must hold. Similarly, for sugar,

x1 + 0.5x2 ≤ 22 (sugar constraint)

and for butter,

x1 + x2 ≤ 27.5 (butter constraint)

Of course, x1 ≥ 0 and x2 ≥ 0. The profit obtained from producing x1 dozen A cakes and
x2 dozen B cakes is

z = 20x1 + 30x2

In short, the problem is to

max z = 20x1 + 30x2 subject to

⎧⎪⎨
⎪⎩

3x1 + 6x2 ≤ 150

x1 + 0.5x2 ≤ 22

x1 + x2 ≤ 27.5

x1 ≥ 0 , x2 ≥ 0 (i)

This problem will now be solved graphically.
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The output pair (x1, x2) is called feasible (or admissible) for problem (i) if all the five
constraints are satisfied. Look at the flour constraint, 3x1 + 6x2 ≤ 150. If we use all the
flour, then 3x1 +6x2 = 150, and we call the corresponding straight line the flour border. We
can find similar “borders” for the other two inputs. Figure 1 shows the three straight lines
that represent the flour border, the sugar border, and the butter border. In order for (x1, x2)

to be feasible, it has to be on or below (to the “south-west” of) each of the three borders
simultaneously. Because constraints x1 ≥ 0 and x2 ≥ 0 restrict (x1, x2) to the nonnegative
quadrant, the set of admissible pairs for problem (i) is the shaded set S shown in Fig. 2.
(This set S is a so-called convex polyhedron, and the five corner points O, A, B, C, and D

are called extreme points of the set S.)

20

30

40

10

10 20 30 40 50

x2

x1

flour border  3x1 � 6x2 � 150

sugar border  x1 � 0.5x2 � 22

butter border  x1 � x2 � 27.5 A B

C

D
O

S

20

30

40

10

10 20 30 40 50

x2

x1
L1 L2

Figure 1 Figure 2

A baker might think of finding the point in the feasible region that maximizes profit
by calculating 20x1 + 30x2 at each point of S and picking the highest value. In practice,
this is impossible because there are infinitely many feasible points. Let us argue this way
instead. Can the baker obtain a profit of 600? If so, the straight line 20x1 + 30x2 = 600
must have points in common with S. This line is represented in Fig. 2 by dashed line L1. It
does have points in common with S. (One of them is (x1, x2) = (0, 20), where no A cakes
are produced, but 20 dozen B cakes are, and the profit is 20 · 0 + 30 · 20 = 600.) Can the
baker do better? Yes. For instance, the straight line 20x1 + 30x2 = 601 also has points in
common with S and the profit is 601. In fact, the straight lines

20x1 + 30x2 = c (c is a constant)

are all parallel to 20x1 + 30x2 = 600. As c increases, the line moves out farther and farther
to the north-east. It is clear that the straight line that has the highest value of c and still
has a point in common with S is dashed line L2 in the figure. It touches set S at point B.
Note that B is at the intersection of the flour border and the butter border. Its coordinates,
therefore, satisfy the two equations: 3x1 + 6x2 = 150 and x1 + x2 = 27.5. Solving these
two simultaneous equations yields x1 = 5 and x2 = 22.5. So the baker maximizes profit
by baking 5 dozen A cakes and 22.5 dozen B cakes. This uses all the available flour and
butter, but 22 − 5 − 0.5 · 22.5 = 5.75 kilos of sugar are left over. The profit earned is
20x1 + 30x2 = 775.
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E X A M P L E 2 A firm is producing two goods, A and B. It has two factories that jointly produce the
two goods in the following quantities (per hour):

Factory 1 Factory 2

Good A 10 20

Good B 25 25

The firm receives an order for 300 units of A and 500 units of B. The costs of operating the
two factories are 10 000 and 8 000 per hour. Formulate the linear programming problem of
minimizing the total cost of meeting this order.

Solution: Let u1 and u2 be the number of hours that the two factories operate to produce
the order. Then 10u1 + 20u2 units of good A are produced, and 25u1 + 25u2 units of good
B. Because 300 units of A and 500 units of B are required, u1 and u2 must satisfy

10u1 + 20u2 ≥ 300

25u1 + 25u2 ≥ 500
(i)

In addition, of course, u1 ≥ 0 and u2 ≥ 0. The total costs of operating the two factories for
u1 and u2 hours, respectively, are 10 000 u1 + 8 000 u2. The problem is, therefore,

min 10 000 u1 + 8 000 u2 subject to

{
10u1 + 20u2 ≥ 300

25u1 + 25u2 ≥ 500
u1 ≥ 0 , u2 ≥ 0

The feasible set S is shown in Fig. 3. Because the inequalities in (i) are of the ≥ type and
all the coefficients of u1 and u2 are positive, the feasible set lies to the north-east. Figure 3
includes three of the level curves 10 000u1 + 8 000u2 = c, marked L1, L2, and L3. These
three correspond to the values 100 000, 160 000, and 240 000 of the cost level c. As c

increases, the level curve moves farther and farther to the north-east.

20

30

10

10 20 30

u2

u1

A

B

C

S

25u1 � 25u2 � 500

10u1 � 20u2 � 300
L1 L2 L3

Figure 3

The solution to the minimization problem is clearly the level curve that touches the feasible
set S at point A with coordinates (0, 20). Hence, the optimal solution is to operate factory
2 for 20 hours and not to use factory 1 at all, with minimum cost 160 000.
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The graphical method of solving linear programming problems works well when there
are only two decision variables. One can extend the method to the case with three decision
variables. Then the feasible set is a convex polyhedron in 3-space, and the level surfaces of
the objective function are planes in 3-space. However, it is not easy to visualize the solution
in such cases. For more than three decision variables, no graphical method is available.
(By using duality theory, however, one can solve LP problems graphically when either the
number of unknowns or the number of constraints is less than or equal to 3. See Section 17.5.)

Both the previous examples had optimal solutions. If the feasible region is unbounded,
however, a (finite) optimal solution might not exist, as is the case in Problem 4.

The General LP Problem
The general LP problem is that of maximizing or minimizing

z = c1x1 + · · · + cnxn (objective function) (1)

with c1, . . . , cn as given constants, subject to m constraints

a11x1 + · · · + a1nxn ≤ b1

a21x1 + · · · + a2nxn ≤ b2

. . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + · · · + amnxn ≤ bm

(inequality constraints) (2)

where the elements aij and bk are given constants. Usually, we assume explicitly that

x1 ≥ 0, . . . , xn ≥ 0 (nonnegativity constraints) (3)

There is no essential difference between a minimization problem and a maximization prob-
lem, because the optimal solution (x∗

1 , . . . , x∗
n) that minimizes (1) subject to (2) and (3)

also maximizes −z. An n-vector (x1, . . . , xn) that satisfies (2) and (3) is called feasible or
admissible.

O

P

Q

R

T

S

U

V

Figure 4

The set of feasible points is a so-called convex polyhedron in the nonnegative orthant of n-space. A
typical example in 3-space is shown in Fig. 4. The points O, P , Q, R, S, T , U , and V are called
extreme points. The 15 line segments OP , OT , OV , etc. joining two extreme points that are marked



Essential Math. for Econ. Analysis, 4th edn EME4_C17.TEX, 16 May 2012, 14:24 Page 628

628 C H A P T E R 1 7 / L I N E A R P R O G R A M M I N G

in Fig. 4 (including RT which is indicated with a dashed line because it is hidden behind the solid
polyhedron) are called edges. The flat portions of the boundary which are triangles or quadrilaterals
lying within three or four of these edges are called faces. In n-space, any convex polyhedron also
has extreme points, edges, and faces. If n and m are large, the number of extreme points can be
astronomical.2 Nevertheless, the simplex method can solve such problems. It relies on the fact that if
an LP problem has a solution, there must be a solution at an extreme point. Accordingly the method
provides a procedure for moving repeatedly between adjacent extreme points of the polyhedron,
along its edges, in such a way that the value of the objective function never decreases. The procedure
terminates when it reaches an extreme point where no move to an adjacent extreme point will increase
the value of the objective function. We have then reached the optimal solution.

P R O B L E M S F O R S E C T I O N 1 7 . 1

1. Use the graphical method to solve the following LP problems:

(a) max 3x1 + 4x2 s.t.

{
3x1 + 2x2 ≤ 6

x1 + 4x2 ≤ 4
x1 ≥ 0, x2 ≥ 0

(b) min 10u1 + 27u2 s.t.

{
u1 + 3u2 ≥ 11

2u1 + 5u2 ≥ 20
u1 ≥ 0, u2 ≥ 0

2. Use the graphical method to solve the following LP problems:

(a) max 2x1 + 5x2 s.t.

⎧⎪⎨
⎪⎩

−2x1 + 3x2 ≤ 6

7x1 − 2x2 ≤ 14

x1 + x2 ≤ 5

x1 ≥ 0, x2 ≥ 0

(b) max 8x1 + 9x2 s.t.

⎧⎪⎨
⎪⎩

x1 + 2x2 ≤ 8

2x1 + 3x2 ≤ 13

x1 + x2 ≤ 6

x1 ≥ 0, x2 ≥ 0

(c) max −2x1 + x2 s.t. 0 ≤ x1 − 3x2 ≤ 3, x1 ≥ 2, x1 ≥ 0, x2 ≥ 0

⊂SM⊃3. Set A consists of all (x1, x2) satisfying

−2x1 + x2 ≤ 2, x1 + 2x2 ≤ 8, x1 ≥ 0, x2 ≥ 0

Solve the following problems with A as the feasible set:

(a) max x2 (b) max x1 (c) max 3x1 + 2x2

(d) min 2x1 − 2x2 (e) max 2x1 + 4x2 (f) min −3x1 − 2x2

4. (a) Is there a solution to the following problem?

max x1 + x2 s.t.

{
−x1 + x2 ≤ −1

−x1 + 3x2 ≤ 3
x1 ≥ 0, x2 ≥ 0

(b) Is there a solution if the objective function is z = −x1 − x2?

2 The typical extreme point has n of the n + m inequality constraints holding with equality. Thus,
there can be as many as (n + m)!/n!m! extreme points. For example, if n = 50 and m = 60
(which is quite small by the standards of the problems that can be solved numerically), then there
can be as many as 110!/50!60! or more than 6 · 1031 extreme points.



Essential Math. for Econ. Analysis, 4th edn EME4_C17.TEX, 16 May 2012, 14:24 Page 629

S E C T I O N 1 7 . 2 / I N T R O D U C T I O N T O D U A L I T Y T H E O R Y 629

5. Replace the objective function in Example 1 by 20x1 + tx2. For what values of t will the
maximum profit still be at x1 = 5 and x2 = 22.5?

6. A firm produces two types of television set, an inexpensive type (A) and an expensive type (B).
The firm earns a profit of 700 from each TV of type A, and 1000 for each TV of type B. There
are three stages of the production process, each requiring its own specialized kind of labour.
Stage I requires 3 units of labour on each set of type A and 5 units of labour on each set of type
B. The total available quantity of labour for this stage is 3900. Stage II requires 1 unit of labour
on each set of type A and 3 units on each set of type B. The total labour available for this stage
is 2100 units. At stage III, 2 units of labour are needed for each type, and 2200 units of labour
are available. How many TV sets of each type should the firm produce to maximize its profit?

17.2 Introduction to Duality Theory
Confronted with an optimization problem involving scarce resources, an economist will
often ask: What happens to the optimal solution if the availability of the resources changes?
For linear programming problems, answers to questions like this are intimately related to
the so-called duality theory of LP. As a point of departure, let us again consider the baker’s
problem in Example 17.1.1.

E X A M P L E 1 Suppose the baker were to stumble across an extra kilo of flour that had been hidden
away in storage. How much would this extra kilo add to his maximum profit? How much
would an extra kilo of sugar contribute to profit? Or an extra kilo of butter?

Solution: If the baker finds an extra kilo of flour, the flour border would become 3x1 +
6x2 = 151. It is clear from Fig. 17.1.2 that the feasible set S will expand slightly and
point B will move slightly up along the butter border. The new optimal point B ′ will be
at the intersection of the lines 3x1 + 6x2 = 151 and x1 + x2 = 27.5. Solving these
equations gives x1 = 14/3 and x2 = 137/6. The objective function attains the value
20(14/3) + 30(137/6) = 2335/3 = 775 + 10/3. So profit rises by 10/3.

If the baker finds an extra kilo of sugar, the feasible set will expand, but the optimal point
is still at B. Recall that at the optimum in the original problem, the baker had 5.75 kilos of
unused sugar. There is no extra profit.

An extra kilo of butter would give a new optimal point at the intersection of the lines
3x1 + 6x2 = 150 and x1 + x2 = 28.5. Solving these equations gives x1 = 7 and x2 = 21.5
with 20x1 + 30x2 = 775 + 10. Profit rises by 10.

These results can be summarized as follows:

(a) An extra kilo of flour would increase the optimal z by 10/3.

(b) An extra kilo of sugar would increase the optimal z by 0.

(c) An extra kilo of butter would increase the optimal z by 10.

The three numbers u∗
1 = 10/3, u∗

2 = 0, and u∗
3 = 10 are related to the flour, sugar, and

butter constraints, respectively. They are the marginal profits from an extra kilo of each
ingredient. These numbers have many interesting properties we shall now explore.
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Suppose (x1, x2) is a feasible pair in the problem, so that the three constraints in Ex-
ample 17.1.1 are satisfied. Multiply the first constraint by 10/3, the second by 0, and the
third by 10. Because the multipliers are all ≥ 0, the inequalities are preserved. That is,

(10/3)(3x1 + 6x2) ≤ (10/3) · 150

0(x1 + 0.5x2) ≤ 0 · 22

10(x1 + x2) ≤ 10 · 27.5

Now add all these inequalities, using the obvious fact that if A ≤ B, C ≤ D, and E ≤ F ,
then A+C+E ≤ B+D+F . The result is 10x1+20x2+10x1+10x2 ≤ 10

3 ·150+10·27.5,
which reduces to

20x1 + 30x2 ≤ 775

Thus, using the “magic” numbers u∗
1, u∗

2, and u∗
3 defined above, we have proved that if

(x1, x2) is any feasible pair, then the objective function has to be less than or equal to 775.
Because x1 = 5 and x2 = 22.5 give z the value 775, we have in this way proved algebraically
that (5, 22.5) is a solution!

The Dual Problem

The pattern revealed in the last example turns up in all linear programming problems. In
fact, the numbers u∗

1, u∗
2, and u∗

3 are solutions to a new LP problem called the dual.
Recall the baker’s problem, now called the primal and denoted by (P). It was

max 20x1 + 30x2 subject to

⎧⎪⎨
⎪⎩

3x1 + 6x2 ≤ 150

x1 + 0.5x2 ≤ 22

x1 + x2 ≤ 27.5

x1 ≥ 0 , x2 ≥ 0 (P)

Suppose the baker gets tired of running the business. (After all, baking cakes this plain is
hardly exciting.) An entrant wants to take over and buy all the ingredients. The baker intends
to charge a price u1 for each kilo of flour, u2 for each kilo of sugar, and u3 for each kilo
of butter. Because one dozen A cakes requires 3 kilos of flour and 1 kilo each of sugar and
butter, the baker will charge 3u1 + u2 + u3 for the ingredients needed to produce a dozen A
cakes. The baker originally had a profit of 20 for each dozen A cakes, and he wants to earn
at least as much from these ingredients if he quits. Hence, the baker insists that the prices
(u1, u2, u3) must satisfy

3u1 + u2 + u3 ≥ 20

Otherwise, it would be more profitable to use the ingredients himself to produce A cakes.
If the baker also wants to earn at least as much as before for the ingredients needed to

produce a dozen B cakes, the requirement is

6u1 + 0.5u2 + u3 ≥ 30

Presumably, the entrant wants to buy the baker’s resources as inexpensively as possible.
The total cost of 150 kilos of flour, 22 kilos of sugar, and 27.5 kilos of butter is 150u1 +
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22u2 + 27.5u3. In order to pay as little as possible while having the baker accept the offer,
the entrant should suggest prices u1 ≥ 0, u2 ≥ 0, and u3 ≥ 0, that solve the LP problem

min 150u1 + 22u2 + 27.5u3 subject to

{
3u1 + u2 + u3 ≥ 20

6u1 + 0.5u2 + u3 ≥ 30
(D)

which is called the dual of the primal problem (P), and so labelled (D).
Suppose the baker lets the entrant take over the business and charges prices that solve

problem (D). Will the baker earn as much as before? It turns out that the answer is yes. The
solution to (D) is u∗

1 = 10/3, and u∗
2 = 0, and u∗

3 = 10, so the amount the baker gets for
selling the resources is 150u∗

1 + 22u∗
2 + 27.5u∗

3 = 775, which is precisely the maximum
value of the objective function in problem (P). The entrant pays for each ingredient exactly
the marginal profit for that ingredient which was calculated previously. In particular, the
price of sugar is zero, because the baker has more than he can use optimally.

The primal problem (P) and dual problem (D) turn out to be closely related. Let us
explain in general how to construct the dual of an LP problem.

The General Case
Consider the general LP problem

max c1x1 + · · · + cnxn subject to

⎧⎪⎨
⎪⎩

a11x1 + · · · + a1nxn ≤ b1

. . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + · · · + amnxn ≤ bm

(1)

with nonnegativity constraints x1 ≥ 0, . . . , xn ≥ 0. Its dual is the LP problem

min b1u1 + · · · + bmum subject to

⎧⎪⎨
⎪⎩

a11u1 + · · · + am1um ≥ c1

. . . . . . . . . . . . . . . . . . . . . . . .

a1nu1 + · · · + amnum ≥ cn

(2)

with nonnegativity constraints u1 ≥ 0, . . . , um ≥ 0. Note that problem (2) is constructed
using exactly the same coefficients c1, . . . , cn, a11, . . . , amn, and b1, . . . , bm as in (1).

In the primal problem (1), there are n variables x1, . . . , xn and m constraints (disreg-
arding the nonnegativity constraints). In the dual (2), there are m variables u1, . . . , um and
n constraints. Whereas the primal is a maximization problem, the dual is a minimization
problem. In both problems, all variables are nonnegative. There are m “less than or equal
to” constraints in the primal problem (1), but n “greater than or equal to” constraints in
the dual problem (2). The coefficients of the objective function in either problem are the
right-hand side elements of the constraints in the other problem. Finally, the two matrices
formed by the coefficients of the variables in the constraints in the primal and dual problems
are transposes of each other, because they take the form

A =

⎛
⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

⎞
⎟⎟⎠ and A′ =

⎛
⎜⎜⎝

a11 a21 . . . am1

a12 a22 . . . am2
...

...
...

a1n a2n . . . amn

⎞
⎟⎟⎠ (3)
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Check carefully that problem (D) really is the dual of problem (P) in the sense just explained.
Due to the symmetry between the two problems, we call each the dual of the other.

Matrix Formulation

Let us introduce the following column vectors (i.e. matrices with one column):

x =
⎛
⎝ x1

...

xn

⎞
⎠ , c =

⎛
⎝ c1

...

cn

⎞
⎠ , b =

⎛
⎝ b1

...

bm

⎞
⎠ , u =

⎛
⎝ u1

...

um

⎞
⎠ (4)

When y and z are vectors, y � z means that each component of y is less than or equal to the
corresponding component of z, with y � z as the reverse inequality.

Then the primal can be written as follows (with A and A′ given by (3)):

max c′x subject to Ax � b, x � 0 (5)

And the dual can be written as min b′u subject to A′u � c, u � 0. It is more convenient,
however, to write the dual in a slightly different way. Transposing A′u � c using the rules
in (15.5.2) yields u′A � c′, and moreover b′u = u′b. So the dual can be written as

min u′b subject to u′A � c′, u′ � 0 (6)

P R O B L E M S F O R S E C T I O N 1 7 . 2

⊂SM⊃1. Consider Problem 17.1.1(a).

(a) Replace the constraint 3x1 + 2x2 ≤ 6 by 3x1 + 2x2 ≤ 7. Find the new optimal solution and
compute the increase u∗

1 in the objective function.

(b) Replace the constraint x1 + 4x2 ≤ 4 by x1 + 4x2 ≤ 5. Find the new optimal solution and
compute the increase u∗

2 in the objective function.

(c) By the same argument as in Example 1, prove that if (x1, x2) is feasible in the original
problem, then the objective function can never be larger than 36/5.

2. Write down the dual to Problem 17.1.2 (b).

3. Write down the duals to Problems 17.1.1 (a) and (b).

4. (a) Use the graphical method to find the solution to the following LP problem:

max x1 + x2 s.t.

{
x1 + 2x2 ≤ 14

2x1 + x2 ≤ 13
x1 ≥ 0 , x2 ≥ 0

(b) Write down the dual and find its solution.
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17.3 The Duality Theorem
This section presents the main results relating the solution of an LP problem to that of its
dual. We begin by considering the baker’s problem yet again.

E X A M P L E 1 Consider problems (P) and (D) in Section 17.2. Suppose that (x1, x2) is an arbitrary
feasible pair in (P), which means that x1 ≥ 0, x2 ≥ 0, and the three ≤ inequalities in
(P) are all satisfied. Let (u1, u2, u3) be an arbitrary feasible triple in (D). Multiply the ≤
inequalities in (P) by the nonnegative numbers u1, u2, and u3, respectively, and then add
the inequalities. The result is the new inequality

(3x1 + 6x2)u1 + (x1 + 0.5x2)u2 + (x1 + x2)u3 ≤ 150u1 + 22u2 + 27.5u3

Rearranging the terms on the left-hand side yields

(3u1 + u2 + u3)x1 + (6u1 + 0.5u2 + u3)x2 ≤ 150u1 + 22u2 + 27.5u3 (i)

Similarly, we multiply the ≥ inequalities in (D) by the nonnegative numbers x1 and x2,
respectively, and add the results. This gives

(3u1 + u2 + u3)x1 + (6u1 + 0.5u2 + u3)x2 ≥ 20x1 + 30x2 (ii)

From (i) and (ii) together, it follows that

150u1 + 22u2 + 27.5u3 ≥ 20x1 + 30x2 (iii)

for all feasible (x1, x2) in problem (P) and for all feasible (u1, u2, u3) in problem (D). Thus,
the objective function in the dual problem is always greater than or equal to the objective
function of the primal problem, whatever feasible (x1, x2) and (u1, u2, u3) are chosen.

The inequality (iii) is valid for the feasible pair (x1, x2) = (5, 22.5) in particular. For
each feasible triple (u1, u2, u3), we therefore obtain 150u1 + 22u2 + 27.5u3 ≥ 20 · 5 +
30 · 22.5 = 775. It follows that if we can find a feasible triple (u∗

1, u
∗
2, u

∗
3) for problem

(D) such that 150u∗
1 + 22u∗

2 + 27.5u∗
3 = 775, then (u∗

1, u
∗
2, u

∗
3) must solve problem (D),

because no lower value of the objective function is obtainable. In Section 17.2, we saw that
for (u∗

1, u
∗
2, u

∗
3) = (10/3, 0, 10), the objective function in the dual did have the value 775.

Hence, (10/3, 0, 10) solves the dual problem.

Our analysis of this example illustrates two significant general results in LP theory. Here
is the first:

T H E O R E M 1 7 . 3 . 1

If (x1, . . . , xn) is feasible in the primal problem (17.2.1) and (u1, . . . , um) is
feasible in the dual problem (17.2.2), then

b1u1 + · · · + bmum ≥ c1x1 + · · · + cnxn (1)

So the dual objective function has a value that is always at least as large as that
of the primal.
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Proof: Multiply the m inequalities in (17.2.1) by the nonnegative numbers u1, . . . , um, then add.
Also, multiply the n inequalities in (17.2.2) by the nonnegative numbers x1, . . . , xn, then add. These
two operations yield the two inequalities

(a11x1 + · · · + a1nxn)u1 + · · · + (am1x1 + · · · + amnxn)um ≤ b1u1 + · · · + bmum

(a11u1 + · · · + am1um)x1 + · · · + (a1nu1 + · · · + amnum)xn ≥ c1x1 + · · · + cnxn

By rearranging the terms on the left-hand side of each inequality, we see that each is equal to the

double sum
∑m

i=1

∑n
j=1 aijuixj . So (1) follows immediately.

From Theorem 17.3.1 we can derive a second significant result:

T H E O R E M 1 7 . 3 . 2

Suppose that (x∗
1 , . . . , x∗

n) and (u∗
1, . . . , u

∗
m) are feasible in problems (17.2.1) and

(17.2.2), respectively, and that

c1x
∗
1 + · · · + cnx

∗
n = b1u

∗
1 + · · · + bmu∗

m (2)

Then (x∗
1 , . . . , x∗

n) solves the primal problem (17.2.1) and (u∗
1, . . . , u

∗
m) solves

dual problem (17.2.2).

Proof: Let (x1, . . . , xn) be an arbitrary feasible n-vector for problem (17.2.1). Using (1) with
u1 = u∗

1, . . . , um = u∗
m, as well as (2), yields

c1x1 + · · · + cnxn ≤ b1u
∗
1 + · · · + bmu∗

m = c1x
∗
1 + · · · + cnx

∗
n

This proves that (x∗
1 , . . . , x∗

n) solves (17.2.1).
Suppose that (u1, . . . , um) is feasible for problem (17.2.2). Then (1) and (2) together imply that

b1u1 + · · · + bmum ≥ c1x
∗
1 + · · · + cnx

∗
n = b1u

∗
1 + · · · + bmu∗

m

This proves that (u∗
1, . . . , u

∗
m) solves (17.2.2).

Theorem 17.3.2 shows that if we are able to find feasible solutions for problems (17.2.1)
and (17.2.2) that give the same value to the relevant objective function in each of the two
problems, then these feasible solutions are, in fact, optimal solutions.

The most important result in duality theory is the following:

T H E O R E M 1 7 . 3 . 3 ( T H E D U A L I T Y T H E O R E M )

Suppose the primal problem (17.2.1) has a (finite) optimal solution. Then the dual
problem (17.2.2) also has a (finite) optimal solution, and the corresponding values
of the objective functions are equal. If the primal has no bounded optimum, then
the dual has no feasible solution. Symmetrically, if the primal has no feasible
solution, then the dual has no bounded optimum.
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The proofs of Theorems 17.3.1 and 17.3.2 were very simple. It is much more difficult to
prove the first statement in Theorem 17.3.3 concerning the existence of a solution to the
dual, and we shall not attempt to provide a proof here. The last statement in Theorem 17.3.3,
however, follows readily from inequality (1). For if (u1, . . . , um) is any feasible solution to
the dual problem, then b1u1 + · · · + bmum is a finite number greater than or equal to any
number c1x1 + · · · + cnxn when (x1, . . . , xn) is feasible in the primal. This puts an upper
bound on the possible values of c1x1 + · · · + cnxn.

NOTE 1 An instructive exercise is to formulate and prove Theorems 17.3.1 and 17.3.2
using matrix algebra. Let us do so for Theorem 17.3.1. Suppose x is feasible in (17.2.5) and
u is feasible in (17.2.6). Then u′b � u′(Ax) = (u′A)x � c′x. Note carefully how these
inequalities correspond to those we established in the earlier proof of Theorem 17.3.1.

P R O B L E M S F O R S E C T I O N 1 7 . 3

⊂SM⊃1. (a) Solve the following problem by a graphical argument:

max 2x + 7y subject to

{
4x + 5y ≤ 20

3x + 7y ≤ 21
x ≥ 0 , y ≥ 0

(b) Write down the dual and solve it by a graphical argument.

(c) Are the values of the objective functions equal? (If not, then according to Theorem 17.3.3,
you have made a mistake.)

2. Write down the dual to the problem in Example 17.1.2 and solve it. Check that the optimal
values of the objective functions are equal.

⊂SM⊃3. (a) A firm produces small and medium television sets. The profit is 400 for each small and
500 for each medium television set. Each television has to be processed on three different
assembly lines. Each small television requires respectively 2, 1, and 1 hour on lines 1, 2,
and 3. The corresponding numbers for the medium television sets are 1, 4, and 2. Suppose
lines 1 and 2 both have a capacity of at most 16 hours per day, and line 3 has a capacity of
at most 11 hours per day. Let x1 and x2 denote the number of small and medium television
sets that are produced per day. Show that in order to maximize profits per day, one must
solve the following problem:

max 400x1 + 500x2 subject to

⎧⎪⎨
⎪⎩

2x1 + x2 ≤ 16

x1 + 4x2 ≤ 16

x1 + 2x2 ≤ 11

x1 ≥ 0 , x2 ≥ 0

(b) Solve this problem graphically.

(c) Suppose the firm could increase its capacity by 1 hour a day on just one of its assemply
lines. Which line should have its capacity increased?
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17.4 A General Economic Interpretation

This section gives an economic interpretation of the general LP problem (17.2.1) and its
dual (17.2.2). Think of a firm that produces one or more different kinds of output using
m different resources as inputs. There are n different activities (or processes) involved in
the production process. A typical activity is characterized by the fact that running it at unit
level requires a certain amount of each resource. If aij is the number of units of resource i

that are needed to run activity j at unit level, the vector with components a1j , a2j , . . . , amj

expresses the m different total resource requirements for running activity j at unit level. If
we run the activities at levels x1, . . . , xn, the total resource requirement can be expressed as
the column vector

x1

⎛
⎝ a11

...

am1

⎞
⎠ + · · · + xn

⎛
⎝ a1n

...

amn

⎞
⎠

If the available resources are b1, . . . , bm, then the feasible activity levels are those that satisfy
the m constraints in (17.2.1). The nonnegativity constraints reflect the fact that we cannot
run the activities at negative levels.

Each activity brings a certain “reward”. Let cj denote the reward (or value) earned by
running activity j at unit level. The total reward from running the n activities at levels
x1, . . . , xn is then c1x1 +· · ·+ cnxn. So the firm faces the problem of solving the following
LP problem: Find those levels for the n activities that maximize the total reward, subject to
the given resource constraints.

The baker’s problem in Example 17.1.1 provides an illustration. The two activities are
baking the two different types of cake, and there are three resources—flour, sugar, and butter.

Let us turn to the dual problem (17.2.2). In order to remain in business, the firm has
to use some resources. Each resource, therefore, has a value or price. Let uj be the price
associated with one unit of resource j . Rather than think of uj as a market price for resource
j , we should think of it as measuring the relative contribution that one unit of resource j

makes to the total economic reward. Because these are not real market prices, they are often
called shadow prices.

Because a1j , a2j , . . . , amj are the quantities of each of the m resources needed to run
activity j at unit level, a1j u1 + a2j u2 + · · · + amjum is the total (shadow) cost of running
activity j at unit level. Because cj is the reward earned by running activity j at unit level,
the difference

cj − (a1j u1 + a2j u2 + · · · + amjum)

can be regarded as the (shadow) profit from running activity j at unit level. Note that the j th
constraint in the dual problem (17.2.2) says that the (shadow) profit from running activity
j at unit level is ≤ 0.

The objective function Z = b1u1 + · · · + bmum in the dual LP problem measures the
(shadow) value of the initial stock of all the resources. The dual problem is, therefore:
Among all choices of nonnegative shadow prices u1, . . . , um such that the profit from running
each activity at unit level is ≤ 0, find those prices which together minimize the (shadow)
value of the initial resources.
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The Optimal Dual Variables as Shadow Prices

Consider again the primal problem (17.2.1). What happens to the optimal value of the
objective function if the numbers b1, . . . , bm change? If the changes �b1, . . . , �bm are
positive, then the feasible set increases and the new optimal value of the objective function
cannot be smaller. (Usually it increases.) The following analysis also applies when some or
all the changes �b1, . . . , �bm are negative.

Suppose (x∗
1 , . . . , x∗

n) and (x∗
1 +�x1, . . . , x

∗
n +�xn) are optimal solutions to the primal

problem when the right-hand sides of the constraints are respectively (b1, . . . , bm) and
(b1 +�b1, . . . , bm +�bm). Typically, if �b1, . . . , �bm are all sufficiently small, the duals
of the two problems have the same optimal solution u∗

1, . . . , u
∗
m. Then, according to Theorem

17.3.3, one has

c1x
∗
1 + · · · + cnx

∗
n = b1u

∗
1 + · · · + bmu∗

m

c1(x
∗
1 + �x1) + · · · + cn(x

∗
n + �xn) = (b1 + �b1)u

∗
1 + · · · + (bm + �bm)u∗

m

Hence, by subtraction,

c1�x1 + · · · + cn�xn = u∗
1�b1 + · · · + u∗

m�bm

Here the left-hand side is the change we obtain in the objective function in (1) when b1,
. . . , bm are changed by �b1, . . . , �bm, respectively. Denoting this change in z by �z∗, we
obtain

�z∗ = u∗
1�b1 + · · · + u∗

m�bm (1)

NOTE 1 The assumption underlying (1) is that the numbers bj do not change enough to
cause the optimal dual variables to change. If �bj = 1, while all �bi = 0 for i �= j , then
�z∗ = u∗

j . This accords with the results in Example 17.2.1.

P R O B L E M S F O R S E C T I O N 1 7 . 4

1. Consider Problem 17.3.1. We found that the optimal solution of this problem was x∗ = 0 and
y∗ = 3, with z∗ = 2x∗ + 7y∗ = 21. The optimal solution of the dual was u∗

1 = 0 and u∗
2 = 1.

Suppose we change 20 to 20.1 and 21 to 20.8. What is the corresponding change in the objective
function?

⊂SM⊃2. (a) A firm produces two goods A and B. The firm earns a profit of 300 from each unit of good
A, and 200 from each unit of B. There are three stages of the production process. Good A
requires 6 hours in production, then 4 hours in assembly, and finally 5 hours of packing.
The corresponding numbers for B are 3, 6, and 5, respectively. The total number of hours
available for the three stages are 54, 48, and 50, respectively. Formulate and solve the LP
problem of maximizing profits subject to the given constraints.

(b) Write down and solve the dual problem.

(c) By how much would the optimal profit increase if the firm gets 2 hours more preparation
time and 1 hour more packing time?
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17.5 Complementary Slackness
Consider again the baker’s problem (P) in Section 17.2 and its dual (D). The solution to
(P) was x∗

1 = 5 and x∗
2 = 22.5, with the first and the third inequalities both satisfied

with equality. The solution to the dual was u∗
1 = 10/3, u∗

2 = 0, and u∗
3 = 10, with both

inequalities in the dual satisfied with equality. Thus, in this example

x∗
1 > 0, x∗

2 > 0 	⇒
{

the first and second inequalities
in the dual are satisfied with equality

u∗
1 > 0, u∗

3 > 0 	⇒
{

the first and third inequalities
in the primal are satisfied with equality

We interpret the second implication this way: Because the shadow prices of flour and butter
are positive, the optimal solution requires all the available flour and butter to be used, but
not all the available sugar, so its shadow price is zero—it is not a scarce resource.

Implications like this hold more generally. Indeed, consider the problem

max c1x1 + c2x2 subject to

⎧⎪⎨
⎪⎩

a11x1 + a12x2 ≤ b1

a21x1 + a22x2 ≤ b2

a31x1 + a32x2 ≤ b3

x1 ≥ 0, x2 ≥ 0 (i)

and its dual

min b1u1 + b2u2 + b3u3 subject to

{
a11u1 + a21u2 + a31u3 ≥ c1

a12u1 + a22u2 + a32u3 ≥ c2
(ii)

with u1, u2, and u3 ≥ 0. Suppose (x∗
1 , x∗

2 ) solves (i) and (u∗
1, u

∗
2, u

∗
3) solves (ii). Then

(iii)

a11x
∗
1 + a12x

∗
2 ≤ b1

a21x
∗
1 + a22x

∗
2 ≤ b2

a31x
∗
1 + a32x

∗
2 ≤ b3

and (iv)
a11u

∗
1 + a21u

∗
2 + a31u

∗
3 ≥ c1

a12u
∗
1 + a22u

∗
2 + a32u

∗
3 ≥ c2

Multiply the three inequalities in (iii) by the three nonnegative numbers u∗
1, u∗

2, and u∗
3,

respectively. Then add the results. This yields the inequality

(a11x
∗
1 +a12x

∗
2 )u∗

1 + (a21x
∗
1 +a22x

∗
2 )u∗

2 + (a31x
∗
1 +a32x

∗
2 )u∗

3 ≤ b1u
∗
1 +b2u

∗
2 +b3u

∗
3 (v)

Multiply the two inequalities in (iv) by x∗
1 and x∗

2 , respectively, and then add. This gives

(a11u
∗
1 + a21u

∗
2 + a31u

∗
3)x

∗
1 + (a12u

∗
1 + a22u

∗
2 + a32u

∗
3)x

∗
2 ≥ c1x

∗
1 + c2x

∗
2 (vi)

But the left-hand sides of the inequalities (v) and (vi) are rearrangements of each other.
Moreover, by the duality theorem of LP (Theorem 17.3.3), their right-hand sides are the
equal values of the primal and dual. Hence, both inequalities in (v) and (vi) can be replaced
by equalities. In particular, we can rearrange the equality version of (v) to obtain

(a11x
∗
1 + a12x

∗
2 − b1)u

∗
1 + (a21x

∗
1 + a22x

∗
2 − b2)u

∗
2 + (a31x

∗
1 + a32x

∗
2 − b3)u

∗
3 = 0
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Because (x∗
1 , x∗

2 ) is feasible, (iii) implies that each term in parentheses is ≤ 0. But each
ui ≥ 0, so the left-hand side is the sum of three ≤ 0 terms. If any is < 0, so is their sum.
But the sum is 0, so each term is 0. Thus,

(aj1x
∗
1 + aj2x

∗
2 − bj )u

∗
j = 0, j = 1, 2, 3

We conclude that

aj1x
∗
1 + aj2x

∗
2 ≤ bj , with aj1x

∗
1 + aj2x

∗
2 = bj if u∗

j > 0, j = 1, 2, 3

Using the fact that ≥ in (vi) can be replaced by =, and reasoning in exactly the same way as
above, we also get

a1iu
∗
1 + a2iu

∗
2 + a3iu

∗
3 ≥ ci , with a1iu

∗
1 + a2iu

∗
2 + a3iu

∗
3 = ci if x∗

i > 0, i = 1, 2

These last two sets of inequalities (or equalities) are called complementary slackness
conditions. The arguments used to show their necessity extend in a straightforward way
to the general case. Furthermore, the same complementary slackness conditions are also
sufficient for optimality. Here is a general statement and proof:

T H E O R E M 1 7 . 5 . 1 ( C O M P L E M E N T A R Y S L A C K N E S S )

Suppose that the primal problem (17.2.1) has an optimal solution x∗ = (x∗
1 , . . . , x∗

n),
whereas the dual (17.2.2) has an optimal solution u∗ = (u∗

1, . . . , u∗
m). Then for

i = 1, . . . , n, and j = 1, . . . , m,

a1iu
∗
1 + · · · + amiu

∗
m ≥ ci , with a1iu

∗
1 + · · · + amiu

∗
m = ci if x∗

i > 0 (1)

aj1x
∗
1 + · · · + ajnx

∗
n ≤ bj , with aj1x

∗
1 + · · · + ajnx

∗
n = bj if u∗

j > 0 (2)

Conversely, if x∗ and u∗ have all their components nonnegative and satisfy (1)
and (2), then x∗ and u∗ solve the primal problem (17.2.1) and the dual (17.2.2),
respectively.

Proof: Suppose x∗ solves (17.2.1) and u∗ solves (17.2.2). Using the matrix notation of (17.2.5)
and (17.2.6), it follows that

Ax∗ � b and (u∗)′A � c′ (i)

Multiplying the first inequality in (i) on the left by (u∗)′ � 0 and the second inequality on the right
by x∗ � 0 yields

(u∗)′Ax∗ � (u∗)′b and (u∗)′Ax∗ � c′x∗ (ii)

According to Theorem 17.3.3, (u∗)′b = c′x∗. So both inequalities in (ii) must be equalities. They
can be written as

(u∗)′(Ax∗ − b) = 0 and ((u∗)′A − c′)x∗ = 0 (iii)

But these two equations are equivalent to the two equalities∑m

j=1
u∗

j (aj1x
∗
1 + · · · + ajnx

∗
n − bj ) = 0 (iv)∑n

i=1
(a1iu

∗
1 + · · · + amiu

∗
m − ci)x

∗
i = 0 (v)
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For j = 1, . . . , m one has both u∗
j ≥ 0 and aj1x

∗
1 + · · · + ajnx

∗
n − bj ≤ 0. So each term in the

sum (iv) is ≤ 0. If any term is negative, so is their sum; but the sum of all m terms is 0, so each term
in (iv) must be 0 as well. Therefore,

u∗
j (aj1x

∗
1 + · · · + ajnx

∗
n − bj ) = 0, j = 1, . . . , m (vi)

Now (2) follows immediately. Property (1) is proved in the same way by noting how (v) implies that

x∗
i (a1iu

∗
1 + · · · + amiu

∗
m − ci) = 0, i = 1, . . . , n (vii)

Suppose on the other hand that x∗ and u∗ have all their components nonnegative and satisfy (1)
and (2) respectively. It follows immediately that (vi) and (vii) are satisfied. So summing over j and
i, respectively, we obtain (iv) and (v). These equations imply that

∑m
j=1 bju

∗
j = ∑m

j=1

∑n
i=1 ajix

∗
i u∗

j

and also
∑n

i=1 cix
∗
i = ∑n

i=1

∑m
j=1 ajiu

∗
j x∗

i . Because the two double sums are equal,
∑m

j=1 bju
∗
j =∑n

i=1 cix
∗
i . So according to Theorem 17.3.2, x∗ solves problem (1) and u∗ solves the dual.

NOTE 1 Using the economic interpretations we gave in Section 17.4, conditions (1) and
(2) can be interpreted as follows:

If the optimal solution of the primal problem implies that activity i is in operation (x∗
i > 0),

then the (shadow) profit from running that activity at unit level is 0.

If the shadow price of resource j is positive (u∗
j > 0), then all the available stock of

resource j must be used in any optimum.

How Complementary Slackness Can Help Solve LP Problems

If the solution to either the primal or the dual problem is known, then the complementary
slackness conditions can help find the solution to the other problem by determining which
constraints are slack, and so which hold with equality. Let us look at an example.

E X A M P L E 1 Write down the dual of the following LP problem and solve it by a graphical argument.

max 3x1+4x2+6x3 subject to

{
3x1 + x2 + x3 ≤ 2

x1 + 2x2 + 6x3 ≤ 1
, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 (i)

Then use complementary slackness to solve (i).

Solution: The dual problem is

min 2u1 + u2 subject to

⎧⎪⎨
⎪⎩

3u1 + u2 ≥ 3

u1 + 2u2 ≥ 4

u1 + 6u2 ≥ 6

, u1 ≥ 0, u2 ≥ 0 (ii)

Using the graphical solution technique shown in Example 17.1.2, we find the solution
u∗

1 = 2/5, and u∗
2 = 9/5. Then 3u∗

1 + u∗
2 = 3, and u∗

1 + 2u∗
2 = 4, and u∗

1 + 6u∗
2 > 6.

What do we know about the solution (x∗
1 , x∗

2 , x∗
3 ) to (i)? According to (2), because u∗

1 > 0
and u∗

2 > 0, both inequalities in (i) are satisfied with equality. So

3x∗
1 + x∗

2 + x∗
3 = 2 and x∗

1 + 2x∗
2 + 6x∗

3 = 1 (iii)
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Next, since u∗
1 + 6u∗

2 > 6, the complementary slackness condition (1) implies that x∗
3 = 0.

Letting x∗
3 = 0 in (iii) and solving for x∗

1 and x∗
2 gives

x∗
1 = 3/5, x∗

2 = 1/5, x∗
3 = 0

This is the solution to problem (i). Note that the optimal values of the objective functions
in the two problems are indeed equal: 2u∗

1 + u∗
2 = 13/5 and 3x∗

1 + 4x∗
2 + 6x∗

3 = 13/5, just
as they should be according to the duality theorem.

The Kuhn–Tucker Theorem Applied to Linear Programmes

The general linear programming problem

max c1x1 + · · · + cnxn s.t.

⎧⎨
⎩

a11x1 + · · · + a1nxn ≤ b1

. . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + · · · + amnxn ≤ bm

, x1 ≥ 0, . . . , xn ≥ 0 (3)

is obviously a special case of the general nonlinear programming problem

max f (x1, . . . , xn) s.t.

⎧⎨
⎩

g1(x1, . . . , xn) ≤ c1

. . . . . . . . . . . . . . . . . .

gm(x1, . . . , xn) ≤ cm

, x1 ≥ 0, . . . , xn ≥ 0 (4)

that was studied in Section 14.9.
Let us see what form the conditions (14.10.3) and (14.10.4) take in the linear case.
If we let λj = u∗

j for j = 1, . . . , m, the conditions become

ci − (a1iu
∗
1 + · · · + amiu

∗
m) ≤ 0 (= 0 if x∗

i > 0) , i = 1, . . . , n (5)

u∗
j ≥ 0 (= 0 if aj1x

∗
1 + · · · + ajnx

∗
n < bj ) , j = 1, . . . , m (6)

When combined with the requirement that x∗ satisfy the constraints in problem (3), these
conditions are precisely the complementary slackness conditions in Theorem 17.5.1.

Duality when Some Constraints Are Equalities

Suppose that one of the m constraints in the primal problem is the equality

ai1x1 + · · · + ainxn = bi (∗)

rather than the corresponding inequality in (17.2.1). In order to put the problem into the
standard form, we can replace (∗) by the two inequalities

ai1x1 + · · · + ainxn ≤ bi and − ai1x1 − · · · − ainxn ≤ −bi (∗∗)
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Constraint (∗) thus gives rise to two dual variables u′
i and u′′

i . For each j = 1, . . . , n the
term aijui in the sum on the left-hand side of the constraint

∑m
k=1 akjuk ≥ cj in (17.2.2) gets

replaced by aiju
′
i − aiju

′′
i . Therefore, we can replace the two variables u′

i and u′′
i with the

single variable ui = u′
i − u′′

i , but then there is no restriction on the sign of ui . We see that if
the ith constraint in the primal is an equality, then the ith dual variable has an unrestricted
sign. This is consistent with the economic interpretation we have given. If we are forced to
use all of resource i, then it is not surprising that the resource may have a negative shadow
price—it may be something that is harmful in excess. For instance, if the baker of Example
17.1.1 was forced to include all the stock of sugar in the cakes, the best point in Fig. 17.1.2
would be C, not B. Some profit would be lost.

From the symmetry between the primal and the dual, we realize now that if one of the
variables in the primal has an unrestricted sign, then the corresponding constraint in the
dual is an equality.

P R O B L E M S F O R S E C T I O N 1 7 . 5

1. Consider Problem 17.3.1. The solution of the primal was x∗ = 0, and y∗ = 3, with u∗
1 = 0,

u∗
2 = 1 as the solution of the dual. Verify that (1) and (2) are satisfied in this case.

2. (a) Solve the following problem graphically:

min y1 + 2y2 s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y1 + 6y2 ≥ 15

y1 + y2 ≥ 5

−y1 + y2 ≥ −5

y1 − 2y2 ≥ −20

y1 ≥ 0 , y2 ≥ 0

(b) Write down the dual problem and solve it.

(c) What happens to the optimal dual variables if the constraint y1 + 6y2 ≥ 15 is changed to
y1 + 6y2 ≥ 15.1?

⊂SM⊃3. A firm produces two commodities A and B. The firm has three factories that jointly produce
both commodities in the amounts per hour given in the following table:

Factory 1 Factory 2 Factory 3

Commodity A 10 20 20

Commodity B 20 10 20

The firm receives an order for 300 units of A and 500 units of B. The costs per hour of running
factories 1, 2, and 3 are respectively 10 000, 8000, and 11 000.

(a) Let y1, y2, and y3, respectively, denote the number of hours for which the three factories
are used. Write down the linear programming problem of minimizing the costs of fulfilling
the order.

(b) Write down the dual and solve it. Then find the solution of the problem in part (a).

(c) By how much will the minimum cost of production increase if the cost per hour in factory
1 increases by 100?
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HARDER PROBLEM

4. Consider the LP problem

max 3x1 + 2x2 s.t.

⎧⎪⎨
⎪⎩

x1 + x2 ≤ 3

2x1 + x2 − x3 ≤ 1

x1 + 2x2 − 2x3 ≤ 1

x1 ≥ 0 , x2 ≥ 0 , x3 ≥ 0

(a) Suppose x3 is a fixed number. Solve the problem if x3 = 0 and if x3 = 3.

(b) Formulate and solve the problem for any fixed value of x3 in [0, ∞). The maximal value
of 3x1 + 2x2 becomes a function of x3. Find this function and maximize it.

(c) Do the results in part (b) say anything about the solution to the original problem, in which
x3 can also be chosen?

R E V I E W P R O B L E M S F O R C H A P T E R 1 7

1. (a) Solve the LP problem

max x + 2y subject to

⎧⎪⎨
⎪⎩

x + y ≤ 4

−x + y ≤ 1

2x − y ≤ 3

x ≥ 0, y ≥ 0

(b) Formulate and solve the dual problem.

⊂SM⊃2. Consider the LP problem

min 16y1 + 6y2 − 8y3 − 15y4 s.t.

{
−y1 + y2 − 2y3 − 4y4 ≥ −1

2y1 − 2y2 − y3 − 5y4 ≥ 1

where yi ≥ 0, i = 1, 2, 3, 4.

(a) Write down the dual problem and solve it.

(b) Find the solution to the primal problem.

(c) If the first constraint in the primal is changed to −y1 + y2 − 2y3 − 4y4 ≥ k, for what values
of k will the solution of the dual occur at the same point as for k = −1?

3. (a) Solve the LP problem: min 5x + y subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4x + y ≥ 4

2x + y ≥ 3

3x + 2y ≥ 2

−x + 2y ≥ −2

, x ≥ 0, y ≥ 0

(b) Formulate the dual problem and solve it.



Essential Math. for Econ. Analysis, 4th edn EME4_C17.TEX, 16 May 2012, 14:24 Page 644

644 C H A P T E R 1 7 / L I N E A R P R O G R A M M I N G

⊂SM⊃4. A firm produces x1 cars and x2 trucks per month. Suppose each car requires 0.04% of the
capacity per month in the body division, 0.025% of the capacity per month in the motor division,
and 0.05% of the capacity per month on the specialized car assembly line. The corresponding
numbers for trucks are 0.03% in the body division, 0.05% in the motor division, and 0.08% on
the specialized truck assembly line. The firm can therefore deliver x1 cars and x2 trucks per
month provided the following inequalities are satisfied:

0.04x1 + 0.03x2 ≤ 100

0.025x1 + 0.05x2 ≤ 100

0.05x1 ≤ 100

0.08x2 ≤ 100

(∗)

with x1 ≥ 0, x2 ≥ 0. Suppose the profit per car is 500 −ax1, where a is a nonnegative constant,
while the profit per truck is 250. The firm thus seeks to solve the problem

max (500 − ax1)x1 + 250x2 subject to (∗)

(a) Solve the problem graphically if a = 0.

(b) Write down conditions (14.10.3) and (14.10.4) for the problem when a ≥ 0.

(c) Use the conditions obtained in (b) to examine for which values of a ≥ 0 the solution is the
same as for a = 0.

⊂SM⊃5. The production of three goods requires using two machines. Machine 1 can be utilized for b1

hours, while machine 2 can be utilized for b2 hours. The time spent for the production of one
unit of each good is given by the following table:

Machine 1 Machine 2

Good 1 3 2

Good 2 1 2

Good 3 4 1

The profits per unit produced of the three goods are 6, 3, and 4, respectively.

(a) Write down the linear programming problem this leads to.

(b) Show that the dual is

min b1y1 + b2y2 s.t.

⎧⎪⎨
⎪⎩

3y1 + 2y2 ≥ 6

y1 + 2y2 ≥ 3

4y1 + y2 ≥ 4

y1 ≥ 0, y2 ≥ 0

Solve this problem geometrically for b1 = b2 = 100.

(c) Solve the problem in (a) when b1 = b2 = 100.

(d) If machine 1 increases its capacity to 101, while b2 = 100, what is the new maximal profit?

(e) The maximum value of the profit in problem (a) is a function F of b1 and b2. What is the
degree of homogeneity of the function F ?
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Let no one ignorant of geometry enter this door.

—Entrance to Plato’s Academy

This appendix is to remind the reader about some simple formulas and results from geometry
that are occasionally useful for economists, and sometimes used in this book.

Triangles

Area:  A � 12 ghh h

g g

Circles

Area:  A � πr2

Circumference:  C � 2πr

r

r

x

Area:  A � 12 xr
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Rectangular Box

Volume:  V � abc

Surface Area:  S � 2ab � 2ac � 2bc
b

c
a

Sphere (Ball)

r

Surface Area:  S � 4πr2

Volume:  V � 43 πr3

Cone

r

h
Surface Area:  S � πr2 � πr�h2 � r2

Volume:  V � 13 πr2h

Pyramid

a
a

h

Surface Area:  S � a2 � a�a2 � 4h2

Volume:  V � 13 a2h
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Angles

u � v

u � v

Parallel

u

v

u v

Proportions

t1�s1 � t2�s2

θ θ
s1

t1

t2

s2

Sum of Angles in a Triangle

u1 � u2 � u3 � 180�

u1 u1u2

u3

u3

Pythagoras’s Theorem

A

b

B

a

C

c

�C � 90�   ⇐⇒   a2 � b2 � c2

The Greek Alphabet

A α alpha H η eta N ν nu T τ tau
B β beta � θ ϑ theta 
 ξ xi ϒ υ upsilon
� γ gamma I ι iota O o omicron � φ ϕ phi
� δ delta K κ kappa � π pi X χ chi
E ε ε epsilon � λ lambda P ρ � rho  ψ psi
Z ζ zeta M μ mu # σ sigma % ω omega
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A N S W E R S T O T H E
P R O B L E M S

Chapter 1
1.1

1. (a) True. (b) False. −5 is smaller than −3, so on the number line it is to the left of −3. (c) False. −13 is an
integer, but not a natural number. (d) True. Every natural number is rational. For example 5 = 5/1. (e) False,
since 3.1415 = 31415/10000, the quotient of two integers. (Note that 3.1415 is only an approximation to the
irrational number π ). (f) False. Counterexample:

√
2 + (−√

2) = 0. (g) True. (h) True.

2. There is obviously no finite sequence of digits that repeats itself indefinitely, because one extra zero is added between
each successive pair of ones: 1.01001000100001000001 . . .

1.2
1. (a) 103 = 10 · 10 · 10 = 1000 (b) (−0.3)2 = 0.09 (c) 4−2 = 1/16 (d) (0.1)−1 = 1/0.1 = 10

2. (a) 4 = 22 (b) 1 = 20 (c) 64 = 26 (d) 1/16 = 2−4

3. (a) 153 (b)
(− 1

3

)3
(c) 10−1 (d) 10−7 (e) t6 (f) (a − b)3 (g) a2b4 (h) (−a)3

4. (a) 25 · 25 = 25+5 = 210 (b) 38 · 3−2 · 3−3 = 38−2−3 = 33 (c) (2x)3 = 23x3 = 8x3

(d) (−3xy2)3 = (−3)3x3(y2)3 = −27x3y6

5. (a)
p24p3

p4p
= p24+3−4−1 = p22 (b)

a4b−3

(a2b−3)2
= a4b−3

a4b−6
= a4−4b−3−(−6) = b3

(c)
34(32)6

(−3)1537
= 34312

−31537
= −3−6 (d)

pγ (pq)σ

p2γ+σ qσ−2
= p−γ q2

6. (a) 26 = 64 (b) 64/27 (c) 8/3 (d) x9 (e) y12 (f) 8x3y3 (g) 10−2 = 1/100 (h) k4 (i) (x + 1)2

7. (a) Because 4π(3r)2 = 4π32r2 = 9(4πr2), the surface area increases by the factor 9.
(b) When r increases by 16%, it increases by a factor of 1.16, and r2 increases by the factor (1.16)2 = 1.3456, and
thus the surface area increases by 34.56%.

8. (a) False. a0 = 1. (b) True. c−n = 1/cn for all c �= 0. (c) True. am · am = am+m = a2m.
(d) False (unless m = 0 or ab = 1). ambm = (ab)m. (e) False (unless m = 1). For example, (a + b)2 is equal to
a2 + 2ab + b2. (f) False (unless ambn = 1). For example, a2b3 is not equal to (ab)2+3 = (ab)5 = a5b5.

9. (a) x3y3 = (xy)3 = 33 = 27 (b) (ab)4 = (−2)4 = 16 (c) (a8)0 = 1 for all a �= 0.
(d) (−1)2n = [(−1)2]n = 1n = 1

10. (a) 150 · 0.13 = 19.5 (b) 2400 · 0.06 = 144 (c) 200 · 0.055 = 11 11. $1.50 cheaper, which is 15% of $10.

12. (a) With an interest rate of 11% per year, then in 8 years, an initial investment of 50 dollars will be worth 50·(1.11)8 ≈
115.23 dollars. (b) Given a constant interest rate of 12% per year, then in 20 years, an initial investment of 10 000
pounds will be worth 10 000 · (1.12)20 ≈ 96 462.93 pounds. (c) 5000 · (1.07)−10 ≈ 2541.75 euros is what you
should have invested 10 years ago in order to have 5000 euros today, given the constant interest rate of 7%.
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13. (a) 12 000 · (1.04)15 ≈ 21611.32 (b) 50 000 · (1.06)−5 ≈ 37362.91 14. p ≈ 95.3%, since (1.25)3 = 1.9531.

15. (a) The profit was higher in 1990. ((1 + 0.2)(1 − 0.17) = 1.2 · 0.83 = 0.996.)
(b) If the decrease in profits from 1991 to 1992 were p%, then profits in 1990 and 1992 would be equal provided
1.2 · (1 − p/100) = 1, or p = 100(1 − 1/1.2) = 100/6 ≈ 16.67.

1.3
1. (a) 1 (b) 6 (c) −18 (d) −18 (e) 3x + 12 (f) 45x − 27y (g) 3 (h) 0 (i) −1

2. (a) 3a2 − 5b (b) −2x2 + 3x + 4y (c) t (d) 2r3 − 6r2s + 2s3

3. (a) −3n2 + 6n − 9 (b) x5 + x2 (c) 4n2 − 11n + 6 (d) −18a3b3 + 30a3b2 (e) a3b − ab3

(f) x3 − 6x2y + 11xy2 − 6y3

4. (a) acx2 + (ad + bc)x + bd (b) 4 − t4 (c) [(u − v)(u + v)]2 = (u2 − v2)2 = u4 − 2u2v2 + v4

5. (a) 2t3 − 5t2 + 4t − 1 (b) 4 (c) x2 + y2 + z2 + 2xy + 2xz + 2yz (d) 4xy + 4xz

6. (a) x2 + 4xy + 4y2 (b) 1/x2 − 2 + x2 (c) 9u2 − 30uv + 25v2 (d) 4z2 − 25w2

7. (a) 2012 − 1992 = (201 + 199)(201 − 199) = 400 · 2 = 800 (b) u2 − 4u + 4 = (u − 2)2 = 1 so u − 2 = ±1,

and u = 1 or u = 3. (c)
(a + 1)2 − (a − 1)2

(b + 1)2 − (b − 1)2
= a2 + 2a + 1 − (a2 − 2a + 1)

b2 + 2b + 1 − (b2 − 2b + 1)
= 4a

4b
= a

b

8. 10002/(2522 − 2482) = 10002/(252 + 248)(252 − 248) = 10002/500 · 4 = 500

9. (a) (a + b)3 = (a + b)2(a + b) = (a2 + 2ab + b2)(a + b) = a3 + 3a2b + 3ab2 + b3

(b) (a − b)3 = (a − b)2(a − b) = (a2 − 2ab + b2)(a − b) = a3 − 3a2b + 3ab2 − b3

(c) and (d): Expand the right-hand sides.

10. (a) 3 · 7 · xxyyy (b) 3(x − 3y + 9z) (c) aa(a − b) (d) 2 · 2 · 2xy(xy − 2)

11. (a) 2 · 2 · 7aabbb (b) 2 · 2(x + 2y − 6z) (c) 2x(x − 3y) (d) 2aabb(3a + 2b) (e) 7x(x − 7y)

(f) 5xyy(1 − 3x)(1 + 3x) (g) (4 + b)(4 − b) (h) 3(x + 2)(x − 2)

12. (a) (x − 2)(x − 2) (b) 2 · 2ts(t − 2s) (c) 2 · 2(2a + b)(2a + b) (d) 5x(x + √
2y)(x − √

2y)

13. (a) (a + 2b)(a + 2b) (b) KL(K − L) (c) K−5(K − L) (d) (3z − 4w)(3z + 4w) (e) − 1
5 (x − 5y)(x − 5y)

(f) (a2 − b2)(a2 + b2) = (a + b)(a − b)(a2 + b2)

14. (a) (5+a)(x+y) (b) u2 −v2 +3(u+v) = (u+v)(u−v)+3(u+v) = (u+v)(u−v+3) (c) (P +Q)(P 2 +Q2)

15. (a) KK(K − L) (b) KL(L2 + 1) (c) (L + K)(L − K) (d) (K − L)(K − L) (e) KL(K − 2L)(K − 2L)

(f) K−6(K3 − 1) = K−6(K − 1)(K2 + K + 1), using Problem 9(c).

1.4
1. (a) 2/7 (b) 13/12 (c) 5/24 (d) 2/25 (e) 9/5 (f) 1/2 (g) 1/2 (h) 11/27

2. (a) 3x/2 (b) 3a/5 (c) 1/5 (d) 1
12 (−5x + 11) (e) −1/(6b) (f) 1/b

3. (a)
5 · 5 · 13

5 · 5 · 5 · 5
= 13

25
(b)

ab2

8c2
(c)

2

3
(a − b) (d)

P(P + Q)(P − Q)

(P + Q)2
= P(P − Q)

P + Q

4. (a) 1/2 (b) 6 (c) 5/7 (d) 9/2

5. (a)
4

x2 − 4
(b)

21

2(2x + 1)
(c)

a

a − 3b
(d)

1

4ab(a + 2)
(e)

−3t2

t + 2
(f) 4(1 − a)

6. (a)
2 − 3x2

x(x + 1)
(b)

−2t

4t2 − 1
(c)

7x2 + 1

x2 − 4
(d) x + y (e)

y2 − x2

y2 + x2
(f)

y − x

y + x

7.
−8x

x2 + 2xy − 3y2
8. (a) 400 (b)

−n

n − 1
(c) 1 (d)

1

(x − 1)2
(e)

−2x − h

x2(x + h)2
(f)

2x

x − 1
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1.5
1. (a) 3 (b) 40 (c) 10 (d) 5 (e) 1/6 (f) 0.7 (g) 0.1 (h) 1/5

2. (a) =. (Both expressions are equal to 20.) (b) �=. In fact,
√

25 + 16 = √
41 �= 9 = √

25 + √
16.

(c) �=. (Put a = b = 1.) (d) =. In fact, (
√

a + b )−1 = [(a + b)1/2]−1 = (a + b)−1/2.

3. (a) 81 (b) 4 (c) 623 (d) 15 (e) −1 (f) 2x − 2x−1 = 2x−1(2 − 1) = 2x−1 = 4 for x = 3.

4. (a) 6
7

√
7 (b) 4 (c) 1

8

√
6 (d) 1 (e) 1

6

√
6 (f)

2
√

2y

y
(g)

√
2x

2
(h) x + √

x

5. (a) 1
2

(√
7−√

5
)

(b) 4−√
15 (c) −x

(√
3+2

)
(d)

(√
x − √

y
)2

x − y
(e)

√
x + h+√

x (f)
1

x

(
2
√

x + 1−x−2
)

6. (a) 3
√

125 = 5 because 53 = 125. (b) (243)1/5 = 3 because 35 = 243. (c) −2 (d) 3
√

0.008 = 0.2

7. (a) 3
√

55 ≈ 3.80295 (b) (160)1/4 ≈ 3.55656 (c) (2.71828)1/5 ≈ 1.22140 (d) (1.0001)10000 ≈ 2.718146

8. 40(1 + p/100)12 = 60 gives (1 + p/100)12 = 1.5, and therefore 1 + p/100 = (1.5)1/12. Solving this for p yields
p = 100[(1.5)1/12 − 1] ≈ 3.44.

9. (a) 9 (b) 1/4 (c) 16−2.25 = 16−9/4 = ( 4
√

16
)−9 = 2−9 = 1/512 (d) (1/3−2)−2 = 1/34 = 1/81

10. (a) 3xpy2qz4r (b) (x + 15)4/3−5/6 = (x + 15)1/2 = √
x + 15 (c)

8x2/3y1/4z−1/2

−2x1/3y5/2z1/2
= −4x1/3y−9/4z−1

11. (a) a
1
2

2
3

3
4

4
5 = a1/5 (b) a

1
2 + 2

3 + 3
4 + 4

5 = a163/60 (c) 9a7/2 (d) a1/4 12. Only (b) and (c) are generally valid.

13. x < 4. (If x > 0, then 32x3/2 > 4x3 if and only if 8x3/2 > x3 , which is equivalent to 8 > x3/2, and so
x < 82/3 = 4.)

1.6
1. (a), (b), (d), (f), and (h) are valid, (c), (e), and (g) are not valid.

2. (a) x ≥ −8 (b) x < −9 (c) All x. (d) x ≤ 25/2 (e) x ≤ 19/7 (f) t > −17/12

3. (a) −2 < x < 1 (b) x < −4 or x > 3 (c) −5 ≤ a ≤ 5

4. (a) −7 < x < −2 (b) n ≥ 160 or n < 0 (c) 0 ≤ g ≤ 2 (d) p ≥ −1 and p �= 2 (e) −4 < n < −10/3
(f) −1 < x < 0 or 0 < x < 1. (Hint: x4 − x2 = x2(x + 1)(x − 1).)

5. (a) x > 1 or x < −4 (b) x > −4 and x �= 1 (c) 1 ≤ x ≤ 2 (d) x < 1 and x �= 1/5 (e) 1/5 < x < 1
(f) x < 0 (g) −3 < x < −2 or x > 0 (h) x �= 2 (i) x ≤ 0

6. (a) −41/6 < x ≤ 2/3 (b) x < −1/5 (c) −1 < x < 0

7. (a) Yes (b) No, put x = 1
2 , for example. (c) No, not for x ≤ 0. (d) Yes, because the inequality is equivalent to

x2 − 2xy + y2 ≥ 0, or (x − y)2 ≥ 0, which is satisfied for all x and y.

8. (a) We have C = 5
9 (F − 32), so we must solve 4 ≤ 5

9 (F − 32) ≤ 6 for F . The result is 39.2◦ ≤ F ≤ 42.8◦.

(b) Between 2.2◦C and 4.4◦C, approximately.

9.
(√

a−√
b
)2 = a−2

√
ab+b ≥ 0 yields a+b ≥ 2

√
ab; dividing by 2 gives mA ≥ mG. Because

(√
a−√

b
)2 = 0

is equivalent to a = b, one also has mA > mG unless a = b. The inequality mG ≥ mH follows easily from the hint.

1.7
1. |2 · 0 − 3| = 3, |2 · 1

2 − 3| = 2, |2 · 7
2 − 3| = 4

2. (a) |5 − 3(−1)| = 8, |5 − 3 · 2| = 1, |5 − 3 · 4| = 7 (b) x = 5/3 (c) |5 − 3x| = 5 − 3x for x ≤ 5/3, = 3x − 5
for x > 5/3

3. (a) x = −1 and x = 4 (b) −2 ≤ x ≤ 2 (c) 1 ≤ x ≤ 3 (d) −1/4 ≤ x ≤ 1 (e) x >
√

2 or x < −√
2

(f) 1 ≤ x2 ≤ 3, i.e. 1 ≤ x ≤ √
3 or −√

3 ≤ x ≤ −1

4. (a) 4.999 < x < 5.001 (b) |x − 5| < 0.001
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Review Problems for Chapter 1

1. (a) 3(50 − x) (b)
x

y + 100
(c) If the price before VAT is p, then the price after VAT is p + 20p/100 =

p(1+0.2) = 1.2p. Thus a = 1.2p, so p = a

1.2
. (d) p1x1 +p2x2 +p3x3 (e) F +bx (f) (F +cx)/x = F/x+c

(g) After the p% raise, his salary is L + pL/100 = L(1 + p/100). A q% raise of this new salary gives the final
answer: L(1 + p/100)(1 + q/100).

2. (a) 53 = 5 · 5 · 5 = 125 (b) 10−3 = 1/103 = 1/1000 (c) 1/3−3 = 33 = 27 (d) −1000 (e) 3
(f) (3−2)−3 = 36 = 729 (g) −1 (h)

(− 1
2

)−3 = 1
(− 1

2 )3 = 1
− 1

8
= −8

3. (a) 1 (b) Undefined. (c) 1 (d) 1 4. (a) 2−6 = 1/64 (b) 3
2 − 3

4 = 3
4 (c) −45/4 (d) 1

5. (a) 16x4 (b) 4 (c) 6xyz (d) a27b9 (e) a3 (f) x−15

6. (a) 0.12 · 300 = 36 (b) 0.05 · 2000 = 100 (c) 0.065 · 1500 = 97.5

7. (a) Given a growth rate of 1% per year, then in 8 years, a population which was 100 million has grown to 100 ·
(1.01)8 ≈ 108 million. (b) Given an interest rate of 15% per year, then in 10 years, an initial investment of 50 000
yen will be worth 50 000 · (1.15)10 ≈ 202 277 yen. (c) 6000 · (1.03)−8 ≈ 4736 euros is what you should have
deposited 8 years ago in order to have 6000 euros today, given the constant interest rate of 3%.

8. (a) 100 000(1.08)10 ≈ 215 892 (b) 25 000(1.08)−6 ≈ 15 754

9. (a) a2 − a (b) x2 + 4x − 21 (c) −3 + 3
√

2 (d) 3 − 2
√

2 (e) x3 − 3x2 + 3x − 1 (f) 1 − b4

(g) 1 − x4 (h) x4 + 4x3 + 6x2 + 4x + 1

10. (a) x3y3 = (x−1y−1)−3 = 3−3 = 1/27 (b) (x−3)6(x2)2 = x−18x4 = x−14 = (x7)−2 = 2−2 = 1/4
(c) (z/xy)6 = (xy/z)−6 = [(xy/z)−2]3 = 33 = 27 (d) (abc)4 = (a−1b−1c−1)−4 = (1/4)−4 = 44 = 256

11. (a) 5(5x − 1) (b) xx(3 − xy) (c) (
√

50 − x)(
√

50 + x) (d) a(a − 2b)2

12. (a) (5 + a)(x + 2y) (b) (a + b)(c − d) (c) (a + 2)(x + y) (d) (2x − y)(x + 5z) (e) (p − q)(p + q + 1)

(f) (u − v)(u − v)(u + v)

13. (a) 161/4 = 4
√

16 = 2 (b) 243−1/5 = 1/
5
√

243 = 1/3 (c) 51/7 · 56/7 = 51/7+6/7 = 51 = 5 (d) 4−3/2 = 1/8

(e) 641/3+ 3
√

125 = 4+5 = 9 (f) (−8/27)2/3 = ( 3
√−8/27 )2 = (−2/3)2 = 4/9 (g) (−1/8)−2/3+(1/27)−2/3 =

( 3
√−1/8 )−2 + ( 3

√
1/27 )−2 = (−1/2)−2 + (1/3)−2 = 4 + 9 = 13 (h)

1000−2/3

3
√

5−3
= (

3
√

1000 )−2

5−1
= 10−2

5−1
= 1

20

14. (a) 8 = 23, so x = 3/2 (b) 1/81 = 3−4, so 3x + 1 = −4 or x = −5/3 (c) x2 − 2x + 2 = 2, so x = 0 or x = 2.

15. (a) 5 + x = 3, so x = −2. (b) 3x − 3x−2 = 3x−2(32 − 1) = 3x−2 · 8, so 3x−2 = 3, and thus x = 3.
(c) 3x · 3x−1 = 32x−1 = 81 = 34 provided x = 2.5. (d) 35 + 35 + 35 = 3 · 35 = 36, so x = 6.

(e) 4−6 + 4−6 + 4−6 + 4−6 = 4 · 4−6 = 4−5, so x = −5. (f)
226 − 223

226 + 223
= 223(23 − 1)

223(23 + 1)
= 7

9
, so x = 7.

16. (a)
2s

4s2 − 1
(b)

7

3 − x
(c)

1

x + y
17. (a) 1

5 a2b (b) x − y (c)
2a − 3b

2a + 3b
(d)

x(x + 2)

2 − x

18. (a) x < 13/2 (b) y ≥ −3 (c) Valid for all x. (d) x < 29/14 (e) −1 ≤ x ≤ 13/3
(f) −√

6 ≤ x ≤ −√
2 or

√
2 ≤ x ≤ √

6

19. (a) 30 + 0.16x (b) Smallest number of hours: 7.5. Largest number of hours: 10.

20. 2π(r + 1)− 2πr = 2π , where r is the radius of the Earth (as an approximate sphere). So the extended rope is only
about 6.28 m longer!

21. (a) Put p/100 = r . Then the given expression becomes a + ar − (a + ar)r = a(1 − r2), as required.
(b) $2000 · 1.05 · 0.95 = $1995. (c) The result is precisely the formula in (a). (d) With the notation used in the
answer to (a), we have: a − ar + (a − ar)r = a(1 − r2), which is the same expression as in (a).
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22. (a) No, for example, −1 > −2, but (−1)2 < (−2)2. (b) Suppose a > b so that a − b > 0. If also a + b > 0,
then a2 − b2 = (a + b)(a − b) > 0, so a2 > b2.

23. (a) 2 > 1 and 1/2 < 1/1. Also, −1 > −2 and 1/(−1) < −1/2. On the other hand, 2 > −1 and 1/2 > 1/(−1).
(b) If ab > 0 and a > b, then 1/b − 1/a = (a − b)/ab > 0, so 1/b > 1/a. (Also, if ab < 0 and a > b, then
1/b − 1/a = (a − b)/ab < 0, so 1/b < 1/a.)

24. (i) For any number c, |c| = √
c2. Then |ab| = √(ab)2 = √

a2b2 = √
a2

√
b2 = |a| · |b|.

(ii) Either a = |a| or a = −|a|, so −|a| ≤ a ≤ |a|. Likewise, −|b| ≤ b ≤ |b|. Adding these inequalities yields
−|a| − |b| ≤ a + b ≤ |a| + |b|, and thus |a + b| ≤ |a| + |b|.

25. See SM.

Chapter 2

2.1
1. (a) x = 5 (b) x = 3 (c) x = 6 (d) Any x is a solution. (e) x = −12 (f) x = 1

(g) x = −5. (Hint: x2 + 10x + 25 = (x + 5)2.) (h) x = −1

2. (a) x = 3 (b) x = −7 (c) x = −28/11 (d) x = 5/11 (e) x = 1 (f) x = 121

3. (a) x = 0 (b) x = −6 (c) x = 5

4. (a) 2x + 5 = x − 3. Solution: x = −8. (b) With x as the smallest number, x + (x + 1) + (x + 2) = 10 + 2x,
so x = 7, and the numbers are 7, 8, and 9. (c) If x is Jane’s regular hourly wage, then 38x + (48 − 38)2x = 812.
Solution: x = 14. (d) 1500 + 12x/100 = 2100. Solution: x = 5000. (e) 2

3 x + 1
4 x + 100 000 = x. Solution:

x = 1 200 000.

5. (a) y = 17/23 (b) x = −4 (c) z = 4 (d) p = 15/16

6. She buys y/9 kilos of apples, y/6 kilos of bananas, and y/18 kilos of cherries, for a total of
(

1
9 + 1

6 + 1
18

)
y =(

2+3+1
18

)
y = 6

18 y = 1
3 y kilos. She pays 3 euros per kilo of fruit.

2.2

1. (iii) Y = 3000. (Y = a

1 − b
+ 1

1 − b
Ī = 500

1 − 0.8
+ 100

1 − 0.8
= 2500 + 500 = 3000.) (iv) Y = 7500

2. (a) x = 1
2

( 1

a
+ 1

b

)
(b) x = dA − b

a − cA
(c) x = p2

4w2
(d) x = − 1

1 + a
(e) x = ±b

a
(f) x = 0

3. (a) p = 20q/3 − 14/15 (b) P = (S − α)/β (c) g = 2A/h (d) r = (3V/4π)1/3 (e) L = (Y0A
−1K−α)1/β

4. (a) x = (a − b)/(α − β) (b) p = (3q + 5)2/q (c) Y = 100 (d) K = (2wQ4/r)1/3 (e) L = rK/2w

(f) K = 1
32 p4r−3w−1

5. (a) s = tT

T − t
(b) M = (B + αL)2

KL
(c) z = 4xy − x + 2y

x + 4y
(d) T = N

(
1 − V

C

)

2.3
1. (a) x(15 − x) = 0, so x = 0 and x = 15 (b) p = ±4 (c) q = 3 and q = −4 (d) No solution. (e) x = 0 and

x = 3 (f) x = 2. (Note that x2 − 4x + 4 = (x − 2)2.)

2. (a) x2 − 5x + 6 = (x − 2)(x − 3) = 0 for x = 2 and for x = 3. (With x2 − 5x = −6, completing the square
gives x2 − 5x + (5/2)2 = (5/2)2 − 6 = 25/4 − 6 = 1/4, or (x − 5/2)2 = 1/4. Hence, x − 5/2 = ±1/2.)
(b) y2 − y − 12 = (y − 4)(y + 3) = 0 for y = 4 and for y = −3 (c) No solutions and no factorization.

(d) − 1
4 x2 + 1

2 x + 1
2 = − 1

4

[
x − (1 + √

3
)][

x − (1 − √
3
)] = 0 for x = 1 ± √

3
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(e) m2 − 5m − 3 = [m − 1
2

(
5 + √

37
)][

m − 1
2

(
5 − √

37
)]= 0 for m = 1

2

(
5 ± √

37
)

(f) 0.1p2 + p − 2.4 = 0.1(p − 2)(p + 12) = 0 for p = 2 and p = −12

3. (a) r = −13, r = 2 (b) p = −16, p = 1 (c) K = 100, K = 200 (d) r = −√
3, r = √

2
(e) x = −0.5, x = 0.8 (f) p = −1/6, p = 1/4

4. (a) x = 1, x = 2 (b) t = 1
10

(
1 ±√

61
)

(c) x = 1
4

(
3 ±√

13
)

(d) x = 1
3

(−7 ±√
5
)

(e) x = −300, x = 100

(f) x = 1
6

(
5 ± √

13
)

5. (a) With sides of length x and y, 2x + 2y = 40 and xy = 75. So x satisfies x2 − 20x + 75 = 0, with the solutions
x = 5 or x = 15. (b) 2 and 3. (c) The shorter side is 16 cm, the longer 30 cm. (d) 50 km/h.

6. (a) x = −2, x = 0, x = 2. (x(x2 − 4) = 0 or x(x + 2)(x − 2) = 0) (b) x = −2, x = −1, x = 1, x = 2.
(Let x2 = u.) (c) z = −1/3, z = 1/5. (Let z−1 = u.)

2.4

1. (a) x = 8, y = 3 (b) x = 1/2, y = 1/3 (c) x = 1.1, y = −0.3

2. (a) x = 1, y = −1 (b) x = −4, y = 7 (c) x = −7/2, y = 10/3

3. (a) K = 2.8, L = 5.75 (b) p = 2, q = 3 (c) r = 2.1, s = 0.1

4. (a) 39 and 13 (b) $120 for a table and $60 for a chair. (c) 30 of quality A and 20 of quality B.
(d) $8000 at 7.2% and $2000 at 5% interest.

2.5

1. (a) x = 0 and x = −3 (b) x = 0 and x = 1/2 (c) x = 1 and x = 3 (d) x = −5/2 (e) No solutions.
(f) x = 0 and x = −1

2. (a) No solutions. (b) x = −1 (c) x = −3/2 (d) x = 0 and x = 1/2

3. (a) z = 0 or z = a/(1 − a − b) for a + b �= 1. For a + b = 1 the only solution is z = 0.
(b) λ = −1 or μ = 0 or x = y (c) λ = 0 and μ �= ±1, or μ = 2 (d) a = 2 or b = 0 or λ = −1

Review Problems for Chapter 2

1. (a) x = 12 (b) x = 3 (c) x = −3/2 (d) x = −19 (e) x = 11/7 (f) x = 39

2. (a) x = 0 (b) x = −6 (c) x = 5 (d) x = −1

3. (a) x = 2
3 (y − 3) + y = 2

3 y − 2 + y = 5
3 y − 2, or 5

3 y = x + 2, so y = 3
5 (x + 2).

(b) ax − cx = b + d , or (a − c)x = b + d , so x = (b + d)/(a − c).
(c)

√
L = Y0/AK , so squaring each side yields L = (Y0/AK)2. (d) qy = m − px, so y = (m − px)/q.

(e) Put s = 1/(1 + r). Then s = (a + bc)/(1 − c), so r = (1/s) − 1 = [(1 − a) − c(1 + b)]/(a + bc)

(f) Multiplying by (Px + Q)1/3 yields Px + Px + Q = 0, and so x = −Q/2P .

4. (a) From (ii) and (iii), C = b(Y −tY ) = b(1−t)Y , which inserted into (i) and solved for Y yields Y = Ī + G

1 − b(1 − t)
.

Then C = b(1 − t)(Ī + G)

1 − b(1 − t)
. (b) Note that 0 < b(1 − t) < 1. When t increases, Y and 1 − t both decrease, and

so therefore must C = b(1 − t)Y .

5. (a) K = 225L2/3 (b) r = 100(21/t − 1) (c) x0 = (p/ab)1/(b−1) (d) b = λ1/ρ
(
c−ρ − (1 − λ)a−ρ

)−1/ρ
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6. (a) z = 0 or z = 8 (b) x = −7 or x = 5 (c) p = −7 or p = 2 (d) p = 1/4 or p = 1/3 (e) y = 4 ± √
31

(f) x = −7 or x = 6

7. (a) x = ±2 or x = 5 (b) x = −4. (x4 + 1 is never 0.) (c) λ = 1 or x = y

8. If he invested $x at 15% interest and $y at 20%, then 0.15x + 0.20y = 275. Also, x + y = 1500. Solving this
system yields x = 500, y = 1000.

9. 53x = 25y+2 = 52(y+2) so that 3x = 2(y + 2). With x − 2y = 8 this gives x = −2 and y = −5, so x − y = 3.

10. (a) Let u = 1/x and v = 1/y. Then the system reduces to 2u+3v = 4, 3u−2v = 19, with solution u = 5, v = −2,
and so x = 1/u = 1/5, y = 1/v = −1/2. (b) Let u = √

x and v = √
y. Then 3u + 2v = 2, 2u − 3v = 1/4,

with solution u = 1/2, v = 1/4, so x = 1/4, y = 1/16. (c) With u = x2 and v = y2, we get u + v = 13,
4u − 3v = 24, with solution u = 9, v = 4, and so x = ±3 and y = ±2.

Chapter 3
3.1

1. (a) 1 + 2 + 3 + · · · + 10 = 55 (b) (5 · 30 − 2) + (5 · 31 − 3) + (5 · 32 − 4) + (5 · 33 − 5) + (5 · 34 − 6) = 585
(c) 1 + 3 + 5 + 7 + 9 + 11 = 36 (d) 220 + 221 + 222 = 21 + 22 + 24 = 22 (e) 2 · 10 = 20
(f) 2/1 + 3/2 + 4/3 + 5/4 = 73/12

2. (a) 2
√

0 + 2
√

1 + 2
√

2 + 2
√

3 + 2
√

4 = 2(3 + √
2 + √

3)

(b) (x + 0)2 + (x + 2)2 + (x + 4)2 + (x + 6)2 = 4(x2 + 6x + 14)

(c) a1ib
2 + a2ib

3 + a3ib
4 + · · · + anib

n+1 (d) f (x0)	x0 + f (x1)	x1 + f (x2)	x2 + · · · + f (xm)	xm

3. (a)
n∑

k=1

4k (b)
n∑

k=1

k3 (c)
n∑

k=0

(−1)k
1

2k + 1
(d)

n∑
k=1

aikbkj (e)
5∑

n=1

3nxn (f)
p∑

j=3

a
j

i bi+j (g)
p∑

k=0

ak+3
i+k bi+k+3

(h)
3∑

k=0

(81 297 + 198k)

4.
2 · 3 + 3 · 5 + 4 · 7

1 · 3 + 2 · 5 + 3 · 7
· 100 = 6 + 15 + 28

3 + 10 + 21
· 100 = 49

34
· 100 ≈ 144.12

5. (a)
10∑

k=1

(k − 2)tk =
8∑

m=−1

mtm+2 (b)
N∑

n=0

2n+5 =
N+1∑
j=1

32 · 2j−1

6. (a) The total number of people moving within the EEA from nation i.
(b) The total number of people moving within the EEA to nation j .

7. (a), (c), (d), and (e) are always true; (b) and (f) are generally not true.

3.2
1.
∑n

k=1(k
2 +3k+2) =∑n

k=1 k2 +3
∑n

k=1 k+∑n
k=1 2 = 1

6 n(n+1)(2n+1)+3
[

1
2 n(n+1)

]+2n = 1
3 n(n2 +6n+11).

2. (a + b)6 = a6 + 6a5b + 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + b6. (The coefficients are those in the seventh row
of Pascal’s triangle in the text.)

3. (a) In both sums, all terms cancel pairwise, except −a1, the last term within the first parentheses, and a9 (or,
generally, an), the first term within the last parentheses. (b) (i) 1− (1/51) = 50/51 (ii) 313 −3 (iii) ar(rn −1)

4. (a)

(
5

3

)
= 5 · 4 · 3

1 · 2 · 3
= 5 · 4 · 3 · 2 · 1

1 · 2 · 3 · 2 · 1
= 5!

3! 2!
= 5!

2! 3!
. In general,

(
m

k

)
= m(m − 1) · · · (m − k + 1)

k!
=

m(m − 1) · · · (m − k + 1) · (m − k)!

k!(m − k)!
= m!

(m − k)! k!
.
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(b)

(
8

3

)
= 56. Also,

(
8

8 − 3

)
=
(

8

5

)
= 56;

(
8

3

)
+
(

8

3 + 1

)
= 56 + 70 = 126 and

(
8 + 1

3 + 1

)
=
(

9

4

)
= 126.

(c)

(
m

k

)
= m!

(m − k)!k!
=
(

m

m − k

)
and

(
m

k

)
+
(

m

k + 1

)
= m!

(m − k)!k!
+ m!

(m − k − 1)!(k + 1)!
=

m!(k + 1 + m − k)

(m − k)!(k + 1)!
= (m + 1)!

(m − k)!(k + 1)!
=
(

m + 1

k + 1

)
.

5.
∑n−1

i=0 (a + id) = ∑n−1
i=0 a + d

∑n−1
i=0 i = na + d 1

2 [1 + (n − 1)](n − 1) = na + 1
2 n(n − 1)d. Using this formula,

the sum Gauss (allegedly) computed is: 100 · 81297 + 1
2 100 · 99 · 198 = 9 109 800. (One does not have to use

summation signs. The sum is a + (a + d) + (a + 2d) + · · · + (a + (n − 1)d). There are n terms. The sum of all
the a’s is na. The rest is d(1 + 2 + · · · + n − 1). Then use formula (4).)

3.3

1. (a)
3∑

i=1

4∑
j=1

i · 3j =
3∑

i=1

(i · 3 + i · 9 + i · 27 + i · 81) =
3∑

i=1

120i = 720 (b) 5 + 3113
3600

(c) 1
6 mn(2n2 + 3n + 3m + 4) (d)

1

3
m(m + 1)(m + 2)

2. (a) The total number of units of good i. (b) The total number of units of all goods owned by person j .
(c) The total number of units of goods owned by the group as a whole.

3.
∑i

j=1 aij is the sum of all the i numbers in the ith row, so in the first double sum we sum all these m row sums.∑m
i=j aij is the sum of all the m − j + 1 numbers in the j th column, so in the second double sum we sum all these

m column sums.

4. See SM.

3.4
1. (a) 2x−4 = 2 �⇒ x = 3 (b) x = 3 �⇒ 2x−4 = 2 (c) x = 1 �⇒ x2 −2x+1 = 0 (d) x2 > 4 ⇐⇒ |x| > 2

2. x = 2. (x = −1, 0, and 1 make the equation meaningless. Multiplying each term by the common denominator
x(x − 1)(x + 1) yields 2x(x2 − 3x + 2) = 0, or 2x(x − 1)(x − 2) = 0. Hence, x = 2 is the only solution.)

3. (a) ⇒ true, ⇐ false (b) ⇒ false, ⇐ true (c) ⇒ true, ⇐ false (d) ⇒ and ⇐ both true
(e) ⇒ false (0 · 5 = 0 · 4, but 5 �= 4), ⇐ true (f) ⇒ true, ⇐ false

4. (a) x ≥ 0 is necessary, but not sufficient. (b) x ≥ 50 is sufficient, but not necessary.
(c) x ≥ 4 is necessary and sufficient.

5. (a) Squaring both sides and rearranging yields x2 = 9, so x = ±3. Only x = 3 is a solution.
(b) Squaring both sides and rearranging yields x(x + 5) = 0. Both x = 0 and x = −5 are solutions.
(c) The equivalent equation |x|2 − 2|x| − 3 = 0 gives |x| = 3 or |x| = −1. Only x = ±3 are solutions.

6. (a) No solutions. (b) x = 20

7. (a) Iff. (Note:
√

4 means 2, not ±2.) (b) Only if (c) Only if (d) Iff (e) If (f) Only if

8. (a) x + √
x + 4 = 2 ⇒ √

x + 4 = 2 − x ⇒ x + 4 = 4 − 4x + x2 ⇒ x2 − 5x = 0
(i)⇒ x − 5 = 0

(ii)⇐ x = 5.
Here implication (i) is incorrect (x2 − 5x = 0 ⇒ x − 5 = 0 or x = 0.) Implication (ii) is correct, but it breaks the
chain of implications. (b) x = 0. (After correcting implication (i), we see that the given equation implies x = 5
or x = 0. But only x = 0 is a solution; x = 5 solves x − √

x + 4 = 2.)

9. (a) x < 0 or y < 0 (b) x < a for at least one x. (c) x < 5 or y < 5, or both. (d) There exists an ε > 0 such
that B is not satisfied for any δ > 0. (e) Someone may not like cats. (f) Someone never loves anyone.



Essential Math. for Econ. Analysis, 4th edn EME4_Z01.TEX, 16 May 2012, 14:24 Page 657

C H A P T E R 3 657

3.5
1. (b), (d), and (e) all express the same condition. (a) and (c) are different.

2. (a) Logically the two statements are equivalent. (b) Appending the second statement is still an expressive poetic
reinforcement.

3. If x and y are not both odd, at least one of them must be even. If, for example, x = 2n, where n is an integer, then
xy = 2ny is also even.

3.6
1. (a) 5 ∈ C, D ⊆ C, and B = C are true. The three others are false. (b) A ∩ B = {2}, A ∪ B = {2, 3, 4, 5, 6},

A\B = {3, 4}, B \A = {5, 6}, (A∪B)\ (A∩B) = {3, 4, 5, 6}, A∪B ∪C ∪D = {2, 3, 4, 5, 6}, A∩B ∩C = {2},
and A ∩ B ∩ C ∩ D = ∅.

2. F ∩B ∩C is the set of all female biology students in the university choir; M ∩F the female mathematics students;(
(M ∩ B) \ C

) \ T the students who study both mathematics and biology but neither play tennis nor belong to the
university choir.

3. 50 − 35 = 15 liked only coffee, 40 − 35 = 5 liked only tea, 35 liked both, and 10 did not like either. In all there
were 15 + 5 + 35 + 10 = 65 who responded.

4. (a) B ⊂ M (b) F ∩ B ∩ C �= ∅ (c) T ∩ B = ∅ (d) F \ (T ∪ C) ⊂ B

5. The 23 = 8 subsets of {a, b, c} are the set itself, the empty set, {a}, {b}, {c}, {a, b}, {a, c}, and {b, c}. The 24 = 16
subsets of {a, b, c, d} are the 8 preceding sets together with {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d},
and {a, b, c, d}.

6. (b) and (c) are true, the others are wrong. (Counterexample for (a), (d), and (f): A = {1, 2}, B = {1}, C = {1, 3}.
As for (e), note in particular that A ∪ B = A ∪ C = A whenever B and C are subsets of A, even if B �= C.)

(1) (2) (3) BA

S4

S1

S7

S3

S2

S5

S6
S8

A B

C

Figure A3.6.7 Figure A3.6.8

7. (a) Look at Fig. A3.6.7. n(A ∪ B) is the sum of the numbers of elements in (1), (2), and (3) respectively—that is,
n(A \ B) + n(A ∩ B) + n(B \ A). But n(A) + n(B) is the number of elements in (1) and (2) together, plus the
number of elements in (2) and (3) together. Thus, the elements in (2) are counted twice. Hence, you must subtract
n(A ∩ B), the number of elements in (2), to have equality. (b) Look again at Fig. A3.6.7. n(A \ B) is the number
of elements in (1). n(A)−n(A∩B) is the number of elements in (1) and (2) together, minus the number of elements
in (2). Hence, it is the number of elements in (1).

8. (a) Consider Fig.A3.6.8, and let nk denote the number of people in the set marked Sk , for k = 1, 2, . . . , 8. Obviously
n1 + n2 + · · · + n8 = 1000. The responses imply that: n1 + n3 + n4 + n7 = 420; n1 + n2 + n5 + n7 = 316;
n2 + n3 + n6 + n7 = 160; n1 + n7 = 116; n3 + n7 = 100; n2 + n7 = 30; n7 = 16, and n8 = 334. From these
equations we easily find n1 = 100, n2 = 14, n3 = 84, n4 = 220, n5 = 186, n6 = 46, n7 = 16. (i) n3 + n4 = 304
had read A but not B; (ii) n6 = 46; (iii) n8 = 334.
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(b) We find n(A \ B) = n3 + n4 = 304, n(C \ (A ∪ B)) = n6 = 46, and n(� \ (A ∪ B ∪ C)) = n8 = 334. The
last equality is a special case of n(� \ D) = n(�) − n(D). (The number of persons who are in �, but not in D, is
the number of persons in all of � minus the number of those who are in D.)

3.7

1. For n = 1, both sides are 1. Suppose (∗) is true for n = k. Then 1+2+3+· · ·+k+(k+1) = 1
2 k(k+1)+(k+1) =

1
2 (k + 1)(k + 2), which is (∗) for n = k + 1. Thus, by induction, (∗) is true for all n.

2. We prove only (3.2.6); the proof of (3.2.5) is very similar, but slightly easier. For n = 1 the LHS and the RHS of
(3.2.6) are both equal to 1. As the induction hypothesis, suppose (3.2.6) is true for n = k, so that

∑k
i=1 i3 = 13 +

23+· · ·+k3 = [ 1
2 k(k+1)]2. Then

∑k+1
i=1 i3 =∑k

i=1 i3+(k+1)3 = [ 1
2 k(k+1)]2+(k+1)3 = (k+1)2( 1

4 k2+k+1).
But this last expression is equal to 1

4 (k + 1)2(k2 + 4k + 4) = [ 1
2 (k + 1)(k + 2)]2, which proves that (3.2.6) is true

for n = k + 1. By induction, we have proved (3.2.6).

3. Easy induction proof. 4. See SM.

5. The induction argument is wrong for k = 1: Take two professors A and B. Send A outside. B has the same income
as himself. Bring A back, and send B outside. A has the same income as himself. But this does not imply that
the two professors have the same income! (The induction argument is correct for all k > 1, because then the two
professors sent out have the same income as the others.)

Review Problems for Chapter 3

1. (a)
1

1 · 3
+ 1

2 · 4
+ 1

3 · 5
+ 1

4 · 6
= 17

30
(b) 22 + 42 + 62 + 82 + 102 = 220 (c)

0

2
+ 1

3
+ 2

4
+ 3

5
+ 4

6
= 21

10
= 2.1

2. (a) 12 ·4+22 ·5+32 ·6+42 ·7 = 4+20 +54+112 = 190 (b) 1− 1
6 = 5

6 (c) 1−2 +2−1 +30 +41 +52 +63 =

1+1/2+1+4+25+216 = 495/2 (d)
4∑

i=0

(
4

i

)
=
(

4

0

)
+
(

4

1

)
+
(

4

2

)
+
(

4

3

)
+
(

4

4

)
= 1+4+6+4+1 = 16

3. (a)
100∑
n=1

(2n + 1) (b)
96∑

k=1

k + 1

k
4. (a)

38∑
i=4

i(i + 2) (b)
n∑

i=1

1

xi
(c)

16∑
j=0

x2j

2j + 1
(d)

81∑
k=1

(−1)k−1 1

k

5. (a) Correct. Both sums are equal to a1 + a2 + · · · + an.

(b) Wrong in general.
n∑

i=1
(ai + bi)

2 =
n∑

i=1
(a2

i + 2aibi + b2
i ) =

n∑
i=1

a2
i +

n∑
i=1

b2
i + 2

5∑
i=1

aibi .

(c) Correct. Both sums are equal to 5a1,j + 5a2,j + · · · + 5an+1,j .

(d) Wrong in general.
3∑

i=1

ai

bi

= a1

b1
+ a2

b2
+ a3

b3
, while

∑3
i=1 ai∑3
i=1 bi

= a1 + a2 + a3

b1 + b2 + b3
, and the two expressions are

obviously not equal. (For example, put all ai and bi equal to 1.)

6. (a) ⇒ true, ⇐ false. (b) ⇒ false, ⇐ true. (c) ⇒ true, ⇐ false. (d) ⇒ and ⇐ both true.

7. A ∩ B = {1, 4}; A ∪ B = {1, 3, 4, 6}; A \ B = {3}; B \ A = {6}; (A ∪ B) \ (A ∩ B) = {3, 6}; A ∪ B ∪ C ∪ D =
{1, 2, 3, 4, 5, 6}; A ∩ B ∩ C = {4}; and A ∩ B ∩ C ∩ D = ∅.

8. A ∩ B = ∅; A ∪ B = {1, 2, 4, 6, 11}; � \ B = {1, 3, 4, 5, 6, 7, 8, 9, 10}; �A = � \ A = {2, 3, 5, 7, 8, 9, 10, 11}
9. (a) 100 (b) 670 (c) 95 10. (a) R = 10 200 (b) S = 55 055

11. (a) (1+x)2 = 1+2x+x2 ≥ 1+2x for all x since x2 ≥ 0. (b) (1+x)3 = 1+3x+3x2+x3 = 1+3x+x2(3+x) ≥
1 + 3x for all x ≥ −3, since x2(3 + x) ≥ 0 for all x ≥ −3. (c) See SM.
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Chapter 4

4.2

1. (a) f (0) = 1, f (−1) = 2, f (1/2) = 5/4, and f (
√

2) = 3
(b) (i) For all x. (ii) When x = 1/2. (iii) When x = ±√

1/2 = ± 1
2

√
2.

2. F(0) = F(−3) = 10, F(a + h) − F(a) = 10 − 10 = 0

3. (a) f (0) = 0, f (a) = a2, f (−a) = a2 − (−a − a)2 = −3a2, and f (2a) = 0
b) 3f (a) + f (−2a) = 3a2 + [a2 − (−2a − a)2] = 3a2 + a2 − 9a2 = −5a2

4. (a) f (−1/10) = −10/101, f (0) = 0, f (1/
√

2) = √
2/3, f (

√
π) = √

π/(1 + π), f (2) = 2/5
(b) f (−x) = −x/(1 + (−x)2) = −x/(1 + x2) = −f (x) and f (1/x) = (1/x)/[1 + (1/x)2] =
(1/x) · x2/[1 + (1/x)2] · x2 = x/(1 + x2) = f (x).

5. F(0) = 2, F(−3) = √
19, F(t + 1) = √

t2 + 3

6. (a) C(0) = 1000, C(100) = 41 000, and C(101) − C(100) = 501.
(b) C(x + 1) − C(x) = 2x + 301 = incremental cost of increasing production from x to x + 1.

7. (a) D(8) = 4, D(10) = 3.4, and D(10.22) = 3.334. (b) P = 10.9

8. (a) f (tx) = 100(tx)2 = 100t2x2 = t2f (x) (b) P(tx) = (tx)1/2 = t1/2x1/2 = t1/2P(x)

9. (a) b(0) = 0, b(50) = 100/11, b(100) = 200 (b) b(50 + h) − b(50) is the additional cost of removing h% more
than 50% of the impurities.

10. (a) No: f (2 + 1) = f (3) = 18, whereas f (2) + f (1) = 8 + 2 = 10. (b) Yes: f (2 + 1) = f (2) + f (1) = −9.
(c) No: f (2 + 1) = f (3) = √

3 ≈ 1.73, whereas f (2) + f (1) = √
2 + 1 ≈ 2.41.

11. (a) f (a + b) = A(a + b) = Aa + Ab = f (a) + f (b) (b) f (a + b) = 10a+b = 10a · 10b = f (a) · f (b)

12. See Figs. A4.2.12a and A4.2.12b.

x2

x · 1 1 · 1

1 · x

x 1

x

1

x

1

x

1

y

1
x

1

(−3, 2)

(4, 0)

(0, 4)

(2, 3)

(−3/2, −2)

Figure A4.2.12a The area
is (x + 1)2 = x2 + 2x + 1

Figure A4.2.12b The area
is x2 + 1

Figure A4.3.1

13. (a) x ≤ 5 (b) x �= 0 and x �= 1 (c) −3 < x ≤ 1 or x > 2

14. (a) Defined for x �= 2, i.e. Df = (−∞, 2) ∪ (2, ∞) (b) f (8) = 5

(c) f (x) = 3x + 6

x − 2
= 3 ⇐⇒ 3x + 6 = 3(x − 2) ⇐⇒ 6 = −6, which is impossible.

15. Since g obviously is defined for x ≥ −2, Dg = [−2, ∞). Note that g(−2) = 1, and g(x) ≤ 1 for all x ∈ Df . As
x increases from −2 to ∞, g(x) decreases from 1 to −∞, so Rg = (−∞, 1].
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4.3
1. See Fig. A4.3.1.

2. (a) f (−5) = 0, f (−3) = −3, f (−2) = 0, f (0) = 2, f (3) = 4, f (4) = 0 (b) Df = [−5, 4], Rf = [−3, 4]

3.
x 0 1 2 3 4

g(x) = −2x + 5 5 3 1 −1 −3
See Fig. A4.3.3.

4.
x −2 −1 0 1 2 3 4

h(x) = x2 − 2x − 3 5 0 −3 −4 −3 0 5
See Fig. A4.3.4.

y

−4
−3
−2
−1

1
2
3
4
5

x1 2 3 4

y

−4
−3

1
2
3
4
5

x−2 1 2 3 4 �2 �1 1 2

1

2

3

�2

�1

y

x �2 �1 1 2 3

1

2

3

4

�2

�3

�1

y

x

Figure A4.3.3ny Figure A4.3.4ny Figure A4.3.5 Figure A4.3.6

5.
x −2 −1 0 1 2

F(x) = 3x 1/9 1/3 1 3 9
See Fig. A4.3.5.

6.
x −2 −1 0 1 2 3

G(x) = 1 − 2−x −3 −1 0 1/2 3/4 7/8
See Fig. A4.3.6.

4.4
1. (a) Slope = (8 − 3)/(5 − 2) = 5/3 (b) −2/3 (c) 51/5 2. See Figs. A4.4.2a, A4.4.2b, A4.4.2c

y

1

2

3

4

x1 2 3 4

y

−5

−4

−3

−2

−1

1

x1 2 3 4 5 6 7 8 10

y

−1

1

2

3

4

x1 2 3 4 5

Figure A4.4.2a Figure A4.4.2b Figure A4.4.2c

3. If D = a + bP , then a + 10b = 200, and a + 15b = 150. Solving for a and b yields a = 300 and b = −10, so
D = 300 − 10P .
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4. L1: The slope is 1, and the point–slope formula with (x1, y1) = (0, 2) and a = 1 gives y = x + 2.

L2: Using the point–point formula with (x1, y1) = (0, 3) and (x2, y2) = (5, 0) yields y − 3 = 0 − 3

5 − 0
x, or

y = − 3
5 x + 3. L3 is y = 1, with slope 0.

L4 is y = 3x − 14, with slope 3. L5 is y = 1
9 x + 2, with slope 1/9.

5. (a), (b), and (d) are all linear; (c) is not, it is quadratic.

6. If P is the price of Q copies, then applying the point–point formula gives P − 1400 = 3000−1400
500−100 (Q − 100) or

P = 1000 + 4Q. The price of printing 300 copies is therefore P = 1000 + 4 · 300 = 2200.

7. (a) L1: y − 3 = 2(x − 1) or y = 2x + 1 (b) L2: y − 2 = 3−2
3−(−2)

[x − (−2)] or y = x/5 + 12/5
(c) L3: y = −x/2 (d) L4: x/a + y/b = 1, or y = −bx/a + b.

8. (a) See Figs. A4.4.8a, A4.4.8b, and A4.4.8c.

y

x

1

1

y

x−1 1

y

x

1

1

Figure A4.4.8a Figure A4.4.8b Figure A4.4.8c

9. For (a), shown in Fig. A4.4.9a, the solution is x = 3, y = −2. For (b), shown in Fig. A4.4.9b, the solution is x = 2,
y = 0. For (c), shown in Fig. A4.4.9c, there are no solutions, because the two lines are parallel.

y

x

x + y = 1

x − y = 5

(3, −2)

1

1

y

x
1

1

x − y = 2

x − 2y = 2

x + y = 2

(2, 0)

y

x

1

1
6x + 8y = 6
3x + 4y = 1

Figure A4.4.9a Figure A4.4.9b Figure A4.4.9c

10. See Fig. A4.4.10. Each arrow points to the side of the line where the relevant inequality is satisfied. The shaded
triangle is the required set.

y

x

1

2

3

2 3 4

3x + 4y = 12
3x + y = 3

x − y = 1

y

−4
−3
−2
−1

1
2
3
4
5

x−1 1 2 3 4 5 6

f (x) = x2 − 4x

y

−4
−3
−2
−1

1
2
3

x−4−3−2−1 1 2 3

f (x) = − 1
2 x2 − x + 3

2

Figure A4.4.10 Figure A4.6.1 Figure A4.6.2
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4.5
1. 0.78 2. (a) 75 − 3P e = 20 + 2P e, and hence P e = 11. (b) P e = 90

3. The point–point formula gives C − 200 = 275 − 200

150 − 100
(x − 100), or C = 3

2
x + 50.

4. C = 0.8y + 100. (With C = ay + b, we are told that 900 = 1000a + b and a = 80/100 = 0.8, so b = 100.)

5. (a) P(t) = 20 000 − 2000t (b) W(t) = 500 − 50t

6. (a) April 1960 corresponds to t = 9/4, when N(9/4) = −17 400 · (9/4) + 151 000 = 111 850.
(b) −17 400 t + 151 000 = 0 implies t = 8.68, which corresponds roughly to September 1966.

4.6

1. (a)
x −1 0 1 2 3 4 5

f (x) = x2 − 4x 5 0 −3 −4 −3 0 5

See Fig. A4.6.1. (b) Minimum at x = 2, with f (2) = −4. (c) x = 0 and x = 4.

2. (a)
x −4 −3 −2 −1 0 1 2

f (x) = − 1
2 x2 − x + 3

2 −2.5 0 1.5 2 1.5 0 −2.5

See Fig. A4.6.2. (b) Maximum at x = −1 with f (−1) = 2. (c) x = −3 and x = 1. (d) f (x) > 0 in (−3, 1),
f (x) < 0 for x < −3 and for x > 1.

3. (a) Minimum −4 for x = −2. (b) Minimum 9 for x = −3. (c) Maximum 45 for x = 5.
(d) Minimum −45 for x = 1/3. (e) Maximum 40 000 for x = −100. (f) Minimum −22 500 for x = −50.

4. (a) x(x + 4). Zeros 0 and −4. (b) No factoring is possible. No zeros.
(c) −3(x − x1)(x − x2), where the zeros are x1 = 5 + √

15 and x2 = 5 − √
15.

(d) 9(x − x1)(x − x2), where the zeros are x1 = 1/3 + √
5 and x2 = 1/3 − √

5.
(e) −(x + 300)(x − 100). Zeros −300 and 100. (f) (x + 200)(x − 100). Zeros −200 and 100.

5. (a) x = 2p and x = p (b) x = p and x = q (c) x = 1
2 p and x = −2q

6. U(x) has maximum for x = 4(r − 1)/(1 + r2). (Expanding we get U(x) = −(1 + r2)x2 + 8(r − 1)x. Then apply
(4.6.4) with a = −(1 + r2) and b = 8(r − 1).)

7. (a) The areas when x = 100, 250, and 350 are 100 · 400 = 40 000, 250 · 250 = 62 500, and 350 · 150 = 52 500,
respectively. (b) The area is A = (250 + x)(250 − x) = 62 500 − x2, which obviously has its maximum for
x = 0. Then the rectangle is a square.

8. (a) π(Q) = (PUK − PG − γ )Q = − 1
2 Q2 + (α1 − α2 − γ )Q. (b) Using (4), we see that Q∗ = α1 − α2 − γ

maximizes profit if α1 − α2 − γ > 0. If α1 − α2 − γ ≤ 0, then Q∗ = 0.
(c) π(Q) = − 1

2 Q2 + (α1 − α2 − γ − t)Q and Q∗ = α1 − α2 − γ − t if α1 − α2 − γ − t > 0.
(d) T = tQ∗ = t (α1 − α2 − γ − t). (e) Export tax revenue is maximized when t = 1

2 (α1 − α2 − γ ).

9. (a) 361 ≤ 377 (b) See SM.

4.7
1. (a) −2, −1, 1, 3 (b) 1, −6 (c) None. (d) 1, 2, −2 2. (a) 1 and −2 (b) 1, 5, and −5 (c) −1

3. (a) 2x2 + 2x + 4 + 3/(x − 1) (b) x2 + 1 (c) x3 − 4x2 + 3x + 1 − 4x/(x2 + x + 1) (d) See SM.

4. (a) y = 1
2 (x + 1)(x − 3) (b) y = −2(x + 3)(x − 1)(x − 2) (c) y = 1

2 (x + 3)(x − 2)2

5. (a) x + 4 (b) x2 + x + 1 (c) −3x2 − 12x
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6. c4 + 3c2 + 5 ≥ 5 �= 0 for every choice of c, so the division has to leave a remainder.

7. Expand the right-hand side. (Note that R(x) → c/a as x → ∞.) 8. E = α
(
x − (β + γ )

)+ αβ(β + γ )

x + β

4.8
1. See Fig. A4.8.1. 2. (a) 1.6325269 (b) 36.4621596

3. (a) 23 = 8, so x = 3/2 (b) 1/81 = 3−4, so 3x + 1 = −4, and therefore x = −5/3 (c) x2 − 2x + 2 = 2, so
x2 − 2x = 0, implying that x = 0 or x = 2.

4. (a): C (b): D (c): E (d): B (e): A (f): F: y = 2 − (1/2)x

5. (a) 35t9t = 35t (32)t = 35t+2t = 37t and 27 = 33, so 7t = 3, and then t = 3/7. (b) 9t = (32)t = 32t and
(27)1/5/3 = (33)1/5/3 = 33/5/3 = 3−2/5, and then 2t = −2/5, so t = −1/5.

6. V = (4/3)πr3 implies r3 = 3V/4π and so r = (3V/4π)1/3. Hence, S = 4πr2 = 4π
(
3V/4π

)2/3 = 3
√

36π V 2/3.
y

1

2

x1 2

y = x−1/3

y = x−1/2

y = x−1

y = x−3

y

2

4

6

8

x−3−2 −1 1 2 3

y = 2xy = 2−x

y

0.5

x−3 −2 −1 1 2 3

y = 1√
2π

e− 1
2 x2

Figure A4.8.1 Figure A4.9.4 Figure A4.9.5

4.9
1. The doubling time t∗ is determined by (1.0072)t

∗ = 2. Using a calculator, we find t∗ ≈ 96.6.

2. P(t) = 1.22 · 1.034t . The doubling time t∗ is given by the equation (1.034)t
∗ = 2, and we find t∗ ≈ 20.7 (years).

3. The amount of savings after t years: 100 (1 + 12/100)t = 100 · (1.12)t .

t 1 2 5 10 20 30 50

100 · (1.12)t 112 125.44 176.23 310.58 964.63 2995.99 28 900.21

4. The graphs are drawn in Fig. A4.9.4.

x −3 −2 −1 0 1 2 3

2x 1/8 1/4 1/2 1 2 4 8

2−x 8 4 2 1 1/2 1/4 1/8

5. The graph is drawn in Fig. A4.9.5. We have the following table:

x −2 −1 0 1 2

y = 1√
2π

e− 1
2 x2

0.05 0.24 0.40 0.24 0.05
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6. We find (1.035)t = 3.91 ·105/5.1 ≈ 76666.67, and using a calculator we find t ≈ 327. So the year is 1969+327 =
2296. This is when every Zimbabwean would have only 1 m2 of land on average.

7. If the initial time is t , the doubling time t∗ is given by the equation Aat+t∗ = 2Aat , which implies Aatat∗ = 2Aat ,
so at∗ = 2, independent of t .

8. (b) and (d) do not define exponential functions. (In (f): y = (1/2)x .)

9. (a) 16(1.19)5 ≈ 38.18 (b) 4.40(1.19)10 ≈ 25.06 (c) 250 000(1.19)4 ≈ 501 335

10. Suppose y = Abx , with b > 0. Then in (a), since the graph passes through the points (x, y) = (0, 2) and
(x, y) = (2, 8), we get 2 = Ab0, or A = 2, and 8 = 2b2, so b = 2. Hence, y = 2 · 2x .
In (b), 2

3 = Ab−1 and 6 = Ab. It follows that A = 2 and b = 3, and so y = 2 · 3x .
In (c), 4 = Ab0 and 1/4 = Ab4. It follows that A = 4 and b4 = 1/16, and so b = 1/2. Thus, y = 4(1/2)x .

4.10
1. (a) ln 9 = ln 32 = 2 ln 3 (b) 1

2 ln 3 (c) ln 5
√

32 = ln 32/5 = 2
5 ln 3 (d) ln(1/81) = ln 3−4 = −4 ln 3

2. (a) ln 3x = x ln 3 = ln 8, so x = ln 8/ ln 3. (b) x = e3 (c) x2 − 4x + 5 = 1 so (x − 2)2 = 0. Hence, x = 2.
(d) x(x − 2) = 1 or x2 − 2x − 1 = 0, so x = 1 ± √

2. (e) x = 0 or ln(x + 3) = 0, so x = 0 or x = −2.
(f)

√
x − 5 = 1 so x = 36.

3. (a) x = − ln 2/ ln 12 (b) x = e6/7 (c) x = ln(8/3)/ ln(4/3) (d) x = 4 (e) x = e (f) x = 1/27

4. (a) t = 1

r − s
ln

B

A
(b) t ≈ 22

5. (a) False. (Let A = e.) (b) 2 ln
√

B = 2 ln B1/2 = 2(1/2) ln B = ln B. (c) ln A10 − ln A4 = 10 ln A − 4 ln A =
6 ln A = 3 · 2 ln A = 3 ln A2.

6. (a) Wrong. (Put A = B = C = 1.) (b) Correct by rule (2)(b). (c) Correct. (Use (2)(b) twice.)
(d) Wrong. (If A = e and p = 2, then the equality becomes 0 = ln 2.) (e) Correct by (2)(c).
(f) Wrong. (Put A = 2, B = C = 1.)

7. (a) exp
[
ln(x)

]− ln
[
exp(x)

] = eln x − ln ex = x − x = 0 (b) ln
[
x4 exp(−x)

] = 4 ln x − x (c) x2/y2

Review Problems for Chapter 4
1. (a) f (0) = 3, f (−1) = 30, f (1/3) = 2, f (

3
√

2) = 3 − 27(21/3)3 = 3 − 27 · 2 = −51
(b) f (x) + f (−x) = 3 − 27x3 + 3 − 27(−x)3 = 3 − 27x3 + 3 + 27x3 = 6

2. (a) F(0) = 1, F(−2) = 0, F(2) = 2, and F(3) = 25/13 (b) F(x) = 1 + 4

x + 4/x
tends to 1 as x becomes large

positive or negative. (c) See Fig. A4.R.2.

y

1

2

x−4 −3 −2 −1 1 2 3 4

F(x) = 1 + 4x

x2+4

y

1

2

3

x−5 −4 −3 −2 −1 1 2

Figure A4.R.2 Figure A4.R.9

3. (i) f (x) ≤ g(x) when −2 ≤ x ≤ 3. (ii) f (x) ≤ 0 when −1 ≤ x ≤ 3. (iii) g(x) ≥ 0 when x ≤ 3.
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4. (a) x2 ≥ 1, i.e. x ≥ 1 or x ≤ −1. (b) The square root is defined if x ≥ 4, but x = 4 makes the denominator 0, so
we must require x > 4. (c) We must have (x − 3)(5 − x) ≥ 0, i.e. 3 ≤ x ≤ 5 (use a sign diagram).

5. (a) C(0) = 100, C(100) = 24 100, and C(101) − C(100) = 24 542 − 24 100 = 442.
(b) C(x + 1) − C(x) = 4x + 42 is the additional cost of producing one more than x units.

6. (a) Slope −4 (b) Slope −3/4 (c) Solving for y gives y = b − (b/a)x, so the slope is −b/a.

7. (a) The point–slope formula gives y − 3 = −3(x + 2), or y = −3x − 3.

(b) The point–point formula gives y − 5 = 7 − 5

2 − (−3)
(x − (−3)), or y = 2x/5 + 31/5.

(c) y − b = 3b − b

2a − a
(x − a), or y = (2b/a)x − b.

8. f (2) = 3 and f (−1) = −3 give 2a + b = 3 and −a + b = −3, so a = 2, b = −1. Hence f (x) = 2x − 1 and
f (−3) = −7. (Or use the point–point formula.)

9. The graph is drawn in Fig. A4.R.9.

x −5 −4 −3 −2 −1 0 1

y = x2ex 0.17 0.29 0.45 0.54 0.37 0 2.7

10. (1, −3) belongs to the graph if a + b + c = −3, (0, −6) belongs to the graph if c = −6, and (3, 15) belongs to the
graph if 9a + 3b + c = 15. It follows that a = 2, b = 1, and c = −6.

11. (a) π = (1000 − 1
3 Q
)
Q − (800 + 1

5 Q
)
Q − 100Q = 100Q − 8

15 Q2. Here Q = 1500/16 = 93.75 maximizes π .

(b) π̂ = 100Q − 8
15 Q2 − 10Q = 90Q − 8

15 Q2. So Q̂ = 1350/16 = 84.375 maximizes π̂ .

12. The new profit is πt = 100Q − 5
2 Q2 − tQ, which is maximized at Qt = 1

5 (100 − t).

13. (a) The profit function is π(x) = 100x − 20x − 0.25x2 = 80x − 0.25x2, which has a maximum at x∗ = 160.
(b) The profit function is πt (x) = 80x − 0.25x2 − 10x, which has a maximum at x∗ = 140.
(c) The profit function is πt (x) = (p − t − α)x − βx2, which has a maximum at x∗ = (p − α − t)/2β.

14. (a) p(x) = x(x − 3)(x + 4) (b) q(x) = 2(x − 2)(x + 4)(x − 1/2)

15. (a) x3 − x − 1 is not 0 for x = 1, so the division leaves a remainder. (b) 2x3 − x − 1 is 0 for x = 1, so the division
leaves no remainder. (c) x3 − ax2 + bx − ab is 0 for x = a, so the division leaves no remainder.
(d) x2n − 1 is 0 for x = −1, so the division leaves no remainder.

16. We use (4.7.5). (a) p(2) = 8 − 2k = 0 for k = 4. (b) p(−2) = 4k2 + 2k − 6 = 0 for k = −3/2 and k = 1.
(c) p(−2) = −26 + k = 0 for k = 26. (d) p(1) = k2 − 3k − 4 = 0 for k = −1 and k = 4.

17. The other roots are x = −3 and x = 5.

18. (1 + p/100)15 = 2 gives p = 100(21/15 − 1) ≈ 4.7 as the percentage rate.

19. a > 0, b < 0, c < 0, p > 0, q < 0, and r < 0.

20. (a) Assume F = aC + b. Then 32 = a · 0 + b and 212 = a · 100 + b. Therefore a = 180/100 = 9/5 and b = 32,
so F = 9C/5 + 32. (b) If X = 9X/5 + 32, then X = −40.

21. (a) ln x = ln eat+b = at + b, so t = (ln x − b)/a. (b) −at = ln(1/2) = ln 1 − ln 2 = − ln 2, so t = (ln 2)/a.
(c) e− 1

2 t2 = 21/2π1/22−3, so − 1
2 t2 = 1

2 ln 2 + 1
2 ln π − 3 ln 2 = − 5

2 ln 2 + 1
2 ln π , so t2 = 5 ln 2 − ln π = ln(32/π),

and finally, t = ±
√

ln
(
32/π

)
.

22. See SM.
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Chapter 5

5.1
1. (a) y = x2 + 1 has the graph of y = x2 shifted up by 1. See Fig. A5.1.1a. (b) y = (x + 3)2 has the graph of

y = x2 moved 3 units to the left. See Fig. A5.1.1b. (c) y = 3 − (x + 1)2 has the graph of y = x2 turned upside
down, then with (0, 0) shifted to (−1, 3). See Fig. A5.1.1c.

y

x1

1

y

x−1

1

y

x−1

1

Figure A5.1.1a Figure A5.1.1b Figure A5.1.1c

2. (a) The graph of y = f (x) is moved 2 units to the right. See Fig. A5.1.2a. (b) The graph of y = f (x) is moved
downwards by 2 units. See Fig. A5.1.2b. (c) The graph of y = f (x) is reflected about the y-axis. See Fig. A5.1.2c.

y

x

1

1

y

x

1

1

y

x

1

1

Figure A5.1.2a Figure A5.1.2b Figure A5.1.2c

3. The equilibrium condition is 106−P = 10+2P , and thus P = 32. The corresponding quantity is Q = 106−32 =
74. See Fig. A5.1.3.

P

Q, D, D̃, S

32

74

P = 100 − D

P = 106 − D̃

P = 1
2 S − 5

y

x

1

−1

y

x

1

−2

Figure A5.1.3 Figure A5.1.4 Figure A5.1.5

4. Move y = |x| two units to the left. Then reflect the graph about the x-axis, and then move the graph up 2 units.
See Fig. A5.1.4.

5. Draw the graph of y = 1/x2. Move it two units to the left. Then reflect the graph about the x-axis, and then move
the graph up 2 units to get Fig. A5.1.5.
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6. f (y∗−d) = f (y∗)−c gives A(y∗−d)+B(y∗−d)2 = Ay∗+B(y∗)2 −c, or Ay∗−Ad+B(y∗)2 −2Bdy∗+Bd2 =
Ay∗ + B(y∗)2 − c. It follows that y∗ = [Bd2 − Ad + c]/2Bd.

5.2
1. See Fig. A5.2.1. 2. See Figs. A5.2.2a to A5.2.2c.

y

x

1
4 x2

1/x

Figure A5.2.1

y

x

y

x

y

x

Figure A5.2.2a Figure A5.2.2b Figure A5.2.2c

3. (f + g)(x) = 3x, (f − g)(x) = 3x − 2x3, (fg)(x) = 3x4 − x6, (f/g)(x) = 3/x2 − 1, f (g(1)) = f (1) = 2, and
g(f (1)) = g(2) = 8

4. If f (x) = 3x+7, then f (f (x)) = f (3x+7) = 3(3x+7)+7 = 9x+28. f (f (x∗)) = 100 requires 9x∗+28 = 100,
and so x∗ = 8.

5. ln(ln e) = ln 1 = 0, while (ln e)2 = 12 = 1.

5.3
1. P = 1

3 (64 − 10D) 2. P = (157.8/D)10/3

3. (a) Domain and range: �; x = −y/3. (b) Domain and range: � \ 0; x = 1/y.
(c) Domain and range: �; x = y1/3. (d) Domain [4, ∞), range [0, ∞); x = (y2 + 2)2.

4. (a) The domain of f −1 is {−4, −2, 0, 2, 4, 6, 8}. f −1(2) = −1 (b) f (x) = 2x + 4, f −1(x) = 1
2 x − 2

5. f (x) = x2 is not one-to-one over (−∞, ∞), and therefore has no inverse. Over [0, ∞), f is strictly increasing and
has therefore the inverse f −1(x) = √

x.

6. (a) f (x) = x/2 and g(x) = 2x are inverse functions. (b) f (x) = 3x − 2 and g(x) = 1
3 (x + 2) are inverse

functions. (c) C = 5
9 (F − 32) and F = 9

5 C + 32 are inverse functions.

7. f −1(C) determines the cost of C kilograms of carrots.

8. (a) See Fig. A5.3.8a. (b) See Fig. A5.3.8b. Triangles OBA and OBC are congruent. The point half-way between
the two points A and C is B = ( 1

2 (a + b), 1
2 (a + b)).
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y

x

(3, 1)

(5, 3)(1, 3)

(3, 5)

y = x

y

x

C = (b, a)

A = (a, b)

B

y = x

D

EO

Figure A5.3.8a Figure A5.3.8b

9. (a) f −1(x) = (x3 + 1)1/3 (b) f −1(x) = 2x + 1

x − 1
(c) f −1(x) = (1 − (x − 2)5

)1/3

10. (a) x = ln y − 4, y > 0 (b) x = ey+4, y ∈ (−∞, ∞) (c) x = 3 + ln(ey − 2), y > ln 2

11. We must solve x = 1
2 (ey − e−y) for y. Multiply the equation by ey to get 1

2 e2y − 1
2 = xey or e2y − 2xey − 1 = 0.

Letting ey = z yields z2 − 2xz − 1 = 0, with solution z = x ± √
x2 + 1. The minus sign makes z negative, so

z = ey = x + √
x2 + 1. This gives y = ln

(
x + √

x2 + 1
)

as the inverse function.

5.4

1. (a) Some solutions include
(
0, ±√

3
)
,
(±√

6, 0
)
, and

(±√
2, ±√

2
)
. See Fig. A5.4.1a.

(b) Some solutions include (0, ±1),
(±1, ±√

2
)
, and

(±3, ±√
10
)
. See Fig. A5.4.1b.

2. We see that we must have x ≥ 0 and y ≥ 0. If (a, b) lies on the graph, so does (b, a), so the graph is symmetric
about the line y = x and includes the points (25, 0), (0, 25), and (25/4, 25/4). See Fig. A5.4.2.

3. F(100 000) = 4070. The graph is the thick line sketched in Fig. A5.4.3.

y

−2

−1

1

2

x−3 −2 −1 1 2 3

y

−2

−1

1

2

x−3 −2 −1 1 2 3

y

25

x25

Figure A5.4.1a Figure A5.4.1b Figure A5.4.2

5.5

1. (a)
√

(2 − 1)2 + (4 − 3)2 = √
2 (b)

√
5 (c) 1

2

√
205 (d)

√
x2 + 9 (e) 2|a| (f) 2

√
2

2. (5 − 2)2 + (y − 4)2 = 13, or y2 − 8y + 12 = 0, with solutions y = 2 and y = 6. Geometric explanation: The
circle with centre at (2, 4) and radius

√
13 intersects the line x = 5 at two points. See Fig. A5.5.2.
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Y

RN

4070

7500 100 000

y

x5

(2, 4)

2

2

Figure A5.4.3 Figure A5.5.2

3. (a) 5.362 (b)
√

(2π)2 + (2π − 1)2 = √
8π2 − 4π + 1 ≈ 8.209

4. (a) (x − 2)2 + (y − 3)2 = 16 (b) Since the circle has centre at (2, 5), its equation is (x − 2)2 + (y − 5)2 = r2.
Since (−1, 3) lies on the circle, (−1 − 2)2 + (3 − 5)2 = r2, so r2 = 13.

5. (a) Completing the squares yields (x + 5)2 + (y − 3)2 = 4, so the circle has centre at (−5, 3) and radius 2.
(b) (x + 3)2 + (y − 4)2 = 12, which has centre at (−3, 4) and radius

√
12 = 2

√
3.

6. The condition is that
√

(x + 2)2 + y2 = 2
√

(x − 4)2 + y2, which reduces to (x − 6)2 + y2 = 42.

7. We can write the formula as cxy − ax + dy − b = 0. Comparing with (5), A = C = 0 and B = c, so 4AC < B2

reduces to 0 < c2, that is c �= 0, precisely the condition assumed in Example 4.7.7.

8. See SM.

5.6
1. Only (c) does not define a function. (Rectangles with equal areas can have different perimeters.)

2. The function in (b) is one-to-one and has an inverse: the rule mapping each youngest child alive today to his/her
mother. (Though the youngest child of a mother with several children will have been different at different dates.)
The function in (d) is one-to-one and has an inverse: the rule mapping the surface area to the volume. The function
in (e) is one-to-one and has an inverse: the rule that maps (u, v) to (u − 3, v). The function in (a) is many-to-one,
in general, and so has no inverse.

Review Problems for Chapter 5
1. The shifts of y = |x| are the same as those of y = x2 in Problem 5.1.1. See Figs. A5.R.1(a)–(c).

y

x

y = |x| + 1

y

x

y = |x + 3|
y

x

y = 3 − |x + 1|

Figure A5.R.1a Figure A5.R.1b Figure A5.R.1c

2. (f + g)(x) = x2 − 2, (f − g)(x) = 2x3 − x2 − 2, (fg)(x) = x2(1 − x)(x3 − 2), (f/g)(x) = (x3 − 2)/x2(1 − x),
f (g(1)) = f (0) = −2, and g(f (1)) = g(−1) = 2.
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3. (a) Equilibrium condition: 150 − 1
2 P ∗ = 20 + 2P ∗, which gives P ∗ = 52 and Q∗ = 20 + 2P ∗ = 124.

(b) S = 20 + 2(P̂ − 2) = 16 + 2P̂ , so S = D when 5P̂ /2 = 134. Hence P̂ = 53.6, Q̂ = 123.2.
(c) Before the tax, R∗ = P ∗Q∗ = 6448. After the tax, R̂ = (P̂ − 2)Q̂ = 51.6 · 123.2 = 6357.12.

4. P = (64 − 10D)/3 5. P = 24 − 1
5 D

6. (a) x = 50 − 1
2 y (b) x = 5

√
y/2 (c) x = 1

3 [2 + ln(y/5)], y > 0

7. (a) y = ln(2 + ex−3), x ∈ � (b) y = − 1

λ
ln a − 1

λ
ln

(
1

x
− 1

)
, x ∈ (0, 1)

8. (a)
√

13 (b)
√

17 (c)
√

(2 − 3a)2 = |2 − 3a|. (Note that 2 − 3a is the correct answer only if 2 − 3a ≥ 0, i.e.
a ≤ 2/3. Test by putting a = 3.)

9. (x − 2)2 + (y + 3)2 = 25 (b) (x + 2)2 + (y − 2)2 = 65

10. (x − 3)2 + (y − 2)2 = (x − 5)2 + (y + 4)2, which reduces to x − 3y = 7. See Fig. A5.R.10.
y

x

A = (3, 2)

B = (5, −4)

2

2

P

Figure A5.R.10

11. The function cannot be one-to-one, because at least two persons out of any five must have the same blood group.

Chapter 6

6.1
1. f (3) = 2. The tangent passes through (0, 3), so has slope −1/3. Thus, f ′(3) = −1/3. 2. g(5) = 1, g′(5) = 1

6.2
1. f (5+h)−f (5) = 4(5+h)2−4·52 = 4(25+10h+h2)−100 = 40h+4h2. So [f (5+h)−f (5)]/h = 40+4h → 40

as h → 0. Hence, f ′(5) = 40. This accords with (6) when a = 4 and b = c = 0.

2. (a) f ′(x) = 6x + 2 (b) f ′(0) = 2, f ′(−2) = −10, f ′(3) = 20. The tangent equation is y = 2x − 1.

3. (a) dD(P )/dP = −b (b) C ′(x) = 2qx

4.
f (x + h) − f (x)

h
= 1/(x + h) − 1/x

h
= x − (x + h)

hx(x + h)
= −h

hx(x + h)
= −1

x(x + h)
−→
h→0

− 1

x2

5. (a) f ′(0) = 3 (b) f ′(1) = 2 (c) f ′(3) = −1/3 (d) f ′(0) = −2 (e) f ′(−1) = 0 (f) f ′(1) = 4

6. (a) f (x +h)−f (x) = a(x +h)2 +b(x +h)+ c− (ax2 +bx + c) = 2ahx +bh+ah2, so [f (x +h)−f (x)]/h =
2ax + b + ah → 2ax + b as h → 0. Thus f ′(x) = 2ax + b.
(b) f ′(x) = 0 for x = −b/2a. The tangent is parallel to the x-axis at the minimum/maximum point.
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7. f ′(a) < 0, f ′(b) = 0, f ′(c) > 0, f ′(d) < 0

8. (a) Expand the left-hand side. (b) Use the identity in (a). (c) Letting h → 0, the formula follows. (Recall that√
x = x1/2 and 1/

√
x = x−1/2.)

9. (a) f ′(x) = 3ax2 + 2bx + c. (b) Put a = 1 and b = c = d = 0 to get the result in Example 2. Then put a = 0 to
get a quadratic expression as in Problem 6(a).

10.
(x + h)1/3 − x1/3

h
= 1

(x + h)2/3 + (x + h)1/3x1/3 + x2/3
→ 1

3x2/3
as h → 0, and 1

3x2/3 = 1
3 x−2/3.

6.3
1. f ′(x) = 2x − 4, so f (x) is decreasing in (−∞, 2], increasing in [2, ∞).

2. f ′(x) = −3x2 + 8x − 1 = −3(x − x0)(x − x1), where x0 = 1
3 (4 − √

13) ≈ 0.13 and x1 = 1
3 (4 + √

13) ≈ 2.54.
Then f (x) is decreasing in (−∞, x0], increasing in [x0, x1], and decreasing in [x1, ∞).

3. If x2 > x1, then x3
2 − x3

1 = (x2 − x1)
[(

x1 + 1
2 x2
)2 + 3

4 x2
2

]
> 0, since the bracket is positive. This shows that

f (x) = x3 is strictly increasing.

6.4
1. C ′(100) = 203 and C ′(x) = 2x + 3.

2. I is the fixed cost, whereas k is the marginal cost, and also the (constant) incremental cost of producing each
additional unit.

3. (a) S ′(Y ) = b (b) S ′(Y ) = 0.1 + 0.0004Y 4. T ′(y) = t , so the marginal tax rate is constant.

5. ẋ(0) = −3: During the first minute approximately 3 barrels are extracted.

6. (a) C ′(x) = 3x2 − 180x + 7500 (b) x = 30. (C ′(x) has a minimum at x = 180/6 = 30, using (4.6.3).)

7. (a) π ′(Q) = 24 − 2Q. Q∗ = 12. (b) R′(Q) = 500 − Q2 (c) C ′(Q) = −3Q2 + 428.4Q − 7900

8. (a) C ′(x) = 2a1x + b1. (b) C ′(x) = 3a1x
2.

6.5
1. (a) 3 (b) −1/2 (c) 133 = 2197 (d) 40 (e) 1 (f) −3/4

2. (a) 0.6931 (b) 1.0986 (c) 0.4055 (Actually, using the result in Example 7.12.2, the precise values of these limits
are ln 2, ln 3, and ln(3/2), respectively.)

3. (a)

x 0.9 0.99 0.999 1 1.001 1.01 1.1

x2 + 7x − 8

x − 1
8.9 8.99 8.999 ∗ 9.001 9.01 9.1

*not defined

(b) x2 + 7x − 8 = (x − 1)(x + 8), so (x2 + 7x − 8)/(x − 1) = x + 8 → 9 as x → 1.

4. (a) 5 (b) 1/5 (c) 1 (d) −2 (e) 3x2 (f) h2

5. (a) 1/6 (b) −∞ (does not exist). (c) 2 (d)
√

3/6 (e) −2/3 (f) 1/4

6. (a) 4 (b) 5 (c) 6 (d) 2a + 2 (e) 2a + 2 (f) 4a + 4



Essential Math. for Econ. Analysis, 4th edn EME4_Z01.TEX, 16 May 2012, 14:24 Page 672

672 A N S W E R S T O T H E P R O B L E M S

7. (a) x3 − 8 = (x − 2)(x2 + 2x + 4), so the limit is 1/6. (b) limh→0[ 3
√

27 + h− 3]/h = limu→3(u− 3)/(u3 − 27),
and u3 − 27 = (u − 3)(u2 + 3u + 9), so the limit is 1/27. (c) xn − 1 = (x − 1)(xn−1 + xn−2 + · · · + x + 1), so
the limit is n.

6.6
1. (a) 0 (b) 4x3 (c) 90x9 (d) 0. (Remember that π is a constant!) 2. (a) 2g′(x) (b) − 1

6 g′(x) (c) 1
3 g′(x)

3. (a) 6x5 (b) 33x10 (c) 50x49 (d) 28x−8 (e) x11 (f) 4x−3 (g) −x−4/3 (h) 3x−5/2

4. (a) 8πr (b) A(b + 1)yb (c) (−5/2)A−7/2

5. In (6.2.1) (the definition of the derivative), choose h = x − a so that a + h is replaced by x, and h → 0 implies
x → a. For f (x) = x2 we get f ′(a) = 2a.

6. (a) F(x) = 1
3 x3 + C (b) F(x) = x2 + 3x + C (c) F(x) = xa+1/(a + 1) + C. (In all cases C is an arbitrary

constant.)

7. (a) With f (x) = x2 and a = 5, lim
h→0

(5 + h)2 − 52

h
= lim

h→0

f (a + h) − f (a)

h
= f ′(a) = f ′(5). On the other hand,

f ′(x) = 2x, so f ′(5) = 10, so the limit is 10. (b) Let f (x) = x5. Then f ′(x) = 5x4, and the limit is equal to
f ′(1) = 5 · 14 = 5. (c) Let f (x) = 5x2 + 10. Then f ′(x) = 10x, and this is the value of the limit.

6.7
1. (a) 1 (b) 1 + 2x (c) 15x4 + 8x3 (d) 32x3 + x−1/2 (e) 1

2 − 3x + 15x2 (f) −21x6

2. (a) 6
5 x − 14x6 − 1

2 x−1/2 (b) 4x(3x4 − x2 − 1) (c) 10x9 + 5x4 + 4x3 − x−2. (Expand and differentiate.)

3. (a) −6x−7 (b) 3
2 x1/2 − 1

2 x−3/2 (c) −(3/2)x−5/2 (d) −2/(x − 1)2 (e) −4x−5 − 5x−6 (f) 34/(2x + 8)2

(g) −33x−12 (h) (−3x2 + 2x + 4)/(x2 + x + 1)2

4. (a)
3

2
√

x(
√

x + 1)2
(b)

4x

(x2 + 1)2
(c)

−2x2 + 2

(x2 − x + 1)2

5. (a) f ′(L∗) < f (L∗)/L∗. See Figure A6.7.5. The tangent at P has the slope f ′(L∗). We “see” that the tangent at
P is less steep than the straight line from the origin to P , which has the slope f (L∗)/L∗ = g(L∗). (The inequality
follows directly from the characterization of differentiable concave functions in FMEA, Theorem 2.4.1.)
(b) d

dL
(f (L)/L) = 1

L
(f ′(L) − f (L)/L), as in Example 6.

P

y

L

y = f (L)

f (L∗)

L∗

Figure A6.7.5

6. (a) [2, ∞) (b)
[−√

3, 0
]

and
[√

3, ∞) (c)
[−√

2,
√

2
]

(d) (−∞, 1
2 (−1 − √

5)] and [0, 1
2 (−1 + √

5)].

7. (a) y = −3x + 4 (b) y = x − 1 (c) y = (17x − 19)/4 (d) y = −(x − 3)/9
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8. Ṙ(t) = ṗ(t)x(t) + p(t)ẋ(t). R(t) increases for two reasons. First, R(t) increases because of the price increase.
This increase is proportional to the amount of extraction x(t) and is equal to ṗ(t)x(t). But R(t) also rises because
extraction increases. Its contribution to the rate of change of R(t) must be proportional to the price, and is equal to
p(t)ẋ(t). Ṙ(t), the total rate of change of R(t), is the sum of these two parts.

9. (a) (ad − bc)/(ct + d)2 (b) a
(
n + 1

2

)
tn−1/2 + nbtn−1 (c) −(2at + b)/(at2 + bt + c)2

10. The product rule yields f ′(x) ·f (x)+f (x) ·f ′(x) = 1, so 2f ′(x) ·f (x) = 1. Hence, f ′(x) = 1/2f (x) = 1/2
√

x.

11. If f (x) = 1/xn, the quotient rule yields f ′(x) = (0 · xn − 1 · nxn−1)/(xn)2 = −nx−n−1, which is the power rule.

6.8
1. (a) dy/dx = (dy/du)(du/dx) = 20u4−1 du/dx = 20(1 + x2)32x = 40x(1 + x2)3

(b) dy/dx = (1 − 6u5) (du/dx) = (−1/x2)
(
1 − 6(1 + 1/x)5

)
2. (a) dY/dt = (dY/dV )(dV/dt) = (−3)5(V + 1)4t2 = −15t2(t3/3 + 1)4

(b) dK/dt = (dK/dL)(dL/dt) = AaLa−1b = Aab(bt + c)a−1

3. (a) y ′ = −5(x2 + x + 1)−6(2x + 1) (b) y ′ = 1
2

[
x + (x + x1/2)1/2

]−1/2(
1 + 1

2 (x + x1/2)−1/2
(
1 + 1

2 x−1/2
))

(c) y ′ = axa−1(px + q)b + xabp(px + q)b−1 = xa−1(px + q)b−1[(a + b)px + aq]

4. (dY/dt)t=t0 = (dY/dK)t=t0 · (dK/dt)t=t0 = Y ′(K(t0))K
′(t0) 5. dY/dt = F ′(h(t)

) · h′(t)

6. x = b − √
ap − c = b − √

u, with u = ap − c. Then
dx

dp
= − 1

2
√

u
u′ = − a

2
√

ap − c
.

7. (i) h′(x) = f ′(x2)2x (ii) h′(x) = f ′(xng(x)
)(

nxn−1g(x) + xng′(x)
)

8. b(t) is the total fuel consumption after t hours. b′(t) = B ′(s(t))s ′(t), so the rate of fuel consumption per hour is
equal to the rate per kilometre multiplied by the speed in kph.

9. dC/dx = q
(
25 − 1

2 x
)−1/2

10. (a) y ′ = 5(x4)4 · 4x3 = 20x19 (b) y ′ = 3(1 − x)2(−1) = −3 + 6x − 3x2

11. (a) (i) g(5) is the amount accumulated if the interest rate is 5 % per year. (ii) g′(5) is (very roughly) the increase
in the accumulated value if the interest rate increases by 1%. (g′(5) ≈ [g(5.1) − g(5)]/0.1) ≈ 154.8 gives a better
approximation.) (b) g(p) = 1000(1 + p/100)10 is the final amount after 10 years if the interest rate was p% per
year. g(5) = 1000(1+5/100)10 ≈ 1629. Moreover, g′(p) = 1000 ·10(1+p/100)9 ·1/100 = 100 · (1+p/100)9,
so g′(5) = 100 · (1 + 5/100)9 ≈ 155.

12. (a) 1 + f ′(x) (b) 2f (x)f ′(x) − 1 (c) 4
[
f (x)

]3
f ′(x) (d) 2xf (x) + x2f ′(x) + 3

[
f (x)

]2
f ′(x)

(e) f (x) + xf ′(x) (f) f ′(x)/2
√

f (x) (g) [2xf (x) − x2f ′(x)]/(f (x))2 (h) [2xf (x)f ′(x) − 3(f (x))2]/x4

6.9
1. (a) y ′′ = 20x3 −36x2 (b) y ′′ = (−1/4)x−3/2 (c) y ′ = 20x(1+x2)9, y ′′ = 20(1+x2)9 +20x ·9 ·2x(1+x2)8 =

20(1 + x2)8(1 + 19x2)

2. d2y/dx2 = (1 + x2)−1/2 − x2(1 + x2)−3/2 = (1 + x2)−3/2

3. (a) y ′′ = 18x (b) Y ′′′ = 36 (c) d3z/dt3 = −2 (d) f (4)(1) = 84 000

4. g′(t) = 2t (t − 1) − t2

(t − 1)2
= t2 − 2t

(t − 1)2
, g′′(t) = 2

(t − 1)3
, so g′′(2) = 2.

5. With simplified notation: y ′ = f ′g + fg′, y ′′ = f ′′g + f ′g′ + f ′g′ + fg′′ = f ′′g + 2f ′g′ + fg′′, y ′′′ =
f ′′′g + f ′′g′ + 2f ′′g′ + 2f ′g′′ + f ′g′′ + fg′′′ = f ′′′g + 3f ′′g′ + 3f ′g′′ + fg′′′.

6. L = (2t − 1)−1/2, so dL/dt = − 1
2 · 2(2t − 1)−3/2 = −(2t − 1)−3/2, so d2L/dt2 = 3(2t − 1)−5/2.
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7. (a) R = 1/2 (b) R = 3 (c) R = ρ 8. Because g(u) is not concave.

9. The defence secretary: P ′ < 0. Gray: P ′ ≥ 0 and P ′′ < 0. 10. d3L/dt3 > 0

6.10

1. (a) y ′ = ex + 2x (b) y ′ = 5ex − 9x2 (c) y ′ = (1 · ex − xex)/e2x = (1 − x)e−x

(d) y ′ = [(1 + 2x)(ex + 1) − (x + x2)ex]/(ex + 1)2 = [1 + 2x + ex(1 + x − x2)]/(ex + 1)2

(e) y ′ = −1 − ex (f) y ′ = x2ex(3 + x) (g) y ′ = ex(x − 2)/x3 (h) y ′ = 2(x + ex)(1 + ex)

2. (a) dx/dt = (b + 2ct)et + (a + bt + ct2)et = (a + b + (b + 2c)t + ct2)et

(b)
dx

dt
= 3qt2tet − (p + qt3)(1 + t)et

t2e2t
= −qt4 + 2qt3 − pt − p

t2et

(c) x ′ = [2(at + bt2)(a + 2bt)et − (at + bt2)2et ]/(et )2 = [t (a + bt)(−bt2 + (4b − a)t + 2a)]e−t

3. (a) y ′ = −3e−3x , y ′′ = 9e−3x (b) y ′ = 6x2ex3
, y ′′ = 6xex3

(3x3 + 2) (c) y ′ = −x−2e1/x , y ′′ = x−4e1/x(2x + 1)

(d) y ′ = 5(4x − 3)e2x2−3x+1, y ′′ = 5e2x2−3x+1(16x2 − 24x + 13)

4. (a) (−∞, ∞) (b) [0, 1/2] (c) (−∞, −1] and [0, 1]

5. (a) y ′ = 2xe−2x(1 − x). y is increasing in [0, 1]. (b) y ′ = ex(1 − 3e2x). y is increasing in (−∞, − 1
2 ln 3].

(c) y ′ = (2x + 3)e2x/(x + 2)2. y is increasing in [−3/2, ∞).

6. (a) eex
ex = eex+x (b) 1

2 (et/2 − e−t/2) (c) − et − e−t

(et + e−t )2
(d) z2ez3

(ez3 − 1)−2/3

7. (a) y ′ = 5x ln 5 (b) y ′ = 2x + x2x ln 2 = 2x(1 + x ln 2) (c) y ′ = 2x2x2
(1 + x2 ln 2)

(d) y ′ = ex10x + ex10x ln 10 = ex10x(1 + ln 10)

6.11

1. (a) y ′ = 1/x + 3, y ′′ = −1/x2 (b) y ′ = 2x − 2/x, y ′′ = 2 + 2/x2 (c) y ′ = 3x2 ln x + x2, y ′′ = x(6 ln x + 5)

(d) y ′ = (1 − ln x)/x2, y ′′ = (2 ln x − 3)/x3

2. (a) x2 ln x(3 ln x + 2) (b) x(2 ln x − 1)/(ln x)2 (c) 10(ln x)9/x (d) 2 ln x/x + 6 ln x + 18x + 6

3. (a) 1/(x ln x) (b) −x/(1 − x2) (c) ex (ln x + 1/x) (d) ex3(
3x2 ln x2 + 2/x

)
(e) ex/(ex + 1)

(f) (2x + 3)/(x2 + 3x − 1) (g) −2ex(ex − 1)−2 (h (4x − 1)e2x2−x

4. (a) x > −1 (b) 1/3 < x < 1 (c) x �= 0 5. (a) |x| > 1 (b) x > 1 (c) x �= ee and x > 1

6. (a) (−2, 0]. (y is defined only in (−2, 2).) (b) [e−1/3, ∞). (y ′ = x2(3 ln x + 1), x > 0.)
(c) [e, e3]. (y ′ = (1 − ln x)(ln x − 3)/2x2, x > 0.)

7. (a) (i) y = x −1 (ii) y = 2x −1− ln 2 (iii) y = x/e (b) (i) y = x (ii) y = 2ex −e (iii) y = −e−2x −4e−2

8. (a) f ′(x)/f (x) = −2/3(x2 − 1) (b) f ′(x)/f (x) = 2 ln x + 2
(c) f ′(x)/f (x) = 1/(2x − 4) + 2x/(x2 + 1) + 4x3/(x4 + 6)

9. (a) (2x)x(1 + ln 2 + ln x) (b) x
√

x− 1
2
(

1
2 ln x + 1

)
(c) 1

2

(√
x
)x

(ln x + 1)

10. ln y = v ln u, so y ′/y = v′ ln u + vu′/u and therefore y ′ = uv(v′ ln u + vu′/u). (Alternative: y = (eln u)v = ev ln u,
and then use the chain rule.)

11. (a) Let f (x) = ex − (1 + x + 1
2 x2). Then f (0) = 0 and f ′(x) = ex − (1 + x) > 0 for all x > 0, as shown in the

problem. Hence f (x) > 0 for all x > 0, and the inequality follows. For (b) and (c) see SM.
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Review Problems for Chapter 6
1. [f (x + h) − f (x)]/h = [(x + h)2 − (x + h) + 2 − x2 + x − 2]/h = [2xh + h2 − h]/h = 2x + h − 1 → 2x − 1

as h → 0, so f ′(x) = 2x − 1.

2. [f (x + h) − f (x)]/h = −6x2 + 2x − 6xh − 2h2 + h → −6x2 + 2x as h → 0, so f ′(x) = −6x2 + 2x.

3. (a) y ′ = 2, y ′′ = 0 (b) y ′ = 3x8, y ′′ = 24x7 (c) y ′ = −x9, y ′′ = −9x8 (d) y ′ = 21x6, y ′′ = 126x5

(e) y ′ = 1/10, y ′′ = 0 (f) y ′ = 5x4 + 5x−6, y ′′ = 20x3 − 30x−7 (g) y ′ = x3 + x2, y ′′ = 3x2 + 2x

(h) y ′ = −x−2 − 3x−4, y ′′ = 2x−3 + 12x−5

4. Because C ′(1000) ≈ C(1001) − C(1000), if C ′(1000) = 25, the additional cost of producing 1 more than 1000
units is approximately 25. It is profitable to increase production if each unit is sold for 30.

5. (a) y = −3 and y ′ = −6x = −6 at x = 1, so y − (−3) = (−6)(x − 1), or y = −6x + 3.
(b) y = −14 and y ′ = 1/2

√
x − 2x = −31/4 at x = 4, so y = −(31/4)x + 17.

(c) y = 0 and y ′ = (−2x3 − 8x2 + 6x)/(x + 3)2 = −1/4 at x = 1, so y = (−1/4)(x − 1).

6. A′(100) ≈ A(101)−A(100), so the additional cost of increasing the area from 100 to 101 m2 is approximately $250.

7. (a) f (x) = x3 +x, so f ′(x) = 3x2 +1. (b) g′(w) = −5w−6 (c) h(y) = y(y2 −1) = y3 −y, so h′(y) = 3y2 −1.
(d) G′(t) = (−2t2 − 2t + 6)/(t2 + 3)2 (e) ϕ′(ξ) = (4 − 2ξ 2)/(ξ 2 + 2)2 (f) F ′(s) = −(s2 + 2)/(s2 + s − 2)2

8. (a) 2at (b) a2 − 2t (c) 2xϕ − 1/2
√

ϕ

9. (a) y ′ = 20uu′ = 20(5 − x2)(−2x) = 40x3 − 200x (b) y ′ = 1

2
√

u
· u′ = −1

2x2
√

1/x − 1

10. (a) dZ/dt = (dZ/du)(du/dt) = 3(u2 − 1)22u3t2 = 18t5(t6 − 1)2

(b) dK/dt = (dK/dL)(dL/dt) = (1/2
√

L)(−1/t2) = −1/2t2√1 + 1/t

11. (a) ẋ/x = 2ȧ/a + ḃ/b (b) ẋ/x = αȧ/a + βḃ/b (c) ẋ/x = (α + β)(αaα−1ȧ + βbβ−1ḃ)/(aα + bβ)

12. dR/dt = (dR/dS)(dS/dK)(dK/dt) = αSα−1βγKγ−1Aptp−1 = Aαβγptp−1Sα−1Kγ−1

13. (a) h′(L) = apLa−1(La + b)p−1 (b) C ′(Q) = a + 2bQ (c) P ′(x) = ax1/q−1(ax1/q + b)q−1

14. (a) y ′ = −7ex (b) y ′ = −6xe−3x2
(c) y ′ = xe−x(2 − x) (d) y ′ = ex[ln(x2 + 2) + 2x/(x2 + 2)]

(e) y ′ = 15x2e5x3
(f) y ′ = x3e−x(x − 4) (g) y ′ = 10(ex + 2x)(ex + x2)9 (h) y ′ = 1/2

√
x(

√
x + 1)

15. (a) Increases in [1, ∞). (b) Increases when x ≥ 0. (c) Increases in (−∞, 1] and in [2, ∞).

16. (a) dπ/dQ = P(Q) + QP ′(Q) − c (b) dπ/dL = PF ′(L) − w

Chapter 7
7.1

1. Differentiating w.r.t. x yields (∗) 6x + 2y ′ = 0, so y ′ = −3x. Solving the given equation for y yields y =
5/2 − 3x2/2, and then y ′ = −3x.

2. Implicit differentiation yields (∗) 2xy + x2(dy/dx) = 0, and so dy/dx = −2y/x. Differentiating (∗) implicitly
w.r.t. x gives 2y + 2x(dy/dx) + 2x(dy/dx) + x2(d2y/dx2) = 0. Inserting the result for dy/dx, and simplifying
yields d2y/dx2 = 6y/x2. These results follows more easily by differentiating y = x−2 twice.

3. (a) y ′ = (1 + 3y)/(1 − 3x) = −5/(1 − 3x)2, y ′′ = 6y ′/(1 − 3x) = −30/(1 − 3x)3

(b) y ′ = 6x5/5y4 = (6/5)x1/5, y ′′ = 6x4y−4 − (144/25)x10y−9 = (6/25)x−4/5

4. 2u + v + u(dv/du) − 3v2(dv/du) = 0, so dv/du = (2u + v)/(3v2 − u). Hence dv/du = 0 when v = −2u

(provided 3v2 − u �= 0). Substituting for v in the original equation yields 8u3 − u2 = 0. So the only point on the
curve where dv/du = 0 and u �= 0 is (u, v) = (1/8, −1/4).
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5. Differentiating w.r.t. x yields (∗) 4x + 6y + 6xy ′ + 2yy ′ = 0, so y ′ = −(2x + 3y)/(3x + y) = −8/5 at (1, 2).
Differentiating (∗) w.r.t. x yields 4 + 6y ′ + 6y ′ + 6xy ′′ + 2(y ′)2 + 2yy ′′ = 0. Substituting x = 1, y = 2, and
y ′ = −8/5 yields y ′′ = 126/125.

6. (a) 2x + 2yy ′ = 0, and solve for y ′ to get y ′ = −x/y. (b) 1/2
√

x + y ′/2
√

y = 0, and solve for y ′ to get
y ′ = −√

y/x. (c) 4x3 − 4y3y ′ = 2xy3 + x23y2y ′, and solve for y ′ to get y ′ = 2x(2x2 − y3)/y2(3x2 + 4y).
(d) exy(y + xy ′) − 2xy − x2y ′ = 0, and solve for y ′ to get y ′ = y(2x − exy)/x(exy − x).

7. (∗) 2y + 2xy ′ − 6yy ′ = 0. Inserting x = 6, y = 1 yields 2 + 12y ′ − 6y ′ = 0, so y ′ = −1/3. Differentiating (∗)

w.r.t. x yields 2y ′ + 2y ′ + 2xy ′′ − 6y ′y ′ − 6yy ′′ = 0. Inserting x = 6, y = 1, and y ′ = −1/3 gives y ′′ = 1/3.

8. (a) y ′ = g′(x) − y

x − 3y2
(b) y ′ = 2x − g′(x + y)

g′(x + y) − 2y
(c) y ′ = 2y(xg′(x2y) − xy − 1)

x(2xy + 2 − xg′(x2y))

9. Differentiation w.r.t. x yields 3x2F(xy)+ x3F ′(xy)(y +xy ′)+ exy(y +xy ′) = 1. Then put x = 1, y = 0 to obtain
y ′ = 1/(F ′(0) + 1). (Note that F is a function of only one variable, with argument xy.)

10. (a) y ′ = x[a2 − 2(x2 + y2)]

y[2(x2 + y2) + a2]
(b) (± 1

4 a
√

6, ± 1
4 a

√
2), where all four sign combinations are allowed.

7.2
1. Implicit differentiation w.r.t. P , with Q as a function of P , yields (dQ/dP ) · P 1/2 + Q 1

2 P −1/2 = 0. Thus
dQ/dP = − 1

2 QP −1 = −19/P 3/2.

2. (a) 1 = C ′′(Q∗)(dQ∗/dP ), so dQ∗/dP = 1/C ′′(Q∗) (b) dQ∗/dP > 0, which is reasonable because if the price
received by the producer increases, the optimal production should increase.

3. Taking first the natural logarithm on both sides yields ln A − α ln P − β ln r = ln S. Differentiating with respect to
r we have −(α/P )(dP/dr) − β/r = 0. It follows that dP/dr = −(β/α)(P/r) < 0. So a rise in the interest rate
depresses demand, and the price falls to compensate.

4. (a) Y = f (Y ) + I + X̄ − g(Y ), dY/dI = 1/
[
1 − f ′(Y ) + g′(Y )

]
. If g′(Y ) > 0, then dY/dI > 0.

(b) d2Y/dI 2 = (f ′′ − g′′)/(1 − f ′ + g′)3

5. Differentiating (∗) w.r.t. P yields f ′′(P +t)
(
dP/dt+1

)2+f ′(P +t)d2P/dt2 = g′′(P )
(
dP/dt

)2+g′(P )d2P/dt2.
With simplified notation f ′′(P ′ + 1)2 + f ′P ′′ = g′′(P ′)2 + g′P ′′. Substituting P ′ = f ′/(g′ − f ′) and solving for
P ′′, we get P ′′ = [f ′′(g′)2 − g′′(f ′)2]/(g′ − f ′)3.

6. (a) Differentiating (∗) w.r.t. t yields f ′(P )(dP/dt) = g′((1 − t)P )[−P + (1 − t)(dP/dt)], and so

dP

dt
= −Pg′((1 − t)P )

f ′(P ) − (1 − t)g′((1 − t)P )

(b) The numerator as well as the denominator is negative, so dP/dt is positive. Increasing the tax on the producers
increases the price.

7.3
1. f (1) = 1 and f ′(x) = 2e2x−2 = 2 for x = 1. So according to (3), g′(1) = 1/f ′(1) = 1/2. The inverse function

is g(x) = 1 + 1
2 ln x, so g′(x) = 1/2x = 1/2 for x = 1.

2. (a) f ′(x) = x2
√

4 − x2+ 1

3
x3 −2x

2
√

4 − x2
= 4x2(3 − x2)

3
√

4 − x2
. f increases in [−√

3,
√

3 ], and decreases in [−2, −√
3 ]

and in [
√

3, 2]. See Fig. A7.3.2. (b) f has an inverse in the interval [0,
√

3] because f is strictly increasing there.
g′( 1

3

√
3 ) = 1/f ′(1) = 3

√
3/8.
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y
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−1

1

2
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y

x

1

2

−1 1 2

y = 1 + 1
2 x

y = √
1 + x

Figure A7.3.2 Figure A7.4.1

3. (a) f ′(x) = ex−3/(ex−3 + 2) > 0 for all x, so f is strictly increasing. f (x) → ln 2 as x → −∞ and f (x) → ∞
as x → ∞, so the range of f is (ln 2, ∞). (b) g(x) = 3 + ln(ex − 2), defined on the range of f .
(c) f ′(3) = 1/g′(f (3)) = 1/3

4. dD/dP = −0.3 · 157.8P −1.3 = −47.34P −1.3, so dP/dD = 1/(dD/dP ) ≈ −0.021P 1.3.

5. (a) dx/dy = −ex+5 = −1/y (b) dx/dy = −1 − 3ex (c) dx/dy = x(3y2 − x2)/(2 + 3x2y − y3)

7.4
1. If f (x) = √

1 + x, then f ′(x) = 1/(2
√

1 + x ), so f (0) = 1 and f ′(0) = 1/2. Hence, (1) gives
√

1 + x ≈
1 + 1

2 (x − 0) = 1 + 1
2 x. See Fig. A7.4.1.

2. (5x + 3)−2 ≈ 1/9 − 10x/27. (f (0) = 1/9, f ′(x) = −10(5x + 3)−3, so f ′(0) = −10/27.)

3. (a) (1 + x)−1 ≈ 1 − x (b) (1 + x)5 ≈ 1 + 5x (c) (1 − x)1/4 ≈ 1 − 1
4 x

4. F(1) = A and F ′(K) = αAKα−1, so F ′(1) = αA. Then F(K) ≈ F(1) + F ′(1)(K − 1) = A + αA(K − 1)=
A(1 + α(K − 1)).

5. (a) 30x2 dx (b) 15x2 dx − 10x dx + 5 dx (c) −3x−4 dx (d) (1/x) dx (e) (pxp−1 + qxq−1) dx

(f) (p + q)xp+q−1 dx (g) rp(px + q)r−1 dx (h) (pepx + qeqx)dx

6. (a) If f (x) = (1+x)m, then f (0) = 1 and f ′(0) = m, so 1+mx is the linear approximation to f (x) about x = 0.
(b) (i) 3

√
1.1 = (1 + 1/10)1/3 ≈ 1 + (1/3)(1/10) ≈ 1.033 (ii) 5

√
33 = 2(1 + 1/32)1/5 ≈ 2(1 + 1/160) = 2.0125

(iii) 3
√

9 = 2(1 + 1/8)1/3 ≈ 2(1 + 1/24) ≈ 2.083 (iv) (0.98)25 = (1 − 0.02)25 = (1 − 1/50)25 ≈ 1 − 1/2 = 1/2

7. (a) (i) 	y = 0.61, dy = 0.6 (ii) 	y = 0.0601, dy = 0.06
(b) (i) 	y = 0.011494, dy = 0.011111 (ii) 	y = 0.001115, dy = 0.001111
(c) (i) 	y = 0.012461, dy = 0.0125 (ii) 	y = 0.002498, dy = 0.0025

8. (a) y′ = −3/2 (b) y(x) ≈ − 3
2 x + 3

2

9. (a) A(r + dr) − A(r) is the shaded area in Fig. A7.4.9. It is approximately equal to the length of the inner circle,
2πr , times dr . (b) V (r + dr) − V (r) is the volume of the shell between the sphere with radius r + dr and the
sphere with radius r . It is approximately equal to the surface area 4πr2 of the inner sphere times the thickness dr

of the shell.

r

r + dr

Figure A7.4.9
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10. Taking logarithms, we get ln Kt = ln K + t ln(1+p/100) ≈ ln K + tp/100. If Kt = 2K , then ln Kt = ln 2+ ln K ,
and with t∗ as the doubling time, p must satisfy ln 2 ≈ t∗p/100, so p ≈ 100 ln 2/t∗. (With ln 2 ≈ 0.7, this result
accords with the “Rule of 70” in Example 3.)

11. g(0) = A−1 and g′(μ) = (Aa/(1+b)
)
(1+μ)[a/(1+b)]−1, so g′(0) = Aa/(1+b). Hence, g(μ) ≈ g(0)+g′(0)μ =

A − 1 + aAμ/(1 + b).

7.5
1. (a) (1 + x)5 ≈ 1 + 5x + 10x2. (f ′(x) = 5(1 + x)4, f ′′(x) = 20(1 + x)3, so f (0) = 1, f ′(0) = 5, f ′′(0) = 20, so

f (x) ≈ 1 + x + 1
2 20x2 = 1 + x + 10x2.) (b) AKα ≈ A + αA(K − 1) + 1

2 α(α − 1)A(K − 1)2

(c) (1 + 3
2 ε + 1

2 ε2)1/2 ≈ 1 + 3
4 ε − 1

32 ε2 (d) (1 − x)−1 ≈ 1 + x + x2. (f ′(x) = (−1)(1 − x)−2(−1) = (1 − x)−2,
f ′′(x) = 2(1 − x)−3, etc.)

2. x − 1
2 x2 + 1

3 x3 − 1
4 x4 + 1

5 x5 3. −5 + 5
2 x − 15

8 x2

4. Follows from formula (1) with f = U , a = y, x = y + M − s.

5. Implicit differentiation yields: (∗) 3x2y + x3y ′ + 1 = 1
2 y−1/2y ′. Inserting x = 0 and y = 1 gives 1 = ( 1

2

)
1−1/2y ′,

so y ′ = 2. Differentiating (∗) once more w.r.t. x yields 6xy + 3x2y ′ + 3x2y ′ + x3y ′′ = − 1
4 y−3/2(y ′)2 + 1

2 y−1/2y ′′.
Inserting x = 0, y = 1, and y ′ = 2 gives y ′′ = 2. Hence, y(x) ≈ 1 + 2x + x2.

6. We find ẋ(0) = 2[x(0)]2 = 2. Differentiating the expression for ẋ(t) yields ẍ(t) = x(t)+ t ẋ(t)+ 4[x(t)]ẋ(t), and
so ẍ(0) = x(0) + 4[x(0)]ẋ(0) = 1 + 4 · 1 · 2 = 9. Hence, x(t) ≈ x(0) + ẋ(0)t + 1

2 ẍ(0)t2 = 1 + 2t + 9
2 t2.

7. Use (5) with x = σ
√

t/n , keeping only three terms on the right-hand side.

8. Use (2) with f (x) = (1 + x)n and x = p/100. Then f ′(x) = n(1 + x)n−1 and f ′′(x) = n(n − 1)(1 + x)n−2. The
approximation follows.

9. h′(x) = (pxp−1 − qxq−1)(xp + xq) − (xp − xq)(pxp−1 + qxq−1)

(xp + xq)2
= 2(p − q)xp+q−1

(xp + xq)2
, so h′(1) = 1

2 (p − q).

Since h(1) = 0, we get h(x) ≈ h(1) + h′(1)(x − 1) = 1
2 (p − q)(x − 1).

7.6
1. From Problem 7.5.2, f (0) = 0, f ′(0) = 1, f ′′(0) = −1, and f ′′′(c) = 2(1 + c)−3. Then (3) gives f (x) =

f (0) + 1
1! f

′(0)x + 1
2! f

′′(0)x + 1
3! f

′′′(c)x3 = x − 1
2 x2 + 1

3 (1 + c)−3x3.

2. (a) 3
√

25 = 3(1 − 2/27)1/3 ≈ 3(1 − 1
3

2
27 − 1

9
4

272 ) ≈ 2.924

(b) 5
√

33 = 2(1 + 1/32)1/5 ≈ 2(1 + 1
5·32 − 2

25
1

322 ) ≈ 2.0125

3. (1+1/8)1/3 = 1+1/24−1/576+R3(1/8), where 0 < R3(1/8) < 5/(81·83). Thus, 3
√

9 = 2(1+1/8)1/3 ≈ 2.080,
with three correct decimals.

4. (a) 1 + 1
3 x − 1

9 x2 (b) and (c) see SM.

7.7
1. In each case we use (2): (a) −3 (b) 100 (c) 1/2, since

√
x = x1/2. (d) −3/2, since A/x

√
x = Ax−3/2.

2. ElK T = 1.06. A 1% increase in expenditure on road building leads to an increase in the traffic volume of approxi-
mately 1.06 %.

3. (a) A 10% increase in fares leads to a decrease in passenger demand of approximately 4%. (b) One reason could be
that for long-distance travel, more people fly when rail fares go up. Another reason could be that many people may
commute 60 km, whereas almost nobody commutes 300 km, and commuters’ demand is likely to be less elastic.
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4. (a) Elx eax = (x/eax)aeax = ax (b) Elx ln x = (x/ ln x)(1/x) = 1/ ln x (c) Elx(x
peax) =

x

xpeax
(pxp−1eax + xpaeax) = p + ax (d) Elx(x

p ln x) = x

xp ln x
(pxp−1 ln x + xp(1/x)) = p + 1/ ln x

5. Elx(f (x))p = x

(f (x))p
p(f (x))p−1f ′(x) = p

x

f (x)
f ′(x) = p Elx f (x)

6. Using (2), Elr D = 1.23. A 1% increase in income leads to an increase in the demand of approximately 1.23%.

7. ln m = −0.02 + 0.19 ln N . When N = 480 000, then m ≈ 11.77.

8. Elx Af (x) = x

Af (x)
Af ′(x) = x

f (x)
f ′(x) = Elx f (x)

Elx
(
A + f (x)

) = x

A + f (x)
f ′(x) = f (x)xf ′(x)/f (x)

A + f (x)
= f (x) Elx f (x)

A + f (x)

9. We prove only (d) (for the rest see SM): Elx(f +g) = x(f ′ + g′)
f + g

= f (xf ′/f ) + g(xg′/g)

f + g
= f Elx f + g Elx g

f + g

10. (a) −5 (b)
1 + 2x

1 + x
(c)

30x3

x3 + 1
(d) Elx 5x2 = 2, so Elx(Elx 5x2) = 0 (e)

2x2

1 + x2

(f) Elx

(
x − 1

x5 + 1

)
= Elx(x − 1) − Elx(x

5 + 1) = x Elx x

x − 1
− x5 Elx x5

x5 + 1
= x

x − 1
− 5x5

x5 + 1

7.8
1. Only the function in (a) is not continuous.

2. f is discontinuous at x = 0. g is continuous at x = 2. The graphs of f and g are shown in Figs. A7.8.2a and
A7.8.2b.

y

−3

−2

1

2

3

4

x−2 1 2 3

f

y

−2

−1

1

2

3

4

x1 2 3 4 5

g

Figure A7.8.2a Figure A7.8.2b

3. (a) Continuous for all x. (b) Continuous for all x �= 1. (c) Continuous for all x < 2. (d) Continuous for all x.
(e) Continuous for all x where x �= √

3 − 1 and x �= −√
3 − 1. (f) Continuous for all x > 0.

4. See Fig. A7.8.4; y is discontinuous at x = a.

5. a = 5. (The straight line y = ax − 1 and the parabola y = 3x2 + 1 must meet when x = 1, which is true if and
only if a = 5.)

6. See Fig. A7.8.6. (This example shows that the commonly seen statement: “if the inverse function exists, the original
and the inverse function must both be monotonic” is wrong. This claim is correct for a continuous function on an
interval, however.)
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y

xa

y

x

y

x

1

1

f (x)

Figure A7.8.4 Figure A7.8.6 Figure A7.9.6

7.9

1. (a) −4 (b) 0 (c) 2 (d) −∞ (e) ∞ (f) −∞

2. (a)
x − 3

x2 + 1
= 1/x − 3/x2

1 + 1/x2
→ 0 as x → ∞. (b)

√
2 + 3x

x − 1
=
√

3 + 2/x

1 − 1/x
→ √

3 as x → ∞. (c) a2

3. lim
x→∞ fi(x) = ∞ for i = 1, 2, 3; lim

x→∞ f4(x) = 0. Then: (a) ∞ (b) 0 (c) −∞ (d) 1 (e) 0 (f) ∞ (g) 1 (h) ∞

4. (a) y = x − 1 (x = −1 is a vertical asymptote). (b) y = 2x − 3 (c) y = 3x + 5 (x = 1 is a vertical asymptote).
(d) y = 5x (x = 1 is a vertical asymptote).

5. y = Ax + A(b − c) + d is an asymptote as x → ∞. (x = −c is not an asymptote because x ≥ 0.)

6. f ′(0+) = 1 and f ′(0−) = 0. See Fig. A7.9.6.

7. f ′(x) = 3(x − 1)(x + 1)

(−x2 + 4x − 1)2
. f (x) is increasing in (−∞, −1], in

[
1, 2+√

3
)
, and in

(
2+√

3, ∞). See Fig. SM7.9.7.

7.10

1. (a) Let f (x) = x7 − 5x5 + x3 − 1. Then f is continuous, f (−1) = 2, and f (1) = −4, so according to Theorem
7.10.1, the equation f (x) = 0 has a solution in (−1, 1). Parts (b), (c), and (d) can be shown using the same method
of evaluating the sign of a suitable function at the end points of the appropriate interval.

2. A person’s height is a continuous function of time (even if growth occurs in intermittent spurts, often overnight).
The intermediate value theorem (and common sense) give the conclusion.

3. Let f (x) = x3 − 17. Then f (x) = 0 for x = 3
√

17. Moreover, f ′(x) = 3x2. Put x0 = 2.5. Then f (x0) = −1.375
and f ′(x0) = 18.75. Formula (1) with n = 0 yields x1 = x0 − f (x0)/f

′(x0) = 2.5 − (−1.375)/18.75 ≈ 2.573.

4. Integer root: x = −3. Newton’s method gives −1.879, 0.347, and 1.534 for the three other roots.

5. Approximate solution: x = 2. Put f (x) = (2x)x − 15. Then f ′(x) = (2x)x[ln(2x) + 1]. Formula (1) with n = 0
yields x1 = x0 − f (x0)/f

′(x0) = 2 − f (2)/f ′(2) = 2 − 1/[16(ln 4 + 1)] ≈ 1.9738.

6. If f (x0) and f ′(x0) have the same sign (as in Fig. 2), then (1) implies that x1 < x0. But if they have opposite signs,
then x1 > x0.

7.11

1. (a) αn = (3/n) − 1

2 − (1/n)
→ −1

2
as n → ∞ (b) βn = 1 + (2/n) − (1/n2)

3 − (2/n2)
→ 1

3
as n → ∞ (c) −1/6 (d) −1/6

(e) = −3/2 (f)
√

(1/3) − (−1/2) = √
5/6 = √

30/6
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2. (a) When n → ∞, 2/n → 0 and so 5 − 2/n → 5. (b) When n → ∞,
n2 − 1

n
= n − 1/n → ∞.

(c) When n → ∞,
3n√

2n2 − 1
= 3n

n
√

2 − 1/n2
= 3√

2 − 1/n2
→ 3√

2
= 3

√
2

2
.

3. For a fixed number x, put x/n = 1/m. Then n = mx, and as n → ∞, so m → ∞. Hence (1 + x/n)n =
(1 + 1/m)mx = [(1 + 1/m)m]x → ex as m → ∞.

7.12

1. (a) lim
x→3

3x2 − 27

x − 3
= “0

0

” = lim
x→3

6x

1
= 18, (or using 3x2 − 27 = 3(x − 3)(x + 3)).

(b) lim
x→0

ex − 1 − x − 1
2 x2

3x3
= “0

0

” = lim
x→0

ex − 1 − x

9x2
= “0

0

” = lim
x→0

ex − 1

18x
= “0

0

” = lim
x→0

ex

18
= 1

18

(c) lim
x→0

e−3x − e−2x + x

x2
= “0

0

” = lim
x→0

−3e−3x + 2e−2x + 1

2x
= “0

0

” = lim
x→0

9e−3x − 4e−2x

2
= 5

2

2. (a) lim
x→a

x2 − a2

x − a
= “0

0

” = lim
x→a

2x

1
= 2a, (or using x2 − a2 = (x + a)(x − a)).

(b) lim
x→0

2(1 + x)1/2 − 2 − x

2(1 + x + x2)1/2 − 2 − x
= “0

0

” = lim
x→0

(1 + x)−1/2 − 1

(1 + 2x)(1 + x + x2)−1/2 − 1
= “0

0

” =

lim
x→0

− 1
2 (1 + x)−3/2

2(1 + x + x2)−1/2 + (1 + 2x)2(− 1
2 )(1 + x + x2)−3/2

= −1

3

3. (a) 1
2 (b) 3 (c) 2 (d) − 1

2 (e) 3
8 (f) −2

4. (a) lim
x→∞

ln x

x1/2
= “∞

∞
” = lim

x→∞
1/x

(1/2)x−1/2
= lim

x→∞
2

x1/2
= 0 (b) 0. (Write x ln x = ln x

1/x
, and then use l’Hôpital’s

rule.) (c) +∞. (Write xe1/x − x = x(e1/x − 1) = (e1/x − 1)/(1/x), and then use l’Hôpital’s rule.)

5. The second fraction is not “0/0”. The correct limit is 5/2.

6. L = lim
v→0+

1 − (1 + vβ)−γ

v
= “0

0

” = lim
v→0+

γ (1 + vβ)−γ−1βvβ−1

1
. If β = 1, then L = γ .

If β > 1, then L = 0, and if β < 1, then L = ∞.

7. lim
x→∞

f (x)

g(x)
= lim

t→0+
f (1/t)

g(1/t)
= “0

0

” = lim
t→0+

f ′(1/t)(−1/t2)

g′(1/t)(−1/t2)
= lim

t→0+
f ′(1/t)

g′(1/t)
= lim

x→∞
f ′(x)

g′(x)

8. See SM.

Review Problems for Chapter 7

1. (a) y ′ = −5, y ′′ = 0 (b) Differentiating w.r.t. x yields y3 + 3xy2y ′ = 0, so y ′ = −y/3x. Differentiating
y ′ = −y/3x w.r.t. x yields y ′′ = −[y ′3x − 3y]/9x2 = −[(−y/3x)3x − 3y]/9x2 = 4y/9x2. Because y = 5x−1/3,
we get y ′ = −(5/3)x−4/3 and y ′′ = (20/9)x−7/3. The answers from differentiating y = 5x−1/3 are the same.
(c) 2y ′e2y = 3x2, so y ′ = (3x2/2)e−2y . Then y ′′ = 3xe−2y + 1

2 3x2e−2y(−2y ′) = 3xe−2y − 1
2 9x4e−4y . From the

given equation we get 2y = ln x3 = 3 ln x, so y = 3
2 ln x, and then y ′ = 3

2 x−1, y ′′ = − 3
2 x−2. By noting that

e−2y = e−3 ln x = (eln x)−3 = x−3 and e−4y = (e−2y)2 = x−6, verify that the answers are the same.

2. 5y4y ′−y2 −2xyy ′ = 0, so y ′ = y2

5y4 − 2xy
= y

5y3 − 2x
. Because y = 0 makes the given equation meaningless,

y ′ is never 0.

3. Differentiating w.r.t. x yields 3x2 + 3y2y ′ = 3y + 3xy ′. When x = y = 3/2, then y ′ = −1. See Fig. A7.R.3.
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y

−2

−1

1

2

x−2 −1 1 2

(3/2, 3/2)

x + y + 1 = 0

Figure A7.R.3

4. (a) y ′ = −4/13. (Implicit differentiation yields (∗) 2xy + x2y ′ + 9y2y ′ = 0.)
(b) Differentiating (∗) w.r.t. x yields: 2y + 2xy ′ + 2xy ′ + x2y ′′ + 18yy ′y ′ + 9y2y ′′ = 0. Inserting x = 2, y = 1,
and y ′ = −4/13 gives the answer.

5. 1
3 K−2/3L1/3 + 1

3 K1/3L−2/3(dL/dK) = 0, so dL/dK = −L/K .

6. Differentiation w.r.t. x gives y ′/y+y ′ = −2/x−0.4(ln x)/x. Solving for y ′ gives y ′ = −(2/x)(1 + 1
5 ln x)

1 + 1/y
which

is 0 for 1 + 1
5 ln x = 0, i.e. ln x = −5, and then x = e−5.

7. (a) Straightforward. (b) dY/dI = f ′((1 − β)Y − α)(1 − β)(dY/dI) + 1. Solving for dY/dI yields
dY

dI
= 1

1 − (1 − β)f ′((1 − β)Y − α)
.

(c) Since f ′ ∈ (0, 1) and β ∈ (0, 1), we get (1 − β)f ′((1 − β)Y − α) ∈ (0, 1), so dY/dI > 0.

8. (a) Differentiating w.r.t. x yields 2x − y − xy ′ + 4yy ′ = 0, so y ′ = (y − 2x)/(4y − x). (b) Horizontal tangent at
(1, 2) and (−1, −2). (y ′ = 0 when y = 2x. Insert this into the given equation.) Vertical tangents at (2

√
2,

√
2/2) ≈

(2.8, 0.7) and at (−2
√

2, −√
2/2) ≈ (−2.8, −0.7). (Vertical tangent when the denominator in the expression for

y ′ is 0, i.e. when x = 4y.) See Fig. A in the book.

9. (a) y ′ = 2 − 2xy

x2 − 9y2
= −1

2
at (−1, 1). (b) Vertical tangent at (0, 0), (−3, −1), and (3, 1). (Vertical tangent requires

the denominator of y ′ to be 0, i.e. x = ±3y. y = 3y inserted into the given equation yields y3 = y, so y = 0,
y = 1, or y = −1. The corresponding values for x are 0, 3, and −3. Inserting y = −3x gives no new points.)
Horizontal tangent requires y ′ = 0, i.e. xy = 1. But inserting y = 1/x into the given equation yields x4 = −3,
which has no solution. All these findings accord with Fig. B in the book.

10. (a) Df = (−1, 1), Rf = (−∞, ∞). (b) The inverse is g(y) = (e2y − 1)/(e2y + 1). g′( 1
2 ln 3) = 3/4.

11. (a) f (e2) = 2 and f (x) = ln x(ln x − 1)2 = 0 for ln x = 0 and for ln x = 1, so x = 1 or x = e.
(b) f ′(x) = (3/x)(ln x − 1)(ln x − 1/3) > 0 for x > e, and so f is strictly increasing in [e, ∞). It therefore has
an inverse h. According to (7.3.3), because f (e2) = 2, we have h′(2) = 1/f ′(e2) = e2/5.

12. (a) f (x) ≈ ln 4 + 1
2 x − 1

8 x2 (b) g(x) ≈ 1 − 1
2 x + 3

8 x2 (c) h(x) ≈ x + 2x2

13. (a) x dx/
√

1 + x2 (b) 8πr dr (c) 400K3 dK (d) −3x2 dx/(1 − x3)

14. df (x) = f ′(x) dx = 3x2 dx/2
√

1 + x3. Moreover, 	f (2) ≈ df (2) = 3 · 22(0.2)/2
√

1 + 23 = 0.4.

15. Let x = 1
2 and n = 5 and use formula (7.6.6).

√
e ≈ 1.649, correct to 3 decimals.

16. y ′+(1/y)y ′ = 1, or (∗) yy ′+y ′ = y.When y = 1, y ′ = 1/2. Differentiating (∗) w.r.t. x yields (y ′)2+yy ′′+y ′′ = y ′.
With y = 1 and y ′ = 1/2, we find y ′′ = 1/8, so y(x) ≈ 1 + 1

2 x + 1
16 x2.

17. (a) For all x �= 0. (b) Continuous for all x > 0. (x2 + 2x + 2 is never 0.) (c) Continuous for all x in (−2, 2).
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18. (a) 1 = f ′(y2)2yy ′, so y ′ = 1

2yf ′(y2)
(b) y2 + x2yy ′ = f ′(x) − 3y2y ′, and so y ′ = f ′(x) − y2

y(2x + 3y)

(c) f ′(2x + y)(2 + y ′) = 1 + 2yy ′, so y ′ = 1 − 2f ′(2x + y)

f ′(2x + y) − 2y

19. Elr (Dmarg) = −0.165 and Elr (Dmah) = 2.39. When income increased by 1%, the demand for margarine decreased
by approximately 0.165%, while the demand for meals away from home increased by approximately 2.39%.

20. (a) 5 (using (7.7.2)). (b) 1/3 (using 3
√

x = x1/3 and (7.7.2)). (c) Elx(x
3 + x5) = x

x3 + x5
(3x2 + 5x4) =

(5x2 + 3)/(x2 + 1), using (7.7.1). (Alternative: Use Problem 7.7.9.) (d) 2x/(x2 − 1)

21. Put f (x) = x3 − x − 5. Then f ′(x) = 3x2 − 1. Taking x0 = 2, formula (7.10.1) with n = 1 gives x1 =
2 − f (2)/f ′(2) = 2 − 1/11 ≈ 1.909.

22. f is continuous, f (1) = e − 3 < 0 and f (4) = e2 − 3 > 0. From Theorem 7.10.1(i), there is a zero for f in (1, 4).
Because f ′(x) > 0, the solution is unique. Formula (7.10.1) yields x1 = 1 − f (1)/f ′(1) = −1 + 6/e ≈ 1.21.

23. (a) 2 (b) Tends to +∞. (c) No limit exists. (d) −1/6. (e) 1/5 (f) 1/16 (g) 1 (h) −1/16 (i) 0

24. Does not exist if b �= d. If b = d , the limit is (a − c)/2
√

b.

25. lim
x→0

ax − bx

eax − ebx
= “0

0

” = lim
x→0

ax ln a − bx ln b

aeax − bebx
= ln a − ln b

a − b

26. x1 = 0.9 − f (0.9)/f ′(0.9) ≈ 0.9247924, x2 = x1 − f (x1)/f
′(x1) ≈ 0.9279565, x3 = x2 − f (x2)/f

′(x2) ≈
0.9280338, and x4 = x3 − f (x3)/f

′(x3) ≈ 0.9280339. It seems that the answer correct to 3 decimals is 0.928.

Chapter 8

8.1
1. (a) f (0) = 2 and f (x) ≤ 2 for all x (we divide 8 by a number greater than or equal to 4), so x = 0 maximizes

f (x). (b) g(−2) = −3 and g(x) ≥ −3 for all x, so x = −2 minimizes g(x). g(x) → ∞ as x → ∞, so there
is no maximum. (c) h(x) has its largest value 1 when 1 + x4 is the smallest, namely for x = 0, and h(x) has its
smallest value 1/2 when 1 + x4 is the largest, namely for x = ±1.

2. (a) Minimum −1 at x = 0. (F(0) = −1 and −2/(2 + x2) ≥ −1 for all x because 2+x2 ≥ 2 and so 2/(2 + x2) ≤ 1.)
No maximum. (b) Maximum 2 at x = 1. No minimum.

(c) Minimum 99 at x = 0. No maximum. (When x → ±∞ , H(x) → 100.)

8.2
1. y ′ = 1.06 − 0.08x. y ′ ≥ 0 for x ≤ 13.25 and y ′ ≤ 0 for x ≥ 13.25, so y has a maximum at x = 13.25.

2. h′(x) = 8(2 − √
3x)(2 + √

3x)

(3x2 + 4)2
. The function has a maximum at x = 2

√
3/3 and a minimum at x = −2

√
3/3.

3. h′(t) = 1/2
√

t − 1
2 = (1 − √

t)/2
√

t . We see that h′(t) ≥ 0 in [0, 1] and h′(t) ≤ 0 in [1, ∞). According to
Theorem 8.2.1(a), t = 1 maximizes h(t).

4. f ′(x) = [4x(x4 +1)−2x24x3]/(x4 +1)2, then simplify and factor. f on [0, ∞) has maximum 1 at x = 1, because
f (x) increases in [0, 1] and decreases in [1, ∞).

5. g′(x) = 3x2 ln x + x3/x = 3x2(ln x + 1
3 ). g′(x) = 0 when ln x = − 1

3 , i.e. x = e−1/3. We see that g′(x) ≤ 0 in
(0, e−1/3] and g′(x) ≥ 0 in [e−1/3, ∞), so x = e−1/3 minimizes g(x). Since g(x) → ∞ as x → ∞, there is no
maximum.
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6. f ′(x) = 3ex(e2x − 2). f ′(x) = 0 when e2x = 2, so x = 1
2 ln 2. If x < 1

2 ln 2 then f ′(x) < 0, and if x > 1
2 ln 2 then

f ′(x) > 0, so x = 1
2 ln 2 is a minimum point. f (x) = ex(e2x − 6) tends to +∞ as x → ∞, so f has no maximum.

7. y ′ = xe−x(2 − x) is positive in (0, 2) and negative in (2, 4), so y has a maximum 4e−2 ≈ 0.54 at x = 2.

8. (a) x = 1
3 ln 2 is a minimum point. (b) x = 1

3 (a + 2b) is a maximum point. (c) x = 1
5 is a maximum point.

9. d ′(x) = 2(x − a1) + 2(x − a2) + · · · + 2(x − an) = 2[nx − (a1 + a2 + · · · + an)]. So d ′(x) = 0 for x = x̄, where
x̄ = 1

n
(a1 + a2 + · · · + an), the arithmetic mean of a1, a2, . . . , an. Since d ′′(x) = 2n > 0, x̄ minimizes d(x).

10. (a) x0 = (1/α) ln(Aα/k). (b) See SM.

8.3

1. (a) π(L) = 320
√

L − 40L, so π ′(L) = 160√
L

− 40 = 40(4 − √
L)√

L
. We see that π ′(L) ≥ 0 for 0 ≤ L ≤ 16,

π ′(16) = 0, and π ′(L) ≤ 0 for L ≥ 16, so L = 16 maximizes profits.
(b) The profit function is π(L) = f (L) − wL, so the first-order condition is π ′(L∗) = f ′(L∗) − w = 0.
(c) The first-order condition in (b) defines L∗ as a function of w. Differentiating w.r.t. w: f ′′(L∗)(∂L∗/∂w)−1 = 0,
or (∂L∗/∂w) = 1/f ′′(L∗) < 0. (If the price of labour increases, the optimal labour input decreases.)

2. (a) Q∗ = 1
2 (a − k), π(Q∗) = 1

4 (a − k)2 (b) dπ(Q∗)/dk = − 1
2 (a − k) = −Q∗ (c) s = a − k

3. See Figs. A8.3.3a and A8.3.3b. The volume in cm3 is as given. V ′(x) = 12(x − 3)(x − 9). V has maximum 432
at x = 3. The box has maximum volume when the square cut out from each corner has sides of length 3 cm.

18

18 x

x

x

18 − 2x18 − 2x

p

x

a + k

p(x) = a + k(1 − e−cx)

a

Figure A8.3.3a Figure A8.3.3b Figure A8.3.4

4. p′(x) = kce−cx , p′′(x) = −kc2e−cx . No maximum exists, and p(x) → a + k as x → ∞. See Fig. A8.3.4.

5. T
′
(W) = a

pb(bW + c)p−1W − (bW + c)p

W 2
= a(bW + c)p−1 bW(p − 1) − c

W 2
, which is 0 for W ∗ = c/b(p − 1).

This must be the minimum point because T
′
(W) is negative for W < W ∗ and positive for W > W ∗.

8.4
1. f ′(x) = 8x − 40 = 0 for x = 5. f (0) = 80, f (5) = −20, and f (8) = 16. Maximum 80 for x = 0. Minimum

−20 for x = 5. See Fig. A8.4.1.

f (x) = 4x2 − 40x + 80

−20

20

40

60

80

x
1 2 3 4 5 6 7 8

y

1000

2000

3000

4000

Q

R(Q) = 80Q

C(Q) = Q2 + 10Q + 900

10 Q0 30 Q∗ 40 50

Figure A8.4.1 Figure A8.5.2
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2. (a) Max. −1 at x = 0. Min. −7 at x = 3. (b) Max. 10 at x = −1 and x = 2. Min. 6 at x = 1.
(c) Max. 5/2 at x = 1/2 and x = 2. Min. 2 at x = 1. (d) Max. 4 at x = −1. Min. −6

√
3 at x = √

3.
(e) Max. 4.5 · 109 at x = 3000. Min. 0 at x = 0.

3. g′(x) = 2
5 xex2

(1 − e2−2x2
). Stationary points: x = 0 and x = ±1. Here x = 2 is a maximum point, x = 1 and

x = −1 are minimum points. (Note that g(2) = 1
5 (e4 + e−2) > g(0) = 1

5 (1 + e2).)

4. (a) Total commission is, respectively, $4819, $4900, $4800, and C = 1
10 (60 + x)(800 − 10x) = 4800 + 20x − x2,

x ∈ [0, 20]. (When there are 60 + x passengers, the charter company earns 800 − 10x from each, so they earn
$(60 +x)(800 −10x). The sports club earns 1/10 of that amount.) (b) The quadratic function C has its maximum
for x = 10, so the maximum commission is with 70 travellers.

5. (a) f (x) = ln x(ln x − 1)2. f (e1/3) = 4/27, f (e2) = 2, f (e3) = 12. Zeros: x = 1 and x = e.
(b) f ′(x) = (3/x)(ln x − 1)(ln x − 1/3). Minimum 0 at x = 1 and at x = e. Maximum 12 at x = e3.
(c) f ′(x) > 0 in [e, e3], so f (x) has an inverse. g′(2) = 1/f ′(e2) = e2/5.

6. (a) x∗ = 3/2 (b) x∗ = √
2/2 (c) x∗ = √

12 (d) x∗ = √
3

7. There is at least one point where you must be heading in the direction of the straight line joining A to B (even if
that straight line hits the shore).

8. f is not continuous at x = −1 and x = 1. It has no maximum because f (x) is arbitrarily close to 1 for x sufficiently
close to 1. But there is no value of x for which f (x) = 1. Similarly, there is no minimum.

9. f has a maximum at x = 1 and a minimum at all x > 1. (Draw your own graph.) Yet the function is discontinuous
at x = 1, and its domain of definition is neither closed nor bounded.

8.5
1. π(Q) = 10Q − 1

1000 Q2 − (5000 + 2Q) = 8Q − 1
1000 Q2 − 5000. Since π ′(Q) = 8 − 1

500 Q = 0 for Q = 4000,
and π ′′(Q) = − 1

500 < 0, Q = 4000 maximizes profits.

2. (a) See Fig. A8.5.2. (b) (i) The requirement is π(Q) ≥ 0 and Q ∈ [0, 50], that is −Q2 + 70Q − 900 ≥ 0 and
Q ∈ [0, 50]. The firm must produce at least Q0 = 35 − 5

√
13 ≈ 17 units. (ii) Profits are maximized at Q∗ = 35.

3. Profits: π(x) = −0.003x2 + 120x − 500 000, which is maximized at x = 20 000.

4. (i) Q∗ = 450 (ii) Q∗ = 550 (iii) Q∗ = 0

5. (a) π(Q) = QP(Q) − C(Q) = −0.01Q2 + 14Q − 4500, which is maximized at Q = 700.
(b) ElQ P (Q) = (Q/P (Q))P ′(Q) = Q/(Q − 3000) = −1 for Q∗ = 1500.
(c) R(Q) = QP(Q) = 18Q − 0.006Q2, so R′(Q) = 18 − 0.012Q = 0 for Q∗ = 1500.

6. π ′(Q) = P −abQb−1 = 0 when Qb−1 = P/ab, i.e. Q = (P/ab)1/(b−1). Moreover, π ′′(Q) = −ab(b−1)Qb−2 <

0 for all Q > 0, so this is a maximum point.

8.6
1. f ′(x) = 3x2 − 12 = 0 at x = ±2. A sign diagram shows that x = 2 is a local minimum point and x = −2 is a

local maximum point. Since f ′′(x) = 6x, this is confirmed by Theorem 8.6.2.

2. (a) No local extreme points. (b) Local maximum 10 at x = −1. Local minimum 6 at x = 1.
(c) Local maximum −2 at x = −1. Local minimum 2 at x = 1.
(d) Local maximum 6

√
3 at x = −√

3. Local minimum −6
√

3 at x = √
3.

(e) No local maximum point. Local minimum 1/2 at x = 3.
(f) Local maximum 2 at x = −2. Local minimum −2 at x = 0.

3. (a) Df = [−6, 0)∪ (0, ∞); f (x) > 0 in (−6, −2)∪ (0, ∞). (b) Local maximum 1
2

√
2 at x = −4. Local minima

(8/3)
√

3 at x = 6, and 0 at x = −6 (where f ′(x) is undefined). (c) f (x) → −∞ as x → 0−, f (x) → ∞ as
x → 0+, f (x) → ∞ as x → ∞, and f ′(x) → 0 as x → ∞. f attains neither a maximum nor a minimum.
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4. Look at the point a. Since the graph shows f ′(x), f ′(x) < 0 to the left of a, f ′(a) = 0, and f ′(x) > 0 to the right
of a, so a is a local minimum point. At the points b and e, f ′(x) > 0 on both sides of the points, so they cannot be
extreme points. At c, f has a local maximum, and d is a local minimum point.

5. (a) f ′(x) = 3x2 + 2ax + b, f ′′(x) = 6x + 2a. f ′(0) = 0 requires b = 0. f ′′(0) ≥ 0 requires a ≥ 0. If a = 0 and
b = 0, then f (x) = x3 + c, which does not have a local minimum at x = 0. Hence, f has a local minimum at 0 if
and only if a > 0 and b = 0.
(b) f ′(1) = 0 and f ′(3) = 0 require 3 + 2a + b = 0 and 27 + 6a + b = 0, which means that a = −6 and b = 9.

6. (a) f ′(x) = x2ex(3 + x). Use a sign diagram to show that x = −3 is a local (and global) minimum point. No local
maximum points. (x = 0 is an inflection point (see next section). (b) g′(x) = x2x(2 + x ln 2). x = 0 is a local
minimum point and x = −2/ ln 2 is a local maximum point.

7. f ′(x) = 3x2 + a. See SM.

8.7
1. (a) f ′(x) = 3x2 + 3x − 6 = 3(x − 1)(x + 2), so x = −2 and x = 1 are stationary points. A sign diagram reveals

that f increases in (−∞, −2] and in [1, ∞). (b) f ′′(x) = 6x + 3 = 0 for x = −1/2 and f ′′(x) changes sign
around x = −1/2, so this is an inflection point.

2. (a) f ′′(x) = 2x(x2 − 3)/(1 + x2)3. f is convex in [−√
3, 0] and in [

√
3, ∞). Inflection points: x = −√

3, 0,
√

3.
(b) g′′(x) = 4(1 + x)−3 > 0 when x > −1, so g is (strictly) convex in (−1, ∞). No inflection points.
(c) h′′(x) = (2 + x)ex , so h is convex in [−2, ∞) and x = −2 is an inflection point.

3. (a) x = −1 is a local (and global) maximum point, x = 0 is an inflection point.
(b) x = 1 is a local (and global) minimum point, x = 2 is an inflection point.
(c) x = 3 is a local maximum point, x = 0, 3 − √

3, and 3 + √
3 are inflection points.

(d) x = √
e is a local (and global) maximum point, x = e5/6 is an inflection point.

(e) x = 0 is a local (and global) minimum point, x = − ln 2 is an inflection point.
(f) x = −√

2 is a local minimum point, x = √
2 is a local maximum point, x = 1 − √

3 and x = 1 + √
3 are

inflection points.

4. (a) For x > 0 one has R = p
√

x, C = wx + F , and π(x) = p
√

x − wx − F . (b) π ′(x) = 0 when w = p/2
√

x.
(Marginal cost = price times marginal product.) Then x = p2/4w2. Moreover, π ′′(x) = − 1

4 px−3/2 < 0 for all
x > 0, so profit is maximized over (0, ∞). When x = p2/4w2, then π = p2/2w − p2/4w − F = p2/4w − F .
So this is a profit maximum if F ≤ p2/4w; otherwise, the firm does better not to start up and to choose x = 0.

5. x = −2 and x = 4 are minimum points, whereas x = 2 is a (possibly local) maximum point. Moreover, x = 0,
x = 1, x = 3, and x = 5 are inflection points.

6. a = −2/5, b = 3/5 (f (−1) = 1 gives −a + b = 1. Moreover, f ′(x) = 3ax2 + 2bx and f ′′(x) = 6ax + 2b, so
f ′′(1/2) = 0 yields 3a + 2b = 0.)

7. C ′′(x) = 6ax + 2b, so C(x) is concave in [0, −b/3a], convex in [−b/3a, ∞). x = −b/3a is the inflection point.

8. See Fig. A8.7.8. Use definition (2).

y
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x
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y

1

x−4 −2 2 4
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4

x
-1 1 2 3

Figure A8.7.8 Figure A8.R.1 Figure A8.R.6
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Review Problems for Chapter 8

1. (a) f ′(x) = 4x

(x2 + 2)2
. Thus f (x) decreases for x ≤ 0, increases for x ≥ 0. (b) f ′′(x) = 4(2 − 3x2)/(x2 + 2)3.

Inflection points at x = ± 1
3

√
6. (c) f (x) → 1 as x → ±∞. See Fig. A8.R.1.

2. (a) Q′(L) = 3L(8 − 1
20 L) = 0 for L∗ = 160, and Q(L) is increasing in [0, 160], decreasing in [160, 200], so

Q∗ = 160 maximizes Q(L). Output per worker is Q(L)/L = 12L − 1
20 L2, and this quadratic function has max-

imum at L∗∗ = 120. (b) Q′(120) = Q(120)/120 = 720. In general (see Example 6.7.6), (d/dL)(Q(L)/L) =
(1/L)(Q′(L) − Q(L)/L). If L > 0 maximizes output per worker, one must have Q′(L) = Q(L)/L.

3. If the side parallel to the river is y and the other side is x, 2x + y = 1000, so y = 1000 − 2x. The area of the
enclosure is xy = 1000x − 2x2, and this quadratic function has maximum when for x = 250, and then y = 500.

4. (a) π =−0.0016Q2 +44Q−0.0004Q2 −8Q−64 000 = −0.002Q2 +36Q−64 000, and Q = 9000 maximizes π .

(b) ElQ C(Q) = Q

C(Q)
C ′(Q) = 0.0008Q2 + 8Q

0.0004Q2 + 8Q + 64 000
≈ 0.12 when Q = 1000. This means that if Q

increases from 1000 by 1%, then costs will increase by about 0.12%.

5. The profit as a function of Q is π(Q) = PQ − C = (a − bQ2)Q − α + βQ = −bQ3 + (a + β)Q − α. Then
π ′(Q) = −3bQ2 +a +β, which is 0 for Q2 = (a +β)/3b, and so Q = √

(a + β)/3b. This value of Q maximizes
the profit because π ′′(Q) = −6bQ ≤ 0 for all Q ≥ 0.

6. (a) g is defined for x > −1. (b) g′(x) = 1 − 2/(x + 1) = (x − 1)/(x + 1), g′′(x) = 2/(x + 1)2.
(c) Since g′(x) < 0 in (−1, 1), g′(1) = 0 and g′(x) > 0 in (1, ∞), x = 1 is a (global) minimum point.
Since g′′(x) > 0 for all x > −1, the function g is convex and there are no inflection points. When x → (−1)−,
g(x) → ∞ and when x → ∞, g(x) → ∞. See figure A8.R.6.

y

−0.2

−0.1

0.1

0.2

x−1 1 2

y

x

y

x

−2

−1

1

2

−5 −4 −3 −2 −1 1 2 3 4 5

f (x) = 6x3

x4 + x2 + 2

Figure A8.R.7 Figure A8.R.11

7. (a) Df = (−1, ∞). (b) A sign diagram shows that f ′(x) ≥ 0 in (−1, 1] and f ′(x) ≤ 0 in [1, ∞). Hence

x = 1 is a maximum point. f has no minimum. f ′′(x) = −x(x2 + x − 1)

(x + 1)2
= 0 for x = 0 and x = 1

2 (
√

5 − 1).

(x = 1
2 (−√

5 − 1) is outside the domain.) Since f ′′(x) changes sign around these points, they are both inflection
points. (c) f (x) → −∞ as x → (−1)+. See Figure A8.R.7.

8. (a) h is increasing in (−∞, 1
2 ln 2 ] and decreasing in [ 1

2 ln 2, ∞), so h has a maximum at x = 1
2 ln 2. It has no

minimum. (b) h is strictly increasing in (−∞, 0] (with range (0, 1/3]), and therefore has an inverse. The inverse
is h−1(y) = ln(1 −√1 − 8y2 ) − ln(2y). See Figure SM8.R.8 in SM.

9. (a) f ′(x) = 4e4x + 8ex − 32e−2x , f ′′(x) = 16e4x + 8ex + 64e−2x (b) f ′(x) = 4e−2x(e3x + 4)(e3x − 2), so f (x)

is increasing in [ 1
3 ln 2, ∞), decreasing in (−∞, 1

3 ln 2]. f ′′(x) > 0 for all x so f is strictly convex. (c) 1
3 ln 2 is

a (global) minimum. No maximum exists because f (x) → ∞ as x → ∞.
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10. (a) Df is the set of all x �= ±√
a. f (x) is positive in (−√

a, 0) and in (
√

a, ∞). (b) f (x) is increasing in
(−∞, −√

3a ) and in (
√

3a, ∞), decreasing in (−√
3a, −√

a ), in (−√
a,

√
a ), and in (

√
a,

√
3a ). It follows that

x = −√
3a is a local maximum point and x = √

3a is a local minimum point. (c) Inflection points at −3
√

a, 0,
and 3

√
a.

11. x = √
3 is a maximum point, x = −√

3 is a minimum point, and x = 0 is an inflection point. See Fig. A8.R.11.

Chapter 9
9.1

1. (a) 1
14 x14 + C (b) 2

5 x2√x + C. (x
√

x = x · x1/2 = x3/2.) (c) 2
√

x + C. (1/
√

x = x−1/2.) (d) 8
15 x

15
8 + C.

(
√

x
√

x
√

x =
√

x
√

x3/2 = √
x · x3/4 = √

x7/4 = x7/8.)

2. (a) −e−x + C (b) 4e
1
4 x + C (c) − 3

2 e−2x + C (d) (1/ ln 2)2x + C

3. (a) C(x) = 3
2 x2 + 4x + 40. (C(x) =

∫
(3x + 4) dx = 3

2
x2 + 4x + C. C(0) = 40 gives C = 40.)

(b) C(x) = 1
2 ax2 + bx + C0

4. (a) 1
4 t4 + t2 − 3t + C (b) 1

3 (x − 1)3 + C (c) 1
3 x3 + 1

2 x2 − 2x + C (d) 1
4 (x + 2)4 + C

(e) 1
3 e3x − 1

2 e2x + ex + C (f) 1
3 x3 − 3x + 4 ln |x| + C

5. (a) 2
5 y2√y − 8

3 y
√

y + 8
√

y + C (b) 1
3 x3 − 1

2 x2 + x − ln |x + 1| + C (c) 1
32 (1 + x2)16 + C

6. (a) and (b): Differentiate the right-hand side and check that you get the integrand. (For (a) see also Problem 9.5.5.)

7. See Fig. A9.1.7. f ′(x) = A(x + 1)(x − 3) (because f ′(x) is 0 at x = −1 and at x = 3). Moreover, f ′(1) = −1.
This implies that A = 1/4, so that f ′(x) = 1

4 (x + 1)(x − 3) = 1
4 x2 − 1

2 x − 3
4 . Integration yields f (x) =

1
12 x3 − 1

4 x2 − 3
4 x + C. Since f (0) = 2, C = 2.

y

−1

1

2

x−3 −2 −1 1 2 3 4

f

y

−1

1

2

x−4 −3 −2 −1 1 2

f

y

x−1 1

f (x) = ex

Figure A9.1.7 Figure A9.1.8 Figure A9.2.2

8. The graph of f ′(x) in Fig. 2 can be that of a cubic function, with roots at −3, −1, and 1, and with f ′(0) = −1. So
f ′(x) = 1

3 (x+3)(x+1)(x−1) = 1
3 x3 +x2 − 1

3 x−1. If f (0) = 0, integrating gives f (x) = 1
12 x4 + 1

3 x3 − 1
6 x2 −x.

Fig. A9.1.8 is the graph of this f .

9. Differentiate the right-hand side and check that you get the integrand.

10. (a) Differentiate the right-hand side. (Once we have learned integration by substitution in Section 9.6, this will be
an easy problem.) (b) (i) 1

10 (2x + 1)5 + C (ii) 2
3 (x + 2)3/2 + C (iii) −2

√
4 − x + C

11. (a) F(x) =
∫

(
1

2
ex − 2x) dx = 1

2
ex − x2 + C. F(0) = 1

2 implies C = 0.

(b) F(x) =
∫

(x − x3) dx = 1

2
x2 − 1

4
x4 + C. F(1) = 5

12 implies C = 1
6 .
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12. The general form for f ′ is f ′(x) = 1
3 x3 + A, so that for f is f (x) = 1

12 x4 + Ax + B. If we require that f (0) = 1
and f ′(0) = −1, then B = 1 and A = −1, so f (x) = 1

12 x4 − x + 1.

13. f (x) = − ln x + 1
20 x5 + x2 − x − 1

20

9.2

1. (a) A =
∫ 1

0
x3 dx =

1

0

1

4
x4 = 1

4
14 − 1

4
04 = 1

4
. (b) A =

∫ 1

0
x10 dx =

1

0

1

11
x11 = 1

11

2. (a)
∫ 2

0
3x2 dx =

2

0
x3 = 8 (b) 1/7 (c) e − 1/e. (See the shaded area in Fig. A9.2.2.) (d) 9/10

3. See Fig. A9.2.3. A = −
∫ −1

−2
x−3 dx = −

−1

−2

(−1

2

)
x−2 = −[−1

2
− (−1

8

)] = 3

8

y

-1

xA

y = 1/x3

−2 −1

y

−1

1

2

x−1 1 2

y

x

−2000

−1000

1000

2000

y = 4000 − x
f

Figure A9.2.3 Figure A9.2.6 Figure A9.2.7

4. A = 1
2

∫ 1

−1
(ex + e−x) dx = 1

2

1

−1
(ex − e−x) = e − e−1

5. (a)
∫ 1

0
x dx =

1

0

1

2
x2 = 1

2
(b) 16/3 (c) 5/12 (d) −12/5 (e) 41/2 (f) ln 2 + 5/2

6. (a) f ′(x) = 3x2 −6x +2 = 0 when x0 = 1− 1
3

√
3 and x1 = 1+ 1

3

√
3. f (x) increases in (−∞, x0) and in (x1, ∞).

(b) See Fig. A9.2.6. The shaded area is 1
4 .

7. (a) f ′(x) = −1 + 3000 000/x2 = 0 for x = √
3000 000 = 1000

√
3. (Recall x > 0.) x = 1000

√
3 maximizes

profits. See Fig. A9.2.7. (b) I = 1

2000

3000

1000

(
4000x − 1

2
x2 − 3 000 000 ln x

) = 2000 − 1500 ln 3 ≈ 352

8. (a) 6/5 (b) 26/3 (c) α(eβ − 1)/β (d) − ln 2

9.3

1. (a)
5

0

(1

2
x2 + 1

3
x3
) = 325/6 (b) 0 (c) ln 9 (d) e − 1 (e) −136 (f) 687/64

(g)
∫ 4

0

1

2
x1/2 dx =

4

0

1

2
· 2

3
x3/2 = 8

3
(h)
∫ 2

1

1 + x3

x2
dx =

∫ 2

1

(
1

x2
+ x

)
dx =

2

1

(
− 1

x
+ 1

2
x2

)
= 2

2.
∫ b

c

f (x) dx =
∫ b

a

f (x) dx −
∫ c

a

f (x) dx = 8 − 4 = 4

3. Let A =
∫ 1

0
f (x) dx and B =

∫ 1

0
g(x) dx. Then from (i) and (ii), A − 2B = 6 and 2A + 2B = 9, from which we

find A = 5 and B = −1/2, and then I = A − B = 11/2.
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4. (a) 1/(p + q + 1) + 1/(p + r + 1) (b) f (x) = 4x3 − 3x2 + 5

5. (a)
3

0
[
1

9
e3t−2 + ln(t + 2)] = 1

9
(e7 − e−2) + ln(5/2) (b) 83/15 (c) 2

√
2 − 3/2

(d) A
[
b − 1 + (b − c) ln[(b + c)/(1 + c)]

]+ d ln b

6. (a) From formula (6), F ′(x) = x2 + 2. To find G′(x) use formula (8). We get G′(x) = [(x2)2 + 2]2x = 2x5 + 4x.
(b) H ′(t) = 2tK(t2)e−ρt2

(use formula (8)).

7. We use formulas (6), (7), and (8). (a) t2 (b) −e−t2
(c) 2/

√
t4 + 1

(d) (f (2) − g(2)) · 0 − (f (−λ) − g(−λ)) · (−1) = f (−λ) − g(−λ)

8. From y2 = 3x we getx = 1
3 y2, which inserted into the other equation givesy+1 = ( 1

3 y2−1)2, or y(y3−6y−9) = 0.
Here y3 − 6y − 9 = (y − 3)(y2 + 3y + 3), with y2 + 3y + 3 never 0. So (0, 0) and (3, 3) are the only points of

intersection. A =
∫ 3

0
(
√

3x − x2 + 2x) dx = 6. See Fig. A9.3.8.

y + 1 = (x − 1)2

y2 = 3x

y

−1

1

2

3

4

x−1 1 3 4 5 6

y

−5

5

10

x−5 5 10

B

A a

a

f

g

y = x

50

100

150

t
2 4 6 8 10

fg

Figure A9.3.8 Figure A9.3.10 Figure A9.4.5

9. W(T ) = (K/T )
T

0
(−1/�)e−�t = K(1 − e−�T )/�T

10. (a) g(x) = ex/2 + 4ex/4 defined on (−∞, ∞). (b) See Fig. A9.3.10. (c) A = 10a + 14 − 8
√

14 ≈ 6.26.

9.4

1. x(t) = K −
∫ t

0
ūe−as ds = K − ū(1 − e−at )/a. Note that x(t) → K − ū/a as t → ∞. If K ≥ ū/a, the well will

never be exhausted.

2. (a) m = 2b ln 2 (b) x(p) = nABpγ bδ−1(2δ−1 − 1)/(δ − 1)

3. T = 1
r

ln(1 + rS). (S =
T

0
(1/r)ert = (erT − 1)/r , so erT − 1 = rS, and solve for T .)

4. (a) K(5) − K(0) =
∫ 5

0
(3t2 + 2t + 5) dt = 175 (b) K(T ) − K0 = (T 3 − t3

0 ) + (T 2 − t2
0 ) + 5(T − t0)

5. (a) See Fig. A9.4.5. (b)
∫ t

0

(
g(τ) − f (τ)

)
dτ =

∫ t

0

(
2τ 3 − 30τ 2 + 100τ) dτ = 1

2
t2(t − 10)2 ≥ 0 for all t .

(c)
∫ 10

0
p(t)f (t) dt =

∫ 10

0

(−t3 + 9t2 + 11t − 11 + 11/(t + 1)
)
dt = 940 + 11 ln 11 ≈ 966.38,∫ 10

0
p(t)g(t)dt =

∫ 10

0

(
t3 − 19t2 + 79t + 121 − 121/(t + 1)

)
dt = 3980/3 − 121 ln 11 ≈ 1036.52.

Profile g should be chosen.
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6. The equilibrium quantity is Q∗ = 600, where P ∗ = 80. Then, CS =
∫ 600

0
(120 − 0.2Q) dQ = 36 000, and

PS =
∫ 600

0
(60 − 0.1Q) dQ = 18 000.

7. Equilibrium when 6000/(Q∗ + 50) = Q∗ + 10. The only positive solution is Q∗ = 50, and then P ∗ = 60.

CS=
∫ 50

0

[
6000

Q + 50
−60

]
dQ =

50

0
[6000 ln(Q+50)−60Q] = 6000 ln 2−3000, PS=

∫ 50

0
(50−Q) dQ = 1250

9.5

1. (a) Use (1) with f (x) = x and g′(x) = e−x :
∫

xe−x dx = x(−e−x) −
∫

1 · (−e−x) dx = −xe−x − e−x + C.

(b) 3
4 xe4x − 3

16 e4x + C (c) −x2e−x − 2xe−x − 3e−x + C (d) 1
2 x2 ln x − 1

4 x2 + C

2. (a)
∫ 1

−1
x ln(x+2) dx =

1

−1

1
2 x2 ln(x+2)−

∫ 1

−1

1
2 x2 1

x + 2
dx = 1

2 ln 3− 1
2

∫ 1

−1

(
x − 2 + 4

x + 2

)
dx = 2− 3

2 ln 3

(b) 8/(ln 2) − 3/(ln 2)2 (c) e − 2 (d) 7 11
15

3. (a)
∫ 4

1

√
t ln t dt =

∫ 4

1
t1/2 ln t dt =

4

1

2
3 t3/2 ln t − 2

3

∫ 4

1
t3/2(1/t) dt = 16

3 ln 4 − 2
3

4

1

2
3 t3/2 = 16

3 ln 4 − 28
9

(b)
∫ 2

0
(x − 2)e−x/2 dx =

2

0
(x − 2)(−2)e−x/2 −

∫ 2

0
(−2)e−x/2 dt = −4 − 4

2

0
e−x/2 = −4 − 4(e−1 − 1) = −4e−1

(c)
∫ 3

0
(3 − x)3x dx =

3

0
(3 − x)(3x/ ln 3) −

∫ 3

0
(−1)(3x/ ln 3) dx = 26/(ln 3)2 − 3/ ln 3

4. The general formula follows from (1), and yields
∫

ln x dx = x ln x − x + C.

5. Use (1) with f (x) = ln x and g′(x) = xρ . (Alternatively, simply differentiate the right-hand side.)

6. (a) br−2
[
1 − (1 + rT )e−rT

]
(b) ar−1(1 − e−rT ) + br−2

[
1 − (1 + rT )e−rT

]
(c) ar−1

(
1 − e−rT

)− br−2
[
1 − (1 + rT )e−rT

]+ cr−3
[
2
(
1 − e−rT

)− 2rT e−rT − r2T 2e−rT
]

9.6
1. (a) 1

9 (x2 + 1)9 + C. (Substitute u = x2 + 1, du = 2x dx.) (b) 1
11 (x + 2)11 + C. (Substitute u = x + 2.)

(c) ln |x2 − x + 8| + C. (Substitute u = x2 − x + 8.)

2. (a) 1
24 (2x2 + 3)6 + C. (Substitute u = 2x2 + 3, so du = 4x dx.) (b) 1

3 ex3+2 + C. (Substitute u = ex3+2.)

(c) 1
4

(
ln(x + 2)

)2 +C. (Substitute u = ln(x + 2).) (d) 2
5 (1 + x)5/2 − 2

3 (1 + x)3/2 +C. (Substitute u = √
1 + x.)

(e)
−1

2(1 + x2)
+ 1

4(1 + x2)2
+ C (f) 2

15 (4 − x3)5/2 − 8
9 (4 − x3)3/2 + C

3. (a) With u = √
1 + x2, u2 = 1 + x2, so u du = x dx. If x = 0, then u = 1; if x = 1, then u = √

2.

Hence,
∫ 1

0
x
√

1 + x2 dx =
∫ √

2

1
u2 du =

√
2

1

1

3
u3 = 1

3
(2

√
2 − 1). (b) 1/2. (Let u = ln y.)

(c) 1
2 (e2 − e2/3). (Let u = 2/x.)

(d) Method 1:
∫ 8

5

x

x − 4
dx =

∫ 8

5

x − 4 + 4

x − 4
dx =

∫ 8

5

(
1 + 4

x − 4

)
dx =

8

5
[(x + 4 ln(x − 4)] = 3 + 4 ln 4

Method 2: Performing the division x ÷ (x − 4) leads to the same result as in Method 1.
Method 3: Introduce the new variable u = x − 4, Then du = dx and x = u + 4. When x = 5, u = 1, and when

x = 8, u = 4, so L =
∫ 4

1

u + 4

u
du =

∫ 4

1

(
1 + 4

u

)
du =

4

1
(u + 4 ln u) = 3 + 4 ln 4.
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4.
∫ x

3

2t − 2

t2 − 2t
dt =

x

3
ln(t2 − 2t) = ln(x2 − 2x) − ln 3 = ln 1

3 (x2 − 2x) = 2
3 x − 1. Hence, x2 − 4x + 3 = 0, with

solutions x = 1 and x = 3. But only x = 3 is in the specified domain. So the solution is x = 3.

5. Substitute z = x(t). Then dz = ẋ(t)dt , and the result follows using (2).

6. (a) 1/70. ((x4 − x9)(x5 − 1)12 = −x4(x5 − 1)13. ) (b) 2
√

x ln x − 4
√

x + C. (Let u = √
x.) (c) 8/3

7. (a) 2 ln(1 + e2) − 2 ln(1 + e) (b) ln 2 − ln(e−1/3 + 1) (c) 7 + 2 ln 2

8. Substitute u = x1/6. Then I = 6
∫

u8

1 − u2
du. Here u8 ÷ (−u2 + 1) = −u6 − u4 − u2 − 1 + 1/(−u2 + 1).

It follows that I = − 6
7 x7/6 − 6

5 x5/6 − 2x1/2 − 6x1/6 − 3 ln |1 − x1/6| + 3 ln |1 + x1/6| + C.

9. We find f (x) = 1

a − b

[
ac + d

x − a
− bc + d

x − b

]
.

(a)
∫

x dx

(x + 1)(x + 2)
=
∫ −1 dx

x + 1
+
∫

2 dx

x + 2
= − ln |x + 1| + 2 ln |x + 2| + C

(b)
∫

(1 − 2x) dx

(x + 3)(x − 5)
=
∫ [

−7

8

1

x + 3
− 9

8

1

x − 5

]
dx = −7

8
ln |x + 3| − 9

8
ln |x − 5| + C

9.7

1. (a)
∫ b

1
x−3 dx =

b

1
(−1

2
x−2) = 1

2
− 1

2
b−2 → 1

2
as b → ∞. So

∫ ∞

1

1

x3
dx = 1

2
.

(b)
∫ b

1
x−1/2 dx =

b

1
2x1/2 = 2b1/2 − 2 → ∞ as b → ∞, so the integral diverges.

(c) 1 (d)
∫ a

0
(x/
√

a2 − x2) dx = −
a

0

√
a2 − x2 = a

2. (a)
∫ +∞

−∞
f (x) dx =

∫ b

a

1

b − a
dx = 1

b − a

b

a

x = 1

b − a
(b − a) = 1

(b)
∫ +∞

−∞
xf (x) dx = 1

b − a

∫ b

a

x dx = 1

2(b − a)

b

a

x2 = 1

2(b − a)
(b2 − a2) = 1

2
(a + b)

(c)
1

3(b − a)

b

a

x3 = 1

3

b3 − a3

b − a
= 1

3
(a2 + ab + b2)

3. Using a simplified notation and the result in Example 1, we have:

(a)
∫ ∞

0
xλe−λx dx = −

∞

0
xe−λx +

∫ ∞

0
e−λx dx = 1/λ (b) 1/λ2 (c) 2/λ3

4. The first integral diverges because
∫ b

0
[x/(1 + x2)] dx =

b

0

1
2 ln(1 + x2) = 1

2 ln(1 + b2) → ∞ as b → ∞. On the

other hand,
∫ b

−b

[x/(1 + x2)] dx =
b

−b

1

2
ln(1 + x2) = 0 for all b, so the limit as b → ∞ is 0.

5. (a) f has a maximum at (e1/3, 1/3e), but no minimum. (b)
∫ 1

0
x−3 ln x dx diverges.

∫ ∞

1
x−3 ln x dx = 1/4.

6.
1

1 + x2
≤ 1

x2
for x ≥ 1, and

∫ b

1

dx

x2
=

b

1
− 1

x
= 1 − 1

b
−→
b→∞

1, so by Theorem 9.7.1 the integral converges.

7. See SM.

8. (a) z =
∫ τ

0
(1/τ)e−rs ds = (1 − e−rτ )/rτ (b) z =

∫ τ

0
2(τ − s)τ−2e−rsds = (2/rτ)

[
1 − (1/rτ)(1 − e−rτ )

]
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9.
∫

x−2dx = −x−1 + C. So evaluating
∫ 1

−1
x−2dx as

1

−1
−x−1 gives the nonsensical answer −2. The error arises

because x−2 diverges to +∞ as x → 0. (In fact,
∫ 1

−1
x−2dx diverges to +∞.)

10. Using the answer to Problem 9.6.6(b),
∫ 1

h

(ln x/
√

x) dx =
1

h

(2
√

x ln x −4
√

x) = −4− (2
√

h ln h−4
√

h) → −4

as h → 0+, so the given integral converges to −4. (
√

h ln h = ln h/h−1/2 → 0, by l’Hôpital’s rule.)

11.
∫ A

1
[k/x − k2/(1 + kx)] dx = k ln[1/(1/A+ k)] − k ln[1/(1 + k)] → k ln(1/k)− k ln[1/(1 + k)] = ln(1 + 1/k)k

as A → ∞. So Ik = ln(1 + 1/k)k , which tends to ln e = 1 as k → ∞.

12. See SM.

9.8
1. The functions in (c) and (d) are the only ones that have a constant relative rate of increase. This accords with (3).

(Note that 2t = e(ln 2)t .)

2. (a) K(t) = (K0 − I/δ)e−δt + I/δ (b) (i) K(t) = 200 − 50e−0.05t and K(t) tends to 200 from below as t → ∞.
(ii) K(t) = 200 + 50e−0.05t , and K(t) tends to 200 from above as t → ∞.

3. N(t) = P(1 − e−kt ). Then N(t) → P as t → ∞.

4. Ṅ(t) = 0.02N(t) + 4 · 104. The solution with N(0) = 2 · 106 is N(t) = 2 · 106(2e0.02t − 1).

5. P(10) = 705 gives 641e10k = 705, or e10k = 705/641. Taking the natural logarithm of both sides yields 10k =
ln(705/641), so k = 0.1 ln(705/641) ≈ 0.0095. P(15) ≈ 739 and P(40) ≈ 938.

6. The percentage surviving after t seconds satisfies p(t) = 100e−δt , where p(7) = 70.5 and so δ = − ln 0.705/7 ≈
0.05. Thus p(30) = 100e−30δ ≈ 22.3% are still alive after 30 seconds. Because 100e−δt = 5 when t ≈
ln 20/0.05 ≈ 60, it takes about 60 seconds to kill 95%.

7. (a) x = Ae−0.5t (b) K = Ae0.02t (c) x = Ae−0.5t + 10 (d) K = Ae0.2t − 500
(e) x = 0.1/(3 − Ae0.1t ) and x ≡ 0. (f) K = 1/(2 − Aet ) and K ≡ 0.

8. (a) y(t) = 250 + 230

1 + 8.2e−0.34t
. (b) y(t) → 480 as t → ∞. See Fig. A9.8.8.

100

200

300

400

500

t
5 10 15 20

Tractors (in 1000s)

(1950) (1960) (1970)

0
0

Figure A9.8.8

9. (a) Using (7) we find N(t) = 1000/(1 + 999e−0.39t ). After 20 days, N(20) ≈ 710 have developed influenza.

(b) 800 = 1000

1 + 999e−0.39t∗ ⇐⇒ 999e−0.39t∗ = 1

4
, so e−0.39t∗ = 1/3996, and so 0.39t∗ = ln 3996. t∗ ≈ 21 days.

(c) After about 35 days, 999 will have or have had influenza. N(t) → 1000 as t → ∞.
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10. See SM.

11. At about 11.26. (Measuring time in hours, with t = 0 being 12 noon, one has Ṫ = k(20 − T ) with T (0) = 35
and T (1) = 32. So the body temperature at time t is T (t) = 20 + 15e−kt with k = ln(5/4). Assuming that the
temperature was the normal 37 degrees at the time of death t∗, then t∗ = − ln(17/15)/ ln(5/4) ≈ −0.56 hours, or
about 34 minutes before 12.00.)

9.9

1. The equation is separable:
∫

x4 dx =
∫

(1 − t) dt , 1
5 x5 = t − 1

2 t2 + C1, x5 = 5t − 5
2 t2 + 5C1, x =

5
√

5t − 5
2 t2 + 5C1 = 5

√
5t − 5

2 t2 + C, with C = 5C1. x(1) = 1 yields C = −3/2.

2. (a) x = 3
√

3
2 e2t + C (b) x = − ln(e−t +C) (c) x = Ce3t −6 (d) x = 7

√
(1 + t)7 + C (e) x = Ce2t + 1

2 t + 1
4

(f) x = Ce−3t + 1
2 et2−3t

3. The equation is separable: dk/k = sαeβt dt , so ln k = sα
β

eβt + C1, or k = e
sα
β

eβt

eC1 = Ce
sα
β

eβt

. With k(0) = k0,

we have k0 = Ce
sα
β , and thus k = k0e

sα
β

(eβt −1).

4. (a) Ẏ = α(a − 1)Y + α(b + Ī ) (b) Y =
(

Y0 − b + Ī

1 − a

)
e−α(1−a)t + b + Ī

1 − a
→ b + Ī

1 − a
as t → ∞.

5. (a) From (iii), L = L0e
βt , so K̇ = γKαL0e

βt , a separable equation. (b) K =
[

(1−α)γ

β
L0(e

βt − 1) + K1−α
0

]1/(1−α)

6.
t

x

dx

dt
= a is separable:

dx

x
= a

dt

t
, so

∫
dx

x
= a

∫
dt

t
. Integrating yields ln x = a ln t + C1, so x = ea ln t+C1 =

(eln t )aeC1 = Cta , with C = eC1 . This shows that the only type of function which has constant elasticity is x = Cta .

Review Problems for Chapter 9
1. (a) −16x + C (b) 55x + C (c) 3y − 1

2 y2 + C (d) 1
2 r2 − 16

5 r5/4 + C (e) 1
9 x9 + C

(f) 2
7 x7/2 + C. (x2√x = x2 · x1/2 = x5/2.) (g) − 1

4 p−4 + C (h) 1
4 x4 + 1

2 x2 + C

2. (a) e2x + C (b) 1
2 x2 − 25

2 e2x/5 + C (c) − 1
3 e−3x + 1

3 e3x + C (d) 2 ln |x + 5| + C

3. (a)
∫ 12

0
50 dx =

12

0
50x = 600 (b)

∫ 2

0
(x − 1

2 x2) dx =
2

0
( 1

2 x2 − 1
6 x3) = 2

3

(c)
∫ 3

−3
(u + 1)2 du =

3

−3

1
3 (u + 1)3 du = 24 (d)

∫ 5

1

2

z
dz =

5

1
2 ln z = 2 ln 5 (e) 3 ln(8/3)

(f) I =
∫ 4

0
v
√

v2 + 9 dv =
4

0

1
3 (v2 + 9)3/2 = 98/3. (Or introduce z = √

v2 + 9. Then z2 = v2 + 9 and

2z dz = 2v dv, or v dv = z dz. When v = 0, z = 3, when v = 4, z = 5, so I =
∫ 5

3
z2 dz =

5

3

1

3
z3 = 98/3.)

4. (a) 5/4 (b) 31/20 (c) −5 (d) e − 2 (e) 52/9 (f) 1
3 ln(6/5) (g) (1/256)(3e4 + 1) (h) 2e−1.

5. (a) 10 − 18 ln(14/9). (Substitute z = 9 + √
x.) (b) 886/15. (Substitute z = √

t + 2.)
(c) 195/4. (Substitute z = 3

√
19x3 + 8.)

6. (a) F ′(x) = 4(
√

x − 1). (
∫ x

4
(u1/2 + xu−1/2) du =

x

4

2
3 u3/2 + 2xu1/2 = 8

3 x3/2 − 16
3 − 4x.)

(b) We use (9.3.8). F ′(x) = ln x − (ln
√

x)(1/2
√

x) = ln x − ln x/4
√

x.

7. C(Y ) = 0.69Y + 1000 8. C(x) = α
β
(eβx − 1) + γ x + C0
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9. Let
∫ 3

−1
(f (x) dx = A and

∫ 3

−1
g(x)) dx = B. Then A + B = 6 and 3A + 4B = 9, from which we find A = 15

and B = −9. Then I = A + B = 6.

10. (a) P ∗ = 70, Q∗ = 600. CS 9000, PS = 18000. See Fig. A9.R.10(a).
(b) P ∗ = Q∗ = 5, CS = 50 ln 2 − 25, PS = 1.25. See Fig. A9.R.10(b).

p

q

100

p∗ = 70

10

q∗ = 600

p = f (q)

CS

PS

p = g(q)

p

q

10

p∗ = 5
CS

p = f (q)

p = g(q)

PS

q∗ = 5

Figure A9.R.10(a) Figure A9.R.10(b)

11. (a) f ′(t) = 4 ln t (2 − ln t)/t2, f ′′(t) = 8[(ln t)2 − 3 ln t + 1]/t3. (b) (e2, 16/e2) is a local maximum point, (1, 0)

is a local (and global) minimum point. See Fig. A9.R.11. (c) Area = 32/3. (Hint:
∫

f (t) dt = 4

3
(ln t)3 + C.)

y

1

2

3

4

5

x
5 10 15

y

x

y

x

1
2

1

F(x) = a

e−λx + a

x0 = −(ln a)/λ

Figure A9.R.11 Figure A9.R.16

12. (a) x = Ae−3t (b) x = Ae−4t + 3 (c) x = 1/(Ae−3t − 4) and x ≡ 0. (d) x = Ae− 1
5 t (e) x = Ae−2t + 5/3

(f) x = 1/(Ae− 1
2 t − 2) and x ≡ 0.

13. (a) x = 1/(C − 1
2 t2) and x(t) ≡ 0. (b) x = Ce−3t/2 − 5 (c) x = Ce3t − 10 (d) x = Ce−5t + 2t − 2

5
(e) x = Ce−t/2 + 2

3 et (f) x = Ce−3t + 1
3 t2 − 2

9 t + 2
27

14. (a) V (x) = (V0 + b/a)e−ax − b/a (b) V (x∗) = 0 yields x∗ = (1/a) ln(1 + aV0/b).
(c) 0 = V (x̂) = (Vm + b/a)e−ax̂ − b/a yields Vm = (b/a)(eax̂ − 1).
(d) x∗ = (1/0.001) ln(1+0.001·12 000/8) ≈ 916, and Vm = (8/0.001)(e0.001·1200 −1) = 8000(e1.2 −1) ≈ 18561.

15. (a)
∫ ∞

0
f (r) dr =

∫ ∞

0
(1/m)e−r/m dr = 1 (as in Example 9.7.1) and

∫ ∞

0
rf (r) dr =

∫ ∞

0
r(1/m)e−r/m dr = m

(as in Problem 9.7.3(a)), so the mean income is m.

(b) x(p) = n

∫ ∞

0
(ar − bp)f (r) dr = n

(
a

∫ ∞

0
rf (r) dr − bp

∫ ∞

0
f (r) dr

)
= n(am − bp)

16. (a) Verify that F ′(x) = f (x). limx→∞ F(x) = 1 and limx→−∞ F(x) = 0.

(b)
∫ x

−∞
f (t) dt = lim

a→−∞

∫ x

a

f (t) dt = lim
a→−∞[F(x) − F(a)] = F(x), by (a). Since F ′(x) = f (x) > 0 for all x,

F(x) is strictly increasing. For (c) and (d) see Fig. A9.R.16 and SM.
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Chapter 10

10.1
1. (a) (i) 8000(1 + 0.05/12)5·12 ≈ 10266.87 (ii) 8000(1 + 0.05/365)5·365 ≈ 10272.03

(b) t = ln 2/ ln(1 + 0.05/12) ≈ 166.7. It takes approximately 166.7/12 ≈ 13.9 years.

2. (a) 5000(1 + 0.03)10 ≈ 6719.58 (b) 37.17 years. (5000(1.03)t = 3 · 5000, so t = ln 3/ ln 1.03 ≈ 37.17.)

3. We solve (1+p/100)100 = 100 for p. Raising each side to 1/100, 1+p/100 = 100
√

100, so p = 100(
100
√

100−1) ≈
100(1.047 − 1) = 4.7.

4. (a) (i) After 2 years: 2000(1.07)2 = 2289.80 (ii) After 10 years: 2000(1.07)10 ≈ 3934.30
(b) 2000(1.07)t = 6000 gives (1.07)t = 3, so t = ln 3/ ln 1.07 ≈ 16.2 years.

5. Use formula (2). (i) R = (1 + 0.17/2)2 − 1 = (1 + 0.085)2 − 1 = 0.177225 or 17.72%
(ii) 100[(1.0425)4 − 1] ≈ 18.11% (iii) 100[(1 + 0.17/12)12 − 1] ≈ 18.39%

6. The effective yearly rate for alternative (ii) is (1 + 0.2/4)4 − 1 = 1.054 − 1 ≈ 0.2155 > 0.215, so alternative (i) is
(slightly) cheaper.

7. (a) 12 000 · (1.04)15 ≈ 21 611.32 (b) 50 000 · (1.05)−5 ≈ 39 176.31 (c) 100[(1.02)12 − 1] ≈ 26.82%

8. Let the nominal yearly rate be r . By (2), 0.28 = (1 + r/4)4 − 1, so r = 4(
4
√

1.28 − 1) ≈ 0.25, or 25%.

10.2
1. (a) 8000e0.05·5 = 8000e0.25 ≈ 10272.20 (b) 8000e0.05t = 16000 which gives e0.05t = 2. Hence t = ln 2/0.05 ≈

13.86 years.

2. (a) (i) 1000(1 + 0.05)10 ≈ 1629 (ii) 1000(1 + 0.05/12)120 ≈ 1647 (iii) 1000e0.05·10 ≈ 1649
(b) (i) 1000(1 + 0.05)50 ≈ 11467 (ii) 1000(1 + 0.05/12)600 ≈ 12119 (iii) 1000e0.05·50 ≈ 12182

3. (a) e0.1 − 1 ≈ 0.105, so the effective percentage rate is approximately 10.5. (b) Same answer.

4. If it loses 90% of its value, then e−0.1t∗ = 1/10, so −0.1t∗ = − ln 10, hence t∗ = (ln 10)/0.1 ≈ 23.

5. e−0.06t∗ = 1/2, so t∗ = ln 2/0.06 ≈ 11.55 years. 6. See SM.

10.3
1. (i) The present value is 350 000 · 1.08−10 ≈ 162 117.72. (ii) 350 000 · e−0.08·10 ≈ 157 265.14

2. (i) The present value is 50 000 · 1.0575−5 ≈ 37 806.64. (ii) 50 000 · e−0.0575·5 ≈ 37 506.83

3. (a) We find f ′(t) = 0.05(t + 5)(35 − t)e−t . Obviously, f ′(t) > 0 for t < 35 and f ′(t) < 0 for t > 35, so t = 35
maximizes f (with f (35) ≈ 278). (b) f (t) → 0 as t → ∞. See the graph in Fig. A10.3.3.

y

100

200

t
30 60 90

Figure A10.3.3
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10.4

1. sn = 3
2

(
1 − ( 1

3

)n)→ 3
2 as n → ∞, so

∞∑
n=1

1

3n−1
= 3

2
.

2. We use formula (5): (a)
1/5

1 − 1/5
= 1/4 (b)

0.1

1 − 0.1
= 0.1

0.9
= 1

9
(c)

517

1 − 1/1.1
= 5687

(d)
a

1 − 1/(1 + a)
= 1 + a (e)

5

1 − 3/7
= 35

4

3. (a) Geometric series with quotient 1/8. Its sum is 8/(1 − 1/8) = 64/7. (b) Geometric with quotient −3. It
diverges. (c) Geometric, with sum 21/3/(1 − 2−1/3). (d) Not geometric. (In fact, one can show that the series
converges with sum ln 2.)

4. (a) Quotient k = 1/p. Converges to 1/(p − 1) for |p| > 1.
(b) Quotient k = 1/

√
x. Converges to x

√
x/(

√
x − 1) for

√
x > 1, that is, for x > 1.

(c) Quotient k = x2. Converges to x2/(1 − x2) for |x| < 1.

5. Geometric series with quotient (1 + p/100)−1. Its sum is b/[1 − (1 + p/100)−1] = b(1 + 100/p).

6. The resources will be exhausted partway through the year 2028.

7. 1824 · 1.02 + 1824 · 1.022 +· · ·+ 1824 · 1.02n = (1824/0.02)(1.02n+1 − 1.02) must equal 128 300. So n ≈ 43.77.
The resources will last until year 2037.

8. (a) f (t) = P(t)

ert − 1
(b) Use f ′(t∗) = 0. (c) P ′(t∗)/P (t∗) → 1/t∗ as r → 0.

9. The general term does not approach 0 as n → ∞ in any of these three cases, so each of the series is divergent.

10. (a) A geometric series with quotient 100/101 that converges to 100. (b) Diverges according to (11).
(c) Converges according to (11). (d) Diverges because the nth term sn = (1 + n)/(4n − 3) → 1/4 as n → ∞.
(e) Geometric series with quotient −1/2 that converges to −1/3.
(f) Geometric series with quotient 1/

√
3 converging to

√
3/(

√
3 − 1).

11. See SM.

10.5

1. Use (2) with n = 15, r = 0.12, and a = 3500. This gives P15 = 3500

0.12

(
1 − 1

(1.12)15

)
≈ 23 838.

2. (a) 10 years ago the amount was: 100 000(1.04)−10 ≈ 67556.42
(b) 10 000(1.063 + 1.062 + 1.06 + 1) = 10 000(1.064 − 1)/(1.06 − 1)) ≈ 43 746.16

3. The future value after 10 years of (i) is obviously $13 000, whereas according to (3), the corresponding value of
(ii) is F10 = (1000/0.06)(1.0610 − 1) ≈ 13 180.80. So (ii) is worth more.

4. Offer (a) is better, because the present value of (b) is 4600
1 − (1.06)−5

1 − (1.06)−1
≈ 20 539.

5.
1500

0.08
= 18 750 (using (4)).

6. If the largest amount is a, then according to formula (4), a/r = K , so that a = rK .

7. This is a geometric series with first term a = D/(1 + r) and quotient k = (1 + g)/(1 + r). It converges if and only

if k < 1, i.e. if and only if g < r . The sum is
a

1 − k
= D/(1 + r)

1 − (1 + g)/(1 + r)
= D

r − g
.

8. PDV =
∫ 15

0
500e−0.06t dt = 500

15

0
(−1/0.06)e−0.06t = (500/0.06)

[
1 − e−0.9] ≈ 4945.25.
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FDV = e0.06·15PDV = e0.9PDV ≈ 2.4596 · 4945.25 ≈ 12163.3.

10.6
1. Using formula (2) we find that the annual payments are: a = 0.07 · 80 000/(1 − (1.07)−10) ≈ 11 390.20.

2. Using (2) we get a = (0.07/12) · 80 000/[1 − (1 + 0.07/12)−120] ≈ 928.87.

3. (a) (8000/0.07)[1.076 − 1] ≈ 57 226.33. (Formula (10.5.3).) Four years after the last deposit you have 57 226.33 ·
1.074 ≈ 75 012.05. (b) With annual compounding: r = 31/20 −1 ≈ 0.0565, so the rate of interest is about 5.65 %.
With continuous compounding, e20r = 3, so that r = ln 3/20 ≈ 0.0549, so the rate of interest is about 5.49 %.

4. Schedule (b) has present value
12 000 · 1.115

0.115
[1 − (1.115)−8] ≈ 67 644.42. Schedule (c) has present value

22 000 + 7000

0.115
[1 − (1.115)−12] ≈ 66 384.08. Thus schedule (c) is cheapest. When the interest rate becomes

12.5 %, schedules (b) and (c) have present values equal to 65 907.61 and 64 374.33, respectively, so (c) is cheapest
in this case too.

10.7
1. r must satisfy −50 000 + 30 000/(1 + r)+ 30 000/(1 + r)2 = 0. With s = 1/(1 + r), this yields s2 + s − 5/3 = 0,

with positive solution s = −1/2 + √
23/12 ≈ 0.884, so that r ≈ 0.13.

2. Equation (1) is here a/(1 + r) + a/(1 + r)2 + · · · = −a0, which yields a/r = −a0, so r = −a/a0.

3. By hypothesis, f (0) = a0 + a1 + · · · + an > 0. Also, f (r) → a0 < 0 as r → ∞. Moreover, f ′(r) =
−a1(1 + r)−2 − 2a2(1 + r)−3 − · · · − nan(1 + r)−n−1 < 0, so f (r) is strictly decreasing. This guarantees that
there is a unique internal rate of return, with r > 0.

4. $ 1.55 million. (400 000
(
1/1.175 + (1/1.175)2 + · · · + (1/1.175)7

) ≈ 1 546 522.94.)

5. See SM.

6. Applying (10.5.2) with a = 1000 and n = 5 gives the equation P5 = (1000/r)
[
1 − 1/(1 + r)5

] = 4340 to be
solved for r . For r = 0.05, the present value is $4329.48; for r = 0.045, the present value is $4389.98. Because
dP5/dr < 0, it follows that p is a little less than 5%.

10.8
1. (a) xt = x0(−2)t (b) xt = x0(5/6)t (c) xt = x0(−0.3)t

2. (a) xt = −4t . (See line 1 below (4).) (b) xt = 2(1/2)t + 4 (c) xt = (13/8)(−3)t − 5/8 (d) xt = −2(−1)t + 4

3. Equilibrium requires αPt − β = γ − δPt+1, or Pt+1 = −(α/δ)Pt + (β + γ )/δ. Using (4) we obtain Pt =(
−α

δ

)t(
P0 − β + γ

α + δ

)
+ β + γ

α + δ
.

Review Problems for Chapter 10
1. (a) 5000 · 1.0310 ≈ 6719.58 (b) 5000(1.03)t

∗ = 10 000, so (1.03)t
∗ = 2, or t∗ = ln 2/ ln 1.03 ≈ 23.45.

2. (a) 8000 · 1.053 = 9261 (b) 8000 · 1.0513 ≈ 15 085.19 (c) (1.05)t
∗ = 4, so t∗ = ln 4/1.05 ≈ 28.5

3. If you borrow $a at the annual interest rate of 11% with interest paid yearly, then the debt after 1 year is equal to
a(1 + 11/100) = a(1.11); if you borrow at annual interest rate 10% with interest paid monthly, your debt after 1
year will be a(1 + 10/(12 · 100))12 ≈ 1.1047a, so schedule (ii) is preferable.

4. 15 000e0.07·12 ≈ 34 745.50 5. (a) 8000e0.06·3 ≈ 9577.74 (b) t∗ = ln 2/0.06 ≈ 11.6
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6. We use formula (10.4.5): (a)
44

1 − 0.56
= 100 (b) The first term is 20 and the quotient is 1/1.2, so the sum is

20

1 − 1/1.2
= 120. (c)

3

1 − 2/5
= 5

(d) The first term is (1/20)−2 = 400 and the quotient is 1/20, so the sum is
400

1 − 1/20
= 8000/19.

7. (a)
∫ T

0
ae−rt dt = (a/r)(1 − e−rT ) (b) a/r , the same as (10.5.4).

8. (a) 5000(1.04)4 = 5849.29 (b) 21 232.32 (c) K ≈ 5990.49

9. (a) According to formula (10.6.2), the annual payment is: 500 000 · 0.07(1.07)10/(1.0710 − 1) ≈ 71 188.80. The
total amount is 10 · 71 188.80 = 711 888. (b) If the person has to pay twice a year, the biannual payment is
500 000 · 0.035(1.035)20/(1.03520 − 1) ≈ 35 180.50. The total amount is then 20 · 35 180.50 = 703 610.80.

10. (a) Present value: (3200/0.08)[1−(1.08)−10] = 21 472.26. (b) Present value: 7000+(3000/0.08)[1−1.08−5] =
18 978.13. (c) Four years ahead the present value is (4000/0.08)[1 − (1.08)−10] = 26 840.33. The present value
when Lucy makes her choice is 26 840.33 · 1.08−4 = 19 728.44. She should choose option (a).

11. (a) t∗ = 1/16r2 = 25 for r = 0.05. (b) t∗ = 1/
√

r = 5 for r = 0.04.

12. (a) F(10) − F(0) =
∫ 10

0
(1 + 0.4t) dt =

10

0
(t + 0.2t2) = 30. (Note: the total revenue is F(10) − F(0) = F(10).)

(b) See Example 9.5.3.

13. (a) xt = (−0.1)t (b) xt = −2t + 4 (c) xt = 4
(

3
2

)t − 2

Chapter 11
11.1

1. f (0, 1) = 1 · 0 + 2 · 1 = 2, f (2, −1) = 0, f (a, a) = 3a, and f (a + h, b) − f (a, b) = h

2. f (0, 1) = 0, f (−1, 2) = −4, f (104, 10−2) = 1, f (a, a) = a3, f (a + h, b) = (a + h)b2 = ab2 + hb2, and
f (a, b + k) − f (a, b) = 2abk + ak2.

3. f (1, 1) = 2, f (−2, 3) = 51, f (1/x, 1/y) = 3/x2 − 2/xy + 1/y3, p = 6x + 3h− 2y, q = −2x + 3y2 + 3yk + k2

4. (a) f (−1, 2) = 1, f (a, a) = 4a2, f (a + h, b) − f (a, b) = 2(a + b)h + h2

(b) f (tx, ty) = (tx)2 + 2(tx)(ty) + (ty)2 = t2(x2 + 2xy + y2) = t2f (x, y) for all t , including t = 2.

5. F(1, 1) = 10, F(4, 27) = 60, F(9, 1/27) = 10, F(3,
√

2 ) = 10
√

3 · 6
√

2, F(100, 1000) = 1000, F(2K, 2L) =
10 · 25/6K1/2L1/3 = 25/6F(K, L)

6. (a) The denominator must be different from 0, so the function is defined for those (x, y) where y �= x − 2.
(b) We can only take the square root of nonnegative numbers, so we must require 2−(x2 +y2) ≥ 0, i.e. x2 +y2 ≤ 2.
(c) Put a = x2 + y2. We must have (4 − a)(a − 1) ≥ 0, i.e. 1 ≤ a ≤ 4. (Use a sign diagram.)
The domains in (b) and (c) are the shaded sets shown in Figs. A11.1.6b and A11.1.6c.

y

x

x2 + y2 ≤ (√2
)2 y

x1 2

Figure A11.1.6b Figure A11.1.6c
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7. (a) ex+y �= 3, that is x + y �= ln 3 (b) Since (x − a)2 ≥ 0 and (y − b)2 ≥ 0, it suffices to have x �= a and y �= b,
because then we take ln of positive numbers. (c) x > a and y > b. (Note that ln(x − a)2 = 2 ln |x − a|, which is
equal to 2 ln(x − a) only if x > a.)

11.2

1. (a) ∂z/∂x = 2, ∂z/∂y = 3 (b) ∂z/∂x = 2x, ∂z/∂y = 3y2 (c) ∂z/∂x = 3x2y4, ∂z/∂y = 4x3y3

(d) ∂z/∂x = ∂z/∂y = 2(x + y)

2. (a) ∂z/∂x = 2x, ∂z/∂y = 6y (b) ∂z/∂x = y, ∂z/∂y = x (c) ∂z/∂x = 20x3y2 − 2y5, ∂z/∂y = 10x4y − 10xy4

(d) ∂z/∂x = ∂z/∂y = ex+y (e) ∂z/∂x = yexy , ∂z/∂y = xexy (f) ∂z/∂x = ex/y, ∂z/∂y = −ex/y2

(g) ∂z/∂x = ∂z/∂y = 1/(x + y) (h) ∂z/∂x = 1/x, ∂z/∂y = 1/y

3. (a) f ′
1(x, y) = 7x6, f ′

2(x, y) = −7y6, f ′
12(x, y) = 0 (b) f ′

1(x, y) = 5x4 ln y, f ′
2(x, y) = x5/y, f ′′

12(x, y) =
5x4/y (c) f (x, y) = (x2 − 2y2)5 = u5, where u = x2 − 2y2. Then f ′

1(x, y) = 5u4u′
1 = 5(x2 − 2y2)42x =

10x(x2 − 2y2)4. In the same way, f ′
2(x, y) = 5u4u′

2 = 5(x2 − 2y2)4(−4y) = −20y(x2 − 2y2)4. Finally,
f ′′

12(x, y) = (∂/∂y)(10x(x2 − 2y2)4) = 10x4(x2 − 2y2)3(−4y) = −160xy(x2 − 2y2)3.

4. (a) z′
x = 3, z′

y = 4, and z′′
xx = z′′

xy = z′′
yx = z′′

yy = 0 (b) z′
x = 3x2y2, z′

y = 2x3y, z′′
xx = 6xy2, z′′

yy = 2x3, and
z′′
xy = 6x2y (c) z′

x = 5x4 − 6xy, z′
y = −3x2 + 6y5, z′′

xx = 20x3 − 6y, z′′
yy = 30y4, and z′′

xy = −6x

(d) z′
x = 1/y, z′

y = −x/y2, z′′
xx = 0, z′′

yy = 2x/y3, and z′′
xy = −1/y2 (e) z′

x = 2y(x + y)−2, z′
y = −2x(x + y)−2,

z′′
xx = −4y(x + y)−3, z′′

yy = 4x(x + y)−3, and z′′
xy = 2(x − y)(x + y)−3 (f) z′

x = x(x2 + y2)−1/2,
z′
y = y(x2 + y2)−1/2, z′′

xx = y2(x2 + y2)−3/2, z′′
yy = x2(x2 + y2)−3/2, and z′′

xy = −xy(x2 + y2)−3/2

5. (a) z′
x = 2x, z′

y = 2e2y , z′′
xx = 2, z′′

yy = 4e2y , z′′
xy = 0 (b) z′

x = y/x, z′
y = ln x, z′′

xx = −y/x2, z′′
yy = 0, z′′

xy = 1/x

(c) z′
x = y2 − yexy , z′

y = 2xy − xexy , z′′
xx = −y2exy , z′′

yy = 2x − x2exy , z′′
xy = 2y − exy − xyexy

(d) z′
x = yxy−1, z′

y = xy ln x, z′′
xx = y(y − 1)xy−2, z′′

yy = xy(ln x)2, z′′
xy = xy−1 + yxy−1 ln x

6. (a) F ′
S = 2.26 · 0.44S−0.56E0.48 = 0.9944S−0.56E0.48, F ′

E = 2.26 · 0.48S0.44E−0.52 = 1.0848S0.44E−0.52

(b) SF ′
S +EF ′

E = S ·2.26 ·0.44S−0.56E0.48 +E ·2.26 ·0.48S0.44E−0.52 = 0.44 F +0.48 F = 0.92 F , so k = 0.92.

7. xz′
x + yz′

y = x[2a(ax + by)] + y[2b(ax + by)] = (ax + by)2(ax + by) = 2(ax + by)2 = 2z

8. ∂z/∂x = x/(x2+y2), ∂z/∂y = y/(x2+y2), ∂2z/∂x2 = (y2−x2)/(x2+y2)2, and ∂2z/∂y2 = (x2−y2)/(x2+y2)2.
Thus, ∂2z/∂x2 + ∂2z/∂y2 = 0.

9. (a) s ′
x(x, y) = 2/x, so s ′

x(20, 30) = 2/20 = 1/10. (b) s ′
y(x, y) = 4/y, so s ′

y(20, 30) = 4/30 = 2/15.

11.3

1. See Fig. A11.3.1.

2. (a) A straight line through (0, 2, 3) parallel to the x-axis.
(b) A plane parallel to the z-axis whose intersection with the xy-plane is the line y = x.

3. If x2 + y2 = 6, then f (x, y) = √
6 − 4, so x2 + y2 = 6 is a level curve of f at height c = √

6 − 4.

4. f (x, y) = ex2−y2 + (x2 − y2)2 = ec + c2 when x2 − y2 = c, so the last equation represents a level curve of f at
height ec + c2.

5. At the point of intersection f would have two different values, which is impossible when f is a function.
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S � (3,�2 , 4)

y
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z z

y
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Figure A11.3.1 Figure A11.3.6

6. Generally, the graph of g(x, y) = f (x) in 3-space consists of a surface traced out by moving the graph of z = f (x)

parallel to the y-axis in both directions. The graph of g(x, y) = x is the plane through the y-axis at a 45◦ angle
with the xy-plane. The graph of g(x, y) = −x3 is shown in Fig. A11.3.6. (Only a portion of the unbounded graph
is indicated, of course.)

7. See Figs. A11.3.7a and b. (Note that only a portion of the graph is indicated in part (a).)

x
y

z

z = 3 − x − y

(0, 0, 3)

(3, 0, 0)

(0, 3, 0)

y

x
3 − x − y = c

c = 5
c = 3

c = 1

Figure A11.3.7a

x y

z

√
3

z =
√

3 − x2 − y2

y

x
c = √

2
c = 1
c = 0

√
3 − x2 − y2 = c

Figure A11.3.7b

8. (a) The point (2, 3) lies on the level curve z = 8, so f (2, 3) = 8. The points (x, 3) are those on the line y = 3
parallel to the x-axis. This line intersects the level curve z = 8 when x = 2 and x = 5.
(b) As y varies with x = 2 fixed, the minimum of f (2, y) is 8 when y = 3. (c) At A, any move in the direction of
increasing x with y held fixed reaches higher level curves, so f ′

1(x, y) > 0. Similarly, any move in the direction of
increasing y with x held fixed reaches higher level curves, so f ′

2(x, y) > 0. At B: f ′
1(x, y) < 0, f ′

2(x, y) < 0. At
C: f ′

1(x, y) = 0, f ′
2(x, y) = 0. Finally, to increase z by 2 units when moving away from A, the required increases

in x and y are approximately 1 and 0.6 respectively. Hence, f ′
1 ≈ 2/1 = 2 and f ′

2 ≈ 2/0.6 = 10/3.

9. (a) f ′
x > 0 and f ′

y < 0 at P , whereas f ′
x < 0 and f ′

y > 0 at Q. (b) (i) No solutions among points shown in the
figure. (ii) x ≈ 2 and x ≈ 6 (c) The highest level curve that meets the line is z = 3, so 3 is the largest value.

10. See SM.
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11.4
1. See Fig. A11.4.1.

y

z

x
(a, 0, 0)

x = a

x

y

z

(0, b, 0)

y = b

x y

z

x y

z = c
(0, 0, c)

(a) (b) (c)

Figure A11.4.1

2. (a) d = √(4 − (−1))2 + (−2 − 2)2 + (0 − 3)2 = √
25 + 16 + 9 = √

50 = 5
√

2
(b) d=√(a + 1 − a)2 + (b + 1 − b)2 + (c + 1 − c)2 = √

3

3. (x − 2)2 + (y − 1)2 + (z − 1)2 = 25 4. The sphere with centre at (−3, 3, 4) and radius 5.

5. (x − 4)2 + (y − 4)2 + (z − 1
2 )2 measures the square of the distance from the point (4, 4, 1

2 ) to the point (x, y, z)

on the paraboloid.

11.5
1. (a) f (−1, 2, 3) = 1 and f (a + 1, b + 1, c + 1) − f (a, b, c) = 2a + 2b + 2c + 3.

(b) f (tx, ty, tz) = (tx)(ty) + (tx)(tz) + (ty)(tz) = t2(xy + xz + yz) = t2f (x, y, z)

2. (a) Because 1.053 is the sum of exponents, y would become 21.053 ≈ 2.07 times as large.
(b) ln y = ln 2.9 + 0.015 ln x1 + 0.25 ln x2 + 0.35 ln x3 + 0.408 ln x4 + 0.03 ln x5

3. (a) 13.167 million shares. (b) The harmonic mean.

4. (a) In each week w bank A will have bought 100/pw million euros, for a total amount e = ∑n
w=1 100/pw million

euros. (b) Bank A will have paid 100n million dollars, so the price p per euro that bank A will have paid, on
average, is p = 100n/e. It follows that 1/p = e/100n = (1/n)

∑n
w=1 1/pw dollars per euro, implying that p is

the harmonic mean of p1, . . . , pn. Since this is lower than the arithmetic mean (except in the case when pw is the
same every week), this is a supposed advantage of dollar cost averaging.

5. (a) Each machine would produce 60 units per day, so each unit produced would require 480/60 = 8 minutes.
(b) Total output is

∑n
i=1(T /ti) = T

∑n
i=1(1/ti). If all n machines were equally efficient, the time needed for each

unit would be nT
/
T
∑n

i=1(1/ti) = n
/∑n

i=1(1/ti), the harmonic mean of t1, . . . , tn.

11.6
1. F ′

1(x, y, z) = 2xexz + x2zexz + y4exy , so F ′
1(1, 1, 1) = 4e; F ′

2(x, y, z) = 3y2exy + xy3exy , so F ′
2(1, 1, 1) = 4e;

F ′
3(x, y, z) = x3exz, so F ′

3(1, 1, 1) = e.

2. (a) f ′
1 = 2x, f ′

2 = 3y2, and f ′
3 = 4z3 (b) f ′

1 = 10x, f ′
2 = −9y2, and f ′

3 = 12z3 (c) f ′
1 = yz, f ′

2 = xz,
and f ′

3 = xy (d) f ′
1 = 4x3/yz, f ′

2 = −x4/y2z, and f ′
3 = −x4/yz2 (e) f ′

1 = 12x(x2 + y3 + z4)5, f ′
2 =

18y2(x2 + y3 + z4)5, and f ′
3 = 24z3(x2 + y3 + z4)5 (f) f ′

1 = yzexyz, f ′
2 = xzexyz, and f ′

3 = xyexyz

3. ∂T /∂x = ky/dn and ∂T /∂y = kx/dn are both positive, so that the number of travellers increases if the size of either
city increases, which is reasonable. ∂T /∂d = −nkxy/dn+1 is negative, so that the number of travellers decreases
if the distance between the cities increases, which is also reasonable.
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4. (a) g(2, 1, 1) = −2, g(3, −4, 2) = 352, and g(1, 1, a + h) − g(1, 1, a) = 2ah + h2 − h.
(b) g′

1 = 4x − 4y − 4, g′
2 = −4x + 20y − 28, g′

3 = 2z − 1. The second-order partials are: g′′
11 = 4, g′′

12 = −4,
g′′

13 = 0, g′′
21 = −4, g′′

22 = 20, g′′
23 = 0, g′′

31 = 0, g′′
32 = 0, and g′′

33 = 2.

5. ∂π/∂p = 1
2 p(1/r + 1/w), ∂π/∂r = − 1

4 p2/r2, ∂π/∂w = − 1
4 p2/w2

6. First-order partials: w′
1 = 3yz + 2xy − z3, w′

2 = 3xz + x2, w′
3 = 3xy − 3xz2. Second-order partials: w′′

11 = 2y,
w′′

12 = w′′
21 = 3z + 2x, w′′

13 = w′′
31 = 3y − 3z2, w′′

22 = 0, w′′
23 = w′′

32 = 3x, w′′
33 = −6xz.

7. f ′
1 = p′(x), f ′

2 = q ′(y), f ′
3 = r ′(z)

8. (a)

( 2a 0 0
0 2b 0
0 0 2c

)
(b)

(
a(a − 1)g/x2 abg/xy acg/xz

abg/xy b(b − 1)g/y2 bcg/yz

acg/xz bcg/yz c(c − 1)g/z2

)
, in concise form.

9. Put w = uh, where u = (x − y + z)/(x + y − z). Then ∂w/∂x = huh−1∂u/∂x, ∂w/∂y = huh−1∂u/∂y,
and ∂w/∂z = huh−1∂u/∂z. With v = x + y − z, we get ∂u/∂x = (2y − 2z)/v2, ∂u/∂y = −2x/v2, and
∂u/∂z = 2x/v2. Hence x∂w/∂x + y∂w/∂y + z∂w/∂z = huh−1v−2[x(2y − 2z) + y(−2x) + z2x] = 0. (In the
terminology of Section 12.7, the function w is homogeneous of degree 0. Euler’s theorem 12.7.1 yields the result
immediately.)

10. f ′
x = yzxyz−1, f ′

y = zyz−1(ln x)xyz
, f ′

z = yz(ln x)(ln y)xyz

11. See SM.

11.7
1. ∂M/∂Y = 0.14 and ∂M/∂r = −0.84 · 76.03(r − 2)−1.84 = −63.8652(r − 2)−1.84. So ∂M/∂Y is positive and

∂M/∂r is negative, which accords with standard economic intuition.

2. (a) KY ′
K + LY ′

L = aY (b) KY ′
K + LY ′

L = (a + b)Y (c) KY ′
K + LY ′

L = Y

3. D′
p(p, q) = −bq−α , D′

q(p, q) = bpαq−α−1. So D′
p(p, q) < 0, showing that demand decreases as price increases.

And D′
q(p, q) > 0, showing that demand increases as the price of a competing product increases.

4. F ′
K = aF/K , F ′

L = bF/L, and F ′
M = cF/M , so KF ′

K + LF ′
L + MF ′

M = (a + b + c)F .

5. ∂D/∂p and ∂E/∂q are normally negative, because the demand for a commodity goes down when its price increases.
If the commodities are substitutes, this means that demand increases when the price of the other good increases.
So the usual signs are ∂D/∂q > 0 and ∂E/∂p > 0.

6. ∂U/∂xi = e−xi , for i = 1, . . . , n 7. KY ′
K + LY ′

L = μY

11.8
1. (a) Elx z = 1 and Ely z = 1 (b) Elx z = 2 and Ely z = 5 (c) Elx z = n + x and Ely z = n + y

(d) Elx z = x/(x + y) and Ely z = y/(x + y)

2. Let z = ug with u = axd
1 + bxd

2 + cxd
3 . Then El1 z = Elu ug El1 u = g(x1/u)adxd−1

1 = adgxd
1 /u. Similarly,

El2 z = bdgxd
2 /u and El3 z = cdgxd

3 /u, so El1 z + El2 z + El3 z = dg(axd
1 + bxd

2 + cxd
3 )/u = dg. (This result

follows easily from the fact that z is homogeneous of degree dg and from the elasticity form (12.7.3) of the Euler
equation.)

3. Eli z = p + aixi for i = 1, . . . , n. 4. See SM.

Review Problems for Chapter 11
1. f (0, 1) = −5, f (2, −1) = 11, f (a, a) = −2a, and f (a + h, b) − f (a, b) = 3h

2. f (−1, 2) = −10, f (2a, 2a) = −4a2, f (a, b + k) − f (a, b) = −6bk − 3k2, f (tx, ty) − t2f (x, y) = 0



Essential Math. for Econ. Analysis, 4th edn EME4_Z01.TEX, 16 May 2012, 14:24 Page 704

704 A N S W E R S T O T H E P R O B L E M S

3. f (3, 4, 0) = 5, f (−2, 1, 3) = √
14, and f (tx, ty, tz) = √t2x2 + t2y2 + t2z2 = tf (x, y, z)

4. (a) F(0, 0) = 0, F(1, 1) = 15, and F(32, 243) = 15 · 2 · 9 = 270.
(b) F(K + 1, L) − F(K, L) = 15(K + 1)1/5L2/5 − 15K1/5L2/5 = 15L2/5[(K + 1)1/5 − K1/5] is the extra output
from 1 more unit of capital, approximately equal to the marginal productivity of capital.
(c) F(32 + 1, 243) − F(32, 243) ≈ 1.667. Moreover, F ′

K(K, L) = 3K−4/5L2/5, so F ′
K(32, 243)

= 3 · 32−4/52432/5 = 3 · 2−4 · 32 = 27/16 ≈ 1.6875. As expected, F(32 + 1, 243) − F(32, 243) is close to
F ′

K(32, 243). (d) F is homogeneous of degree 3/5.

5. (a) ∂Y/∂K ≈ 0.083K0.356S0.562 and ∂Y/∂S ≈ 0.035K1.356S−0.438.
(b) The catch becomes 21.356+0.562 = 21.918 ≈ 3.779 times higher.

6. (a) All (x, y) (b) For xy ≤ 1 (c) For x2 + y2 < 2

7. (a) x + y > 1 (b) x2 ≥ y2 and x2 + y2 ≥ 1 . So x2 + y2 ≥ 1 and |x| ≥ |y|. (c) y ≥ x2, x ≥ 0, and
√

x ≥ y.
So 0 ≤ x ≤ 1 and

√
x ≥ y ≥ x2.

8. (a) ∂z/∂x = 10xy4(x2y4 + 2)4 (b)
√

K(∂F/∂K) = 2
√

K(
√

K + √
L)(1/2

√
K) = √

K + √
L

(c) KF ′
K + LF ′

L = K(1/a)aKa−1(Ka + La)1/a−1 + L(1/a)aLa−1(Ka + La)1/a−1 =
(Ka + La)(Ka + La)1/a−1 = F (d) ∂g/∂t = 3/w + 2wt , so ∂2g/∂w∂t = −3/w2 + 2t

(e) g′
3 = t3(t

2
1 + t2

2 + t2
3 )−1/2 (f) f ′

1 = 4xyz + 2xz2, f ′′
13 = 4xy + 4xz

9. (a) f (0, 0) = 36, f (−2, −3) = 0, f (a + 2, b − 3) = a2b2 (b) f ′
x = 2(x − 2)(y + 3)2, f ′

y = 2(x − 2)2(y + 3)

10. Because g(−1, 5) = g(1, 1) = 30, the two points are on the same level curve.

11. If x − y = c �= 0, then F(x, y) = ln(x − y)2 + e2(x−y) = ln c2 + e2c, a constant.

12. (a) f ′
1(x, y) = 4x3 − 8xy, f ′

2(x, y) = 4y − 4x2 + 4 (b) Stationary points: (0, −1), (
√

2, 1), and (−√
2, 1).

13. (a) Elx z = 3, Ely z = −4 (b) Elx z = 2x2/(x2 + y2) ln(x2 + y2), Ely z = 2y2/(x2 + y2) ln(x2 + y2)

(c) Elx z = Elx(exey) = Elx ex = x, Ely z = y (d) Elx z = x2/(x2 + y2), Ely z = y2/(x2 + y2)

14. (a) ∂F/∂y = e2x2(1 − y)(−1) = −2e2x(1 − y). (b) F ′
L = (ln K)(ln M)/L, F ′

LK = (ln M)/KL

(c) w = xxyxzx gives ln w = x ln x +x ln y +x ln z, and so by implicit differentiation, w′
x/w = 1 · ln x +x(1/x)+

ln y + ln z, implying that w′
x = w(ln x + 1 + ln y + ln z) = xxyxzx(ln(xyz) + 1).

15. (a) Begin by differentiating w.r.t. x to obtain ∂pz/∂xp = ex ln(1 + y) for any natural number p. Differentiating
this repeatedly w.r.t. y yields first ∂p+1/∂y∂xp = ex(1 + y)−1, then ∂p+2/∂y2∂xp = ex(−1)(1 + y)−2, and so on.
By induction on q, one has ∂p+q/∂yq∂xp = ex(−1)q−1(q − 1)!(1 + y)−q , which becomes (−1)q−1(q − 1)! at
(x, y) = (0, 0).

16. u′
x = au/x and u′

y = bu/y, so u′′
xy = au′

y/x = abu/xy. Hence, u′′
xy/u

′
xu

′
y = 1/u (u �= 0). Then,

1

u′
x

∂

∂x

(
u′′

xy

u′
xu

′
y

)
= 1

u′
x

· −u′
x

u2
= − 1

u2
= 1

u′
y

∂

∂y

(
u′′

xy

u′
xu

′
y

)

Chapter 12

12.1
1. (a) dz/dt = F ′

1(x, y) dx/dt + F ′
2(x, y) dy/dt = 1 · 2t + 2y · 3t2 = 2t + 6t5

(b) dz/dt = pxp−1yqa + qxpyq−1b = xp−1yq−1(apy + bqx) = apbq(p + q)tp+q−1 (c) In part (a), z =
t2 +(t3)2 = t2 +t6, so dz/dt = 2t+6t5. In part (b), z = (at)p ·(bt)q = apbqtp+q , so dz/dt = apbq(p+q)tp+q−1.

2. (a) dz/dt = (ln y + y/x) · 1 + (x/y + ln x)(1/t) = ln(ln t) + ln t/(t + 1) + (t + 1)/t ln t + ln(t + 1)/t

(b) dz/dt = Aaeat /x + Bbebt /y = a + b
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3. These problems are important because there are many economic applications like this with incompletely specified
functions.
(a) dz/dt = F ′

1(t, y)+F ′
2(t, y)g′(t). If F(t, y) = t2 +yey and g(t) = t2, then F ′

1(t, y) = 2t , F ′
2(t, y) = ey +yey ,

and g′(t) = 2t . Hence dz/dt = 2t (1 + et2 + t2et2
). (b) dY/dL = F ′

K(K, L)g′(L) + F ′
L(K, L)

4. dY/dt = (10L − 1
2 K−1/2

)
0.2 + (10K − 1

2 L−1/2
)

0.5e0.1t = 35 − 7
√

5/100 when t = 0 and so K = L = 5.

5. The usual rules in Sections 6.7 and 6.8 for differentiating (a) a sum; (b) a difference; (c) a product; (d) a quotient;
(e) a composite function of one variable.

6. x∗ = 4
√

3b/a 7. See SM.

12.2
1. (a) ∂z/∂t = F ′

1(x, y)∂x/∂t + F ′
2(x, y)∂y/∂t = 1 · 1 + 2ys = 1 + 2ts2,

∂z/∂s = (∂z/∂x)(∂x/∂s) + (∂z/∂y)(∂y/∂s) = 1 · (−1) + 2yt = −1 + 2t2s

(b) ∂z/∂t = 4x2t + 9y2 = 8tx + 9y2 = 8t3 − 8ts + 9t2 + 36ts3 + 36s6

∂z/∂s = 4x(−1) + 9y26s2 = −4x + 54s2y2 = −4t2 + 4s + 54t2s2 + 216ts5 + 216s8

2. (a) ∂z/∂t = y2 + 2xy2ts = 5t4s2 + 4t3s4, ∂z/∂s = y22s + 2xyt2 = 2t5s + 4t4s3

(b)
∂z

∂t
= 2(1 − s)ets+t+s

(et+s + ets)2
and

∂z

∂s
= 2(1 − t)ets+t+s

(et+s + ets)2

3. It is important to do these problems, because in economic applications, functions are often not completely specified.
(a) ∂z/∂r = 2r∂F/∂u + (1/r)∂F/∂w, ∂z/∂s = −4s∂F/∂v + (1/s)∂F/∂w

(b) ∂z/∂t1 = F ′(x)f ′
1(t1, t2), ∂z/∂t2 = F ′(x)f ′

2(t1, t2)

(c) ∂x/∂s = F ′
1 + F ′

2f
′(s) + F ′

3g
′
1(s, t), ∂x/∂t = F ′

3g
′
2(s, t)

(d) ∂z/∂x = F ′
1f

′
1(x, y) + F ′

22xh(y) and ∂z/∂y = F ′
1f

′
2(x, y) + F ′

2x
2h′(y) + F ′

3(−1/y2).

4. (a)
∂w

∂t
= ∂w

∂x

∂x

∂t
+ ∂w

∂y

∂y

∂t
+ ∂w

∂z

∂z

∂t
= y2z3 · 2t + 2xyz3 · 0 + 3xy2z2 · 1 = 5s2t4

(b)
∂w

∂t
= 2x

∂x

∂t
+ 2y

∂y

∂t
+ 2z

∂z

∂t
= x√

t + s
+ 2syets = 1 + 2se2ts

5. (a) We can write z = F(u1, u2, u3), with u1 = t , u2 = t2 and u3 = t3. Then
dz

dt
= F ′

1
du1

dt
+ F ′

2
du2

dt
+ F ′

3
du3

dt
= F ′

1(t, t
2, t3) + F ′

2(t, t
2, t3)2t + F ′

3(t, t
2, t3)3t2.

(b) z = F(t, f (t), g(t2)) ⇒ dz

dt
= F ′

1(t, f (t), g(t2)) + F ′
2(t, f (t), g(t2))f ′(t) + F ′

3(t, t
2, t3)g′(t2)2t

6. (a) ∂Z/∂G = 1 + 2Y∂Y/∂G + 2r∂r/∂G (b) ∂Z/∂G = 1 + I ′
1(Y, r)∂Y/∂G + I ′

2(Y, r)∂r/∂G

7. ∂C/∂p1 = a∂Q1/∂p1 + b∂Q2/∂p1 + 2cQ1∂Q1/∂p1 = −α1A(a + 2cAp
−α1
1 p

β1
2 )p

−α1−1
1 p

β1
2 + α2bBp

α2−1
1 p

−β2
2

∂C/∂p2 = β1A(a + 2cAp
−α1
1 p

β1
2 )p

−α1
1 p

β1−1
2 − β2bBp

α2
1 p

−β2−1
2

8. See SM. 9. (a)
∂u

∂r
= ∂f

∂x

∂x

∂r
+ ∂f

∂y

∂y

∂r
+ ∂f

∂z

∂z

∂r
+ ∂f

∂w

∂w

∂r
(b)

∂u

∂r
= yzw + xzw + xyws + xyz(1/s) = 28

12.3
1. Formula (1) gives y ′ = −F ′

1/F
′
2 = −(4x + 6y)/(6x + 2y) = −(2x + 3y)/(3x + y).

2. (a) Put F(x, y) = x2y. Then F ′
1 = 2xy, F ′

2 = x2, F ′′
11 = 2y, F ′′

12 = 2x, F ′′
22 = 0, so y ′ = −F ′

1/F
′
2 =

−2xy/x2 = −2y/x. Moreover, using equation (3), y ′′ = −(1/(F ′
2)

3)
[
F ′′

11(F
′
2)

2 − 2F ′′
12F

′
1F

′
2 + F ′′

22(F
′
1)

2
] =

−(1/x6)[2yx4 − 2(2x)(2xy)x2] = 6y/x2. (See also Problem 7.1.2.) For (b) and (c), see the answers to Problem
7.1.3.
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3. (a) y ′ = −4 and y ′′ = −14 at (2, 0). The tangent has the equation y = −4x + 8.
(b) Two points: (a, −4a) and (−a, 4a), where a = 2

√
7/7.

4. With F(x, y) = 3x2 − 3xy2 + y3 + 3y2, we have F ′
1(x, y) = 6x − 3y2 and F ′

2(x, y) = −6xy + 3y2 + 6y, so
according to (12.3.1), h′(x) = y ′ = −(6x − 3y2)/(−6xy + 3y2 + 6y). For x near 1 and so (x, y) near (1, 1), we
have h′(1) = −(6 − 3)/(−6 + 3 + 6) = −1.

5. D′
P < 0 and D′

r < 0. Differentiating the equation w.r.t. r yields D′
P (dP/dr) + D′

r = 0, and so dP/dr =
−D′

r/DP < 0. So a rise in the interest rate depresses demand, and the price falls to compensate.

6. dP/dR = f ′
R(R, P )/(g′(P ) − f ′

P (R, P )). It is plausible that f ′
R(R, P ) > 0 (demand increases as advertising

expenditure increases), and g′(P ) > 0, f ′
P (R, P ) < 0, so dP/dR > 0.

7. Differentiating the equation w.r.t. x gives (i) 1 − az′
x = f ′(y − bz)(−bz′

x). Differentiating w.r.t. y gives
(ii) −az′

y = f ′(y − bz)(1 − bz′
y). If bz′

x �= 0, solving (i) for f ′ and inserting it into (ii) yields az′
x + bz′

y = 1.

If bz′
x = 0, then (i) implies az′

x = 1. But then z′
x �= 0, so b = 0 and then again az′

x + bz′
y = 1.

12.4
1. (a) With F(x, y) = 3x + y − z, the given equation is F(x, y, z) = 0, and ∂z/∂x = −F ′

1/F
′
3 = −3/(−1) = 3.

(b) ∂z/∂x = −(yz + z3 − y2z5)/(xy + 3xz2 − 5xy2z4) (c) With F(x, y, z) = exyz − 3xyz, the given equation is
F(x, y, z) = 0. Now, F ′

x(x, y, z) = yzexyz − 3yz, F ′
z(x, y, z) = xyexyz − 3xy, so (12.4.1) gives z′

x = −F ′
x/F

′
z =

−(yzexyz − 3yz)/(xyexyz − 3xy) = −yz(exyz − 3)/xy(exyz − 3) = −z/x. (Actually, the equation ec = 3c has
two solutions. From xyz = c (c a constant) we find z′

x much more easily.)

2. Differentiating partially w.r.t. x yields (∗) 3x2 + 3z2z′
x − 3z′

x = 0, so z′
x = x2/(1 − z2). By symmetry, z′

y =
y2/(1− z2). To find z′′

xy , differentiate (∗) w.r.t. y to obtain 6zz′
yz

′
x +3z2z′′

xy −3z′′
xy = 0, so z′′

xy = 2zx2y2/(1− z2)3.
(Alternatively, differentiate z′

x = x2/(1 − z2) w.r.t. y, treating z as a function of y and using the expression for z′
y .)

3. (a) L∗ = P 2/4w2, ∂L∗/∂P = P/2w2 > 0 and ∂L∗/∂w = −P 2/2w3 < 0.
(b) First-order condition: Pf ′(L∗)−C ′

L(L∗, w) = 0. ∂L∗/∂P = −f ′(L∗)/(Pf ′′(L∗)−C ′′
LL(L∗, w)), ∂L∗/∂w =

C ′′
Lw(L∗, w)/(Pf ′′(L∗) − C ′′

LL(L∗, w)).

4. Use formula (12.4.1). z′
x = −yxy−1 + zx ln z

yz ln y + xzx−1
and z′

y = − xy ln x + zyz−1

yz ln y + xzx−1

5. Implicit differentiation gives f ′
P (R, P )P ′

w = g′
w(w, P ) + g′

P (w, P )P ′
w . Hence

P ′
w = −g′

w(w, P )/(g′
P (w, P ) − f ′

P (R, P )) < 0 because g′
w > 0, g′

P > 0, and f ′
P < 0.

6. (a) F(1, 3) = 4. The equation for the tangent is y − 3 = −(F ′
x(1, 3)/F ′

y(1, 3))(x − 1) with F ′
x(1, 3) = 10 and

F ′
y(1, 3) = 5, so y = −2x + 5. (b) ∂y/∂K = αy/K(1 + 2c ln y), ∂y/∂L = βy/L(1 + 2c ln y)

12.5
1. The marginal rate of substitution is Ryx = 20x/30y, so y/x = (2/3)(Ryx)

−1, whose elasticity is σyx = −1.

2. (a) Ryx = (x/y)a−1 = (y/x)1−a (b) σyx = ElRyx (y/x) = ElRyx (Ryx)
1/(1−a) = 1/(1 − a)

3. See SM.

12.6
1. f (tx, ty) = (tx)4 + (tx)2(ty)2 = t4x4 + t2x2t2y2 = t4(x4 +x2y2) = t4f (x, y), so f is homogeneous of degree 4.

2. x(tp, tr) = A(tp)−1.5(tr)2.08 = At−1.5p−1.5 t2.08 r2.08 = t−1.5 t2.08Ap−1.5r2.08 = t0.58x(p, r), so the function is
homogeneous of degree 0.58 . (Alternatively, use the result in Example 11.1.4.)

3. f (tx, ty) = (tx)(ty)2 + (tx)3 = t3(xy2 + x3) = t3f (x, y). f is homogeneous of degree 3. For the rest, see SM.
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4. f (tx, ty) = (tx)(ty)/[(tx)2 + (ty)2] = t2xy/t2[x2 + y2] = f (x, y) = t0f (x, y), so f is homogeneous of

degree 0. Using the formulas for the partial derivatives of this function in Example 11.2.1(b), we get x
∂f

∂x
+y

∂f

∂y
=

xy3 − x3y + x3y − xy3

(x2 + y2)
2 = 0 = 0 · f , as claimed by Euler’s theorem.

5. F(tK, tL) = A(a(tK)−� + b(tL)−�)−1/� = A(t−�aK−� + t−�bL−�)−1/� = (t−�)−1/�A(aK−� + bL−�)−1/� =
tF (K, L). Using Example 12.6.3, we get F(K, L)/L = F(K/L, 1) = A[a(K/L)−ρ + b]−1/ρ .

6. Definition (1) requires that for some number k one has t3x3 + t2xy = tk(x3 + xy) for all t > 0 and all (x, y). In
particular, for x = y = 1, we must have t3 + t2 = 2tk . For t = 2, we get 12 = 2 · 2k , or 2k = 6. For t = 4, we get
80 = 2 · 4k , or 4k = 40. But 2k = 6 implies 4k = 36. So the two values of k must actually be different, implying
that f is not homogeneous of any degree.

7. From (6), with k = 1, we get f ′′
11 = (−y/x)f ′′

12 and f ′′
22 = (−x/y)f ′′

21. With f ′′
12 = f ′′

21 we get f ′′
11f

′′
22 − (f ′′

12)
2 =

(−y/x)f ′′
12(−x/y)f ′′

12 − (f ′′
12)

2 = 0.

8. f ′
2(4, 6) = f ′

2(2 · 2, 2 · 3) = 2f ′
2(2, 3) because f ′

2(x, y) is homogeneous of degree 1. (See (12.6.3).) But then
f ′

2(2, 3) = 12/2 = 6. By Euler’s theorem (12.6.2), 2f (2, 3) = 2f ′
1(2, 3) + 3f ′

2(2, 3) = 2 · 4 + 3 · 6 = 26. Hence
f (2, 3) = 13, and then f (6, 9) = f (3 · 2, 3 · 3) = 32f (2, 3) = 9 · 13 = 117, where we used definition (12.6.1).

9. See SM.

12.7
1. (a) Homogeneous of degree 1. (b) Not homogeneous. (c) Homogeneous of degree −1/2.

(d) Homogeneous of degree 1. (e) Not homogeneous. (f) Homogeneous of degree n.

2. (a) Homogeneous of degree 1. (b) Homogeneous of degree μ.

3. All are homogeneous of degree 1, as is easily checked by using (1).

4. v′
i = u′

i − a/(x1 + · · · + xn), so
∑n

i=1 xiv
′
i =∑n

i=1 xiu
′
i −∑n

i=1 axi/(x1 + · · · + xn) =
a − [a/(x1 + · · · + xn)]

∑n
i=1 xi = a − a = 0. By Euler’s theorem, v is homogeneous of degree 0.

5. (a) Homothetic. (b) Homothetic. (c) Not homothetic. (d) Homothetic.

6. (a) h(tx) = f ((tx1)
m, . . . , (txn)

m) = f (tmxm
1 , . . . , tmxm

n ) = (tm)rf (xm
1 , . . . , xm

n ) = tmrh(x), so h is homoge-
neous of degree mr . (b) Homogeneous of degree sp. (c) Homogeneous of degree r for r = s, not homogeneous
for r �= s. (d) Homogeneous of degree r + s. (e) Homogeneous of degree r − s.

7. See SM.

12.8
1. We use the approximation f (x, y) ≈ f (0, 0) + f ′

1(0, 0)x + f ′
2(0, 0)y. (a) f ′

1(x, y) = 5(x + 1)4(y + 1)6 and
f ′

2(x, y) = 6(x + 1)5(y + 1)5, so f1(0, 0) = 5 and f ′
2(0, 0) = 6. Since f (0, 0) = 1, f (x, y) ≈ 1 + 5x + 6y.

(b) f ′
1(x, y) = f ′

2(x, y) = 1
2 (1+x+y)−1/2, so f ′

1(0, 0) = f ′
2(0, 0) = 1/2. Sincef (0, 0) = 1, f (x, y) ≈ 1+ 1

2 x+ 1
2 .

(c) f ′
1(x, y) = ex ln(1 + y), f ′

2(x, y) = ex/(1 + y), so f ′
1(0, 0) = 0 and f ′

2(0, 0) = 1. Since f (0, 0) = 0,
f (x, y) ≈ y.

2. f (x, y) ≈ Axa
0 yb

0 + aAxa−1
0 yb

0 (x − x0) + bAxa
0 yb−1

0 (y − y0) = Axa
0 yb

0 [1 + a(x − x0)/x0 + b(y − y0)/y0]

3. Write the function in the form g∗(μ, ε) = (1 + μ)a(1 + ε)αa − 1, where a = 1/(1 − β). Then
∂g∗(μ, ε)/∂μ = a(1 + μ)a−1(1 + ε)αa and ∂g∗(μ, ε)/∂ε = (1 + μ)aαa(1 + ε)αa−1. Hence, g∗(0, 0) = 0,
∂g∗(0, 0)/∂μ = a, ∂g∗(0, 0)/∂ε = αa, and g∗(μ, ε)≈aμ + αaε = (μ + αε)/(1 − β).

4. f (0.98, −1.01) ≈ −5 − 6(−0.02) + 9(−0.01) = −4.97. The exact value is −4.970614, so the error is 0.000614.

5. (a) f (1.02, 1.99) = 1.1909 (b) f (1.02, 1.99) ≈ f (1, 2) + 0.02 · 8 − 0.01 · (−3) = 1.19. The error is 0.0009.
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6. v(1.01, 0.02) ≈ v(1, 0) + v′
1(1, 0) · 0.01 + v′

2(1, 0) · 0.02 = −1 − 1/150

7. (a) z = 2x + 4y − 5 (b) z = −10x + 3y + 3

8. See SM.

9. The tangent plane (3) passes through (x, y, z) = (0, 0, 0) if and only if −f (x0, y0) = f ′
1(x0, y0)(−x0) +

f ′
2(x0, y0)(−y0). According to Euler’s theorem this equation holds for all (x0, y0) if and only if f is homogeneous

of degree 1.

12.9
1. Both (a) and (b) give: dz = (y2 + 3x2)dx + 2xy dy.

2. We can either use the definition of the differential, (12.9.1), or the rules for differentials, as we do here.
(a) dz = d(x3) + d(y3) = 3x2 dx + 3y2 dy (b) dz = (dx)ey2 + x(dey2

). Here d(ey2
) = ey2

dy2 = ey2
2y dy, so

dz = ey2
dx + 2xyey2

dy = ey2
(dx + 2xy dy).

(c) dz = d ln u, where u = x2 − y2. Then dz = 1

u
du = 2x dx − 2y dy

x2 − y2
.

3. (a) dz = 2xu dx + x2(u′
x dx + u′

y dy) (b) dz = 2u(u′
x dx + u′

y dy)

(c) dz = 1

xy + yu

[
(y + yu′

x) dx + (x + u + yu′
y) dy

]
4. T ≈ 7.015714.

5. Taking the differential of each side of the equation gives d(UeU ) = d(x
√

y), and so eU dU + UeU dU

= √
y dx + (x/2

√
y) dy. Solving for dU yields dU = √

y dx/(eU + UeU) + x dy/2
√

y(eU + UeU).

6. (a) dX = AβNβ−1e�tdN + ANβ�e�tdt (b) dX1 = BEXE−1N1−EdX + B(1 − E)XEN−EdN

7. (a) dU = 2a1u1 du1+· · ·+2anun dun (b) dU = A(δ1u
−�

1 +· · ·+δnu
−�
n )−1−1/�(δ1u

−�−1
1 du1+· · ·+δnu

−�−1
n dun)

8. d(ln z) = a1d(ln x1) + · · · + and(ln xn), so dz/z = a1dx1/x1 + a2dx2/x2 + · · · + andxn/xn.

9. (a) d2z = 2 dx dy + 2(dy)2 (b) dz/dt = 3t2 + 4t3 and then (d2z/dt2)(dt)2 = (6t + 12t2)(dt)2. On the other
hand, the expression for d2z derived from (a) is equal to (4t + 8t2)(dt)2.

12.10
1. (a) 4 − 2 = 2 (b) 5 − 2 = 3 (c) 4 − 3 = 1

2. There are 6 variables Y , C, I , G, T , and r , and 3 equations. So there are 6 − 3 = 3 degrees of freedom.

3. Let m denote the number of equations and n the number of unknowns. (a) m = 3, n = 2; infinitely many solutions.
(b) m = n = 2; no solutions. (c) m = n = 2; infinitely many solutions. (d) m = 1, n = 100; infinitely many
solutions. (e) m = 1, n = 100; no solutions. We see that the counting rule fails dramatically.

12.11
1. Differentiating yields the two equations a du+ b dv = c dx + d dy and e du+ f dv = g dx +h dy. Solving these

for du and dv yields du = [(cf − bg) dx + (df − bh) dy]/D and dv = [(ag − ce) dx + (ah − de) dy]/D, where
D = af − be. The required partial derivatives are then easily read off.

2. (a) Differentiating yields u3 dx + x3u2 du + dv = 2y dy and 3v du + 3u dv − dx = 0. Solving for du and dv

with D = 9xu3 − 3v yields du = (−3u4 − 1) dx/D + 6yu dy/D and dv = (3xu2 + 3u3v) dx/D − 6yv dy/D.
(b) u′

x = (−3u4 − 1)/D, v′
x = (3xu2 + 3u3v)/D (c) u′

x = 283/81 and v′
x = −64/27

3. ∂y1/∂x1 = (3 − 27x2
1y2

2 )/J and ∂y2/∂x1 = (3x2
1 + 18y2

1 )/J with J = 1 + 54y2
1y2

2 .
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4. ∂Y/∂M = I ′(r)/(aI ′(r) + L′(r)S ′(Y )) and ∂r/∂M = S ′(Y )/(aI ′(r) + L′(r)S ′(Y )).

5. Differentiation w.r.t. x yields y + u′
xv + uv′

x = 0 and u + xu′
x + yv′

x = 0. Solving for u′
x and v′

x , we get

u′
x = u2 − y2

yv − xu
= u2 − y2

2yv
, v′

x = xy − uv

yv − xu
= 2xy − 1

2yv

where we substituted xu = −yv and uv = 1 − xy. Differentiating u′
x w.r.t. x finally yields

u′′
xx = ∂2u

∂x2
= ∂

∂x
u′

x = 2uu′
x2yv − (u2 − y2)2yv′

x

4y2v2
= (u2 − y2)(4uv − 1)

4y2v3

(The answer to this problem can be expressed in many different ways.)

6. (a) Differentiation yields the equations: dY = dC + dI + dG, dC = F ′
Y dY + F ′

T dT + F ′
r dr , and dI =

f ′
Y dY + f ′

r dr . Hence, dY = (F ′
T dT + dG + (F ′

r + f ′
r ) dr

)
/(1 − F ′

Y − f ′
Y ).

(b) ∂Y/∂T = F ′
T /(1 − F ′

Y − f ′
Y ) < 0, so Y decreases as T increases. But if dT = dG with dr = 0, then

dY = (1 + F ′
T

)
dT /(1 − F ′

Y − f ′
Y ), which is positive provided that F ′

T > −1.

7. (a) 6 − 3 = 3 (b) Differentiating, then gathering all terms in dY , dr , and dI on the left-hand side, we obtain
(i) (C ′

Y − 1) dY + C ′
r dr + dI = −dα (ii) F ′

Y dY + F ′
r dr − dI = −dβ (iii) L′

Y dY + L′
r dr = dM .

With dβ = dM = 0 we get dY = −(L′
r/D) dα, dr = (L′

Y /D) dα, and dI = [(F ′
rL

′
Y − F ′

Y L′
r )/D] dα, where

D = L′
r (C

′
Y + F ′

Y − 1) − L′
Y (C ′

r + F ′
r ).

8. (a) There are 3 variables and 2 equations, so there is (in general) one degree of freedom.
(b) Differentiation gives 0 = αP dy + L′(r) dr and S ′

y dy + S ′
r dr + S ′

g dg = I ′
y dy + I ′

r dr . We find dy/dg =
−L′(r)S ′

g/D and dr/dg = αPS ′
g/D, where D = L′(r)(S ′

y − I ′
y) − αP (S ′

r − I ′
r ).

9. (a) Differentiation yields 2uv du+u2 dv−du = 3x2 dx+6y2 dy, and eux(u dx+x du) = v dy+y dv. At P these
equations become 3 du+4 dv = 6 dy and dv = 2 dx−dy. Hence du = 2dy−(4/3) dv = −(8/3) dx+(10/3) dy.

So ∂u/∂y = 10/3 and ∂v/∂x = 2.
(b) 	u ≈ du = −(8/3)0.1 + (10/3)(−0.2) = −14/15 ≈ −0.93, 	v ≈ dv = 2(0.1) + (−1)(−0.2) = 0.4

10. Taking differentials and putting dp2 = dm = 0 gives: (i) U ′′
11 dx1 + U ′′

12 dx2 = p1 dλ + λ dp1;
(ii) U ′′

21 dx1 + U ′′
22 dx2 = p2 dλ; (iii) p1 dx1 + dp1 x1 + p2 dx2 = 0. Solving for dx1 we obtain, in particular,

∂x1/∂p1 = [λp2
2 + x1(p2U

′′
12 − p1U

′′
22)]/(p

2
1U

′′
22 − 2p1p2U

′′
12 + p2

2U
′′
11).

Review Problems for Chapter 12
1. (a) dz/dt = 6 · 4t + 3y29t2 = 24t + 27t2y2 = 24t + 243t8 (b) dz/dt = pxp−1a + pyp−1b = ptp−1(ap + bp)

(c) In part (a), z = 6(2t2) + (3t3)3 = 12t2 + 27t9, so dz/dt = 24t + 243t8. In part (b), z = (at)p + (bt)p =
aptp + bptp , so dz/dt = (ap + bp)ptp−1.

2. ∂z/∂t = G′
1(u, v)φ′

1(t, s) and ∂z/∂s = G′
1(u, v)φ′

2(t, s) + G′
2(u, v)ψ ′(s)

3. ∂w/∂t = 2x · 1 + 3y2 · 1 + 4z3s = 2x + 3y2 + 4sz3 = 4s4t3 + 3s2 + 3t2 − 6ts + 2s + 2t ,
∂w/∂s = 2x − 3y2 + 4tz3 = 4s3t4 − 3s2 − 3t2 + 6ts + 2s + 2t

4. dX/dN = g(u)+g′(u)(ϕ′(N)−u), where u = ϕ(N)/N , and d2X/dN2 = (1/N)g′′(u)(ϕ′(N)−u)2+g′(u)ϕ′′(N).

5. (a) Take the natural logarithm, ln E = ln A − a ln p + b ln m, and then differentiate to get Ė/E = −a(ṗ/p) +
b(ṁ/m). (b) ln p = ln p0 + t ln(1.06), so ṗ/p = ln 1.06. Likewise, ṁ/m = ln 1.08. Then Ė/E = −a ln 1.06 +
b ln 1.08 = ln(1.08b/1.06a) = ln Q.

6. Differentiating each side w.r.t. x while holding y constant gives 3x2 ln x + x2 = (6z2 ln z + 2z2)z′
1. When x = y =

z = e, this gives z′
1 = 1/2. Differentiating a second time, 6x ln x+5x = (12z ln z+10z)(z′

1)
2 +(6z2 ln z+2z2)z′′

11.
When x = y = z = e and z′

1 = 1/2, this gives z′′
11 = 11/16e.
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7. Ryx = F ′
x/F

′
y = −x/10y. Hence y/x = −(1/10)R−1

yx , and so σyx = ElRyx (y/x) = −1.

8. (a) MRS = Ryx = U ′
x/U ′

y = 2y/3x (b) MRS = Ryx = y/(x + 1) (c) MRS = Ryx = (y/x)3

9. (a) −1 (b) 2ac (c) 4. (d) Not homogeneous. (If F were homogeneous, then by Euler’s theorem, for some
constant k, we would have x1e

x1+x2+x3 + x2e
x1+x2+x3 + x3e

x1+x2+x3 = kex1+x2+x3 for all positive x1, x2, x3, and so
x1 + x2 + x3 = k. This is evidently impossible.)

10. Since y/x = (Ryx)
1/3, σyx = ElRyx (y/x) = 1/3.

11. Elx y = xy/(1 − 2y). (Hint: Take the elasticity w.r.t x of y2exe1/y = 3.) 12. (a) 1 (b) k (c) 0

13. Since F is homogeneous of degree 1, according to (12.6.6), we have KF ′′
KK + LF ′′

KL = 0, so that F ′′
KL =

−(K/L)F ′′
KK > 0 since F ′′

KK < 0 and K > 0, L > 0.

14. Differentiate f (tx1, . . . , txn) = g(t)f (x1, . . . , xn) w.r.t. t and put t = 1, as in the proof of Euler’s theorem
(Theorem 12.7.1). This yields

∑n
i=1 xif

′
i (x1, . . . , xn) = g′(1)f (x1, . . . , xn). Thus, by Euler’s theorem, f must be

homogeneous of degree g′(1). In fact, g(t) = tk where k = g′(1).

15. du + ey dx + xey dy + dv = 0 and dx + eu+v2
du + eu+v2

2v dv − dy = 0. At the given point, these equations
reduce to du+dv = −e dx−e dy and du = −e dx+e dy, implying that u′

x = −e, u′
y = e, v′

x = 0, and v′
y = −2e.

16. (a) ∂p/∂w = L/F(L), ∂p/∂B = 1/F (L), ∂L/∂w = (F (L) − LF ′(L))/pF(L)F ′′(L),
∂L/∂B = −F ′(L)/pF(L)F ′′(L) (b) See SM.

17. (a) αuα−1 du + βvβ−1 dv = 2βdx + 3y2 dy and αuα−1vβ du + uαβvβ−1 dv − βvβ−1 dv = dx − dy. At P we find
∂u/∂x = 2−β/α , ∂u/∂y = −2−β/α , ∂v/∂x = (2β − 2−β)/β2β−1, ∂v/∂y = (2−β + 3)/β2β−1.
(b) u(0.99, 1.01) ≈ u(1, 1) + ∂u(1, 1)/∂x · (−0.01) + ∂u(1, 1)/∂y · 0.01 = 1 − 2−β/100α − 2−β/100α =
1 − 2−β/50α

18. (a) S =
∫ T

0
e−rx(egT −gx − 1) dx = egT

∫ T

0
e−(r+g)x dx −

∫ T

0
e−rx dx = egT − e−rT

r + g
+ e−rT − 1

r
, and therefore

r(r + g)S = regT + ge−rT − (r + g). (b) Implicit differentiation w.r.t. g yields

rS = regT (T +g∂T /∂g)+ e−rT +ge−rT (−r∂T /∂g)−1, so ∂T /∂g = [rS +1− rT egT − e−rT ]/rg(egT − e−rT ).

19. (a) Economic interpretation of (∗): How much do we gain by waiting one year? Approximately V ′(t∗). How much
do we lose? Forgone interest rV (t∗) plus the yearly cost m. (b) and (c) see SM.

Chapter 13
13.1

1. The first-order conditions f ′
1(x, y) = −4x + 4 = 0 and f ′

2(x, y) = −2y + 4 = 0 are both satisfied when x = 1
and y = 2.

2. (a) f ′
1(x, y) = 2x − 6 and f ′

2(x, y) = 2y + 8, which are both zero at the only stationary point (x, y) = (3, −4).
(b) f (x, y) = x2 − 6x + 32 + y2 + 8y + 42 + 35 − 32 − 42 = (x − 3)2 + (y + 4)2 + 10 ≥ 10 for all (x, y), whereas
f (3, −4) = 10, so (3, −4) minimizes f .

3. F ′
K = −2(K−3)−(L−6) and F ′

L = −4(L−6)−(K−3), so the first-order conditions yield −2(K−3)−(L−6) =
0.65, −4(L − 6) − (K − 3) = 1.2. The only solution of these two simultaneous equations is (K, L) = (2.8, 5.75).

4. (a) P(10, 8) = P(12, 10) = 98 (b) First-order conditions: P ′
x = −2x + 22 = 0, P ′

y = −2y + 18 = 0. It follows
that x = 11 and y = 9, where profits are P(11, 9) = 100.

13.2
1. We check that the conditions in part (a) of Theorem 13.2.1 are satisfied in all three cases:

(a) ∂2π/∂x2 = −0.08 ≤ 0, ∂2π/∂y2 = −0.02 ≤ 0, and (∂2π/∂x2)(∂2π/∂y2) − (∂2π/∂x∂y)2 = 0.0015 ≥ 0.
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(b) f ′′
11 = −4, f ′′

12 = 0, and f ′′
22 = −2 for all (x, y).

(c) With π = F(K, L) − 0.65K − 1.2L, π ′′
KK = −2, π ′′

KL = −1, and π ′′
LL = −4.

2. (a) Profit: π(x, y) = 24x +12y −C(x, y) = −2x2 −4y2 +4xy +64x +32y −514. Maximum at x = 40, y = 24,
with π(40, 24) = 1150. Since π ′′

11 = −4 ≤ 0, π ′′
22 = −8 ≤ 0, and π ′′

11π
′′
22 − (π ′′

12)
2 = 16 ≥ 0, this is the maximum.

(b) x = 34, y = 20. (With y = 54−x, profits are π̂ = −2x2 −4(54−x)2 +4x(54−x)+64x+32(54−x)−514 =
−10x2 + 680x − 10450, which has a maximum at x = 34. Then y = 54 − 34 = 20. The maximum value is 1110.)

3. Maximum 3888 at x = 36, y = 12, z = 9.

4. (a) π(x, y) = px+qy−C(x, y) = (25−x)x+(24−2y)y−(3x2 +3xy+y2) = −4x2 −3xy−3y2 +25x+24y.
(b) π ′

1 = −8x − 3y + 25 = 0 and π ′
2 = −3x − 6y + 24 = 0 when (x, y) = (2, 3). Moreover, then π ′′

11 = −8 ≤ 0,
π ′′

22 = −6 ≤ 0, and π ′′
11π

′′
22 − (π ′′

12)
2 = (−8)(−6) − (−3)2 = 39 ≥ 0. So (x, y) = (2, 3) maximizes profits.

5. The profit is π(x, y) = px + qy − x2 − xy − y2 − x − y − 14. Profit is stationary at x∗ = 1
3 (2p − q − 1) and

y∗ = 1
3 (−p + 2q − 1). Provided that q < 2p − 1 and q > 1

2 (p + 1), the sufficient conditions in Theorem 13.2.1
for an interior point (x∗, y∗) to maximize profits are easily seen to be satisfied.

6. (a) x∗ = p/2α, y∗ = q/2β, and the second-order conditions are satisfied.
(b) π∗(p, q) = px∗ + qy∗ − α(x∗)2 − β(y∗)2 = p2/4α + q2/2β. Hence ∂π∗(p, q)/∂p = p/2α = x∗. So
increasing the price p by one unit increases the optimal profit by approximately x∗, the output of the first good.
∂π∗(p, q)/∂q = y∗ has a similar interpretation.

7. The constraint implies that z = 4x +2y −5. Using this to substitute for z, we choose (x, y) to minimize P(x, y) =
x2 + y2 + (4x + 2y − 5)2 w.r.t. x and y. The first-order conditions are: P ′

1 = 34x + 16y − 40 = 0, P ′
2 =

16x + 10y − 20 = 0, with solution x = 20/21, y = 10/21. Since P ′′
11 = 34, P ′′

12 = 16, and P ′′
22 = 10, the

second-order conditions for minimum are satisfied. The minimum value is 525/441.

8. f ′′
11 = a(a − 1)Axa−2yb, f ′′

12 = f ′′
21 = abAxa−1yb−1, and f ′′

22 = b(b − 1)Axayb−2. Thus, f ′′
11f

′′
22 − (f ′′

12)
2 =

abA2x2a−2y2b−2
[
1 − (a + b)

]
. Suppose that a + b ≤ 1. Then a ≤ 1 and b ≤ 1 as well. If x > 0 and y > 0, then

f ′′
11 ≤ 0 and f ′′

22 ≤ 0, and f ′′
11f

′′
22 − (f ′′

12)
2 ≥ 0. We conclude from Note 2 that f is concave for x > 0, y > 0.

13.3
1. (a) f ′

1 = −2x + 6, f ′
2 = −4y + 8, f ′′

11 = −2, f ′′
12 = 0, and f ′′

22 = −4. (b) (3, 2) is a local maximum point,
because A = −2 < 0 and AC − B2 = 8 > 0. Theorem 13.2.1 implies that (3, 2) is a (global) maximum point.

2. (a) f ′
1 = 2x + 2y2, f ′

2 = 4xy + 4y, f ′′
11 = 2, f ′′

12 = 4y, f ′′
22 = 4x + 4

(b) f ′
2 = 0 ⇐⇒ 4y(x + 1) = 0 ⇐⇒ x = −1 or y = 0. If x = −1, then f ′

1 = 0 for y = ±1. If y = 0, then
f ′

1 = 0 for x = 0. Thus we get the three stationary points classified in the table:

(x, y) A B C AC − B2 Type of stationary point:

(0, 0) 2 0 4 8 Local minimum point

(−1, 1) 2 4 0 −16 Saddle point

(−1, −1) 2 −4 0 −16 Saddle point

3. (a) (0, 0) is a saddle point and (−a, −2) is a local minimum point. (b) df ∗(a)/da = −2ae−2

4. (a) f ′
t (t

∗, x∗) = rf (t∗, x∗) and f ′
x(t

∗, x∗) = ert∗ (b) g′(t∗) = rg(t∗) and h′(x∗) = ert∗/g(t∗) (c) See SM.
(d) t∗ = 1/4r2, x∗ = e1/4r − 1

5. In all three cases (0, 0) is a stationary point where z = 0 and A = B = C = 0, so AC − B2 = 0. In case (a), z ≤ 0
for all (x, y), so the origin is a maximum point. In case (b), z ≥ 0 for all (x, y), so the origin is a minimum point.
In (c), z takes positive and negative values at points arbitrarily close to the origin, so it is a saddle point.
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6. (a) f is defined for x = 0 and for y > −1/x2. (b) f ′
1(x, y) = 2xy/(1 + x2y) and f ′

2(x, y) = x2/(1 + x2y).
Here f ′

1 = f ′
2 = 0 at all points (0, b) with b ∈ �. (c) Because AC − B2 = 0 when (x, y) = (0, b), the

second-derivative test fails. (d) Note that f (0, b) = 0 at any stationary point (0, b). By considering the sign of
f (x, y) = ln(1 + x2y) in the neighbourhood of any stationary point, one sees that f has: a local maximum point
if b < 0; a saddle point if b = 0; and a local minimum point if b > 0. See Fig. A13.3.6.

x

y

z

x

y

z

z = ln(1 + x2y)

y

1

2

x−1 1

y = 2x2

y = x2

y = (k/h)x

Figure A13.3.6 Figure A13.3.7

7. (a) See Fig. A13.3.7. The domain where f (x, y) is negative is shaded. The origin is easily seen to be the only
stationary point, and f (0, 0) = 0. As the figure shows, f (x, y) takes positive and negative values for points
arbitrary close to (0, 0), so the origin is a saddle point. (b) g(t) = f (th, tk) = (tk − t2h2)(tk − 2t2h2) =
2h4t4 − 3h2kt3 + k2t2, so g′(t) = 8h4t3 − 9h2kt2 + 2k2t and g′′(t) = 24h4t2 − 18h2kt + 2k2. So g′(0) = 0 and
g′′(0) = 2k2. Thus t = 0 is a minimum point for k �= 0. For k = 0, g(t) = 2t4h4, which has a minimum at t = 0.

13.4
1. (a)π = P1Q1+P2Q2−C(Q1, Q2) = −2Q2

1−4Q2
2+180Q1+160Q2, which has a maximum atQ∗

1 = 45, Q∗
2 = 20,

with P ∗
1 = 110, P ∗

2 = 100, and π∗ = 5650 (b) Let P = P1 = P2. Then Q1 = 100 − 1
2 P , Q2 = 45 − 1

4 P , so
profit as a function of P is π̂ = (P − 20)(Q1 + Q2) = (P − 20)(145 − 3

4 P) = − 3
4 P 2 + 160P − 2900, which is

maximized when P = 320/3. Corresponding profit: 16900/3. Lost profit: 5650 − 16900/3 = 50/3.
(c) New profit: π̃ = −2Q2

1 − 4Q2
2 + 175Q1 + 160Q2, with maximum at Q1 = 43.75, Q2 = 20, with prices

P1 = 112.50 and P2 = 100. Profit is 5428.125. The number of units sold in market 1 goes down, the price goes up
and profits are lower. In market 2 the number of units sold and the price are unchanged.

2. (a) π = −bp2 − dq2 + (a + βb)p + (c + βd)q − α − β(a + c), p∗ = (a + βb)/2b, q∗ = (c + βd)/2d.

The second-order conditions are obviously satisfied because π ′′
11 = −2b, π ′′

12 = 0, and π ′′
22 = −2d.

(b) p̂ = (a + c + β(b + d))/2(b + d). (c) See SM.

3. Imposing a tax of t per unit sold in market area 1 means that the new profit function is π̂(Q1, Q2) = π(Q1, Q2)−tQ1.
The optimal choice of production in market area 1 is then Q̂1 = (a1 −α − t)/2b1 (see the text), and the tax revenue
is T (t) = t (a1 − α − t)/2b1 = [t (a1 − α) − t2]/2b1. This quadratic function has a maximum when T ′(t) = 0, so
t = 1

2 (a1 − α).

4. (a) â = 0.105 and b̂ = 11.29. (b) ĉ = 0.23, d̂ = 5.575. (c) The goal would have been reached in 1979.

5. (a) p = 9, q = 8, x = 16, y = 4. A’s profit is 123, whereas B’s is 21. (b) Firm A’s profit is maximized at
p = pA(q) = 1

5 (2q +17). Firm B’s profit is maximized at q = qB(p) = 1
3 (p +7). (c) Equilibrium occurs where

p = 5, q = 4, x = 20, y = 12. A gets 75, B gets 21. (d) See SM.

13.5
1. (a) f ′

1(x, y) = 4 − 4x and f ′
2(x, y) = −4y. The only stationary point is (1, 0), with f (1, 0) = 2.

(b) f (x, y) has maximum 2 at (1, 0) and minimum −70 at (−5, 0). (A maximum and a minimum exist, by the
extreme value theorem. Along the boundary, the function value is 4x − 50, with x ∈ [−5, 5]. So its maximum
along the boundary is −30 at x = 5 and its minimum is −70 at x = −5.)
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2. (a) Maximum 91 at (0, 4) and at (4, 0). Minimum 0 at (3, 3).
(b) Maximum 9/4 at (−1/2,

√
3/2) and at (−1/2, −√

3/2). Minimum −1/4 at (1/2, 0).

3. See Fig. A13.5.3. No stationary points in the interior. The maximum value of f is 27/8 at (3/4, 0).

y

3

x
5

S

(4, 3) (5, 3)

0

IV

III

II

I

V

Figure A13.5.3

4. (a) The first-order conditions 2axy + by + 2y2 = 0 and ax2 + bx + 4xy = 0 must have (x, y) = (2/3, 1/3) as a
solution. So a = 1 and b = −2. Also c = 1/27, so that f (2/3, 1/3) = −1/9. Because A = f ′′

11(2/3, 1/3) = 2/3,
B = f ′′

12(2/3, 1/3) = 2/3, and C = f ′′
22(2/3, 1/3) = 8/3, Theorem 13.3.1 shows that this is a local minimum.

(b) Maximum 193/27 at (2/3, 8/3). Minimum −1/9 at (2/3, 1/3).

5. (a) (1, 2) is a local minimum; (0, 0) and (0, 4) are saddle points. (b) Note that f (x, 1) = −3xe−x → ∞ as
x → −∞, and f (−1, y) = −e(y2 − 4y) → −∞ as y → ∞. (c) f has a minimum −4/e at (1, 2), and
maximum 0 at all (x, 0) and (x, 4) satisfying x ∈ [0, 5], as well as at all (0, y) satisfying y ∈ [0, 4].
(d) y′ = 0 when x = 1 and y = 4 − e.

6. (a) Closed and bounded, so compact. (b) Open and unbounded. (c) Closed and bounded, so compact.
(d) Closed and unbounded. (e) Closed and unbounded. (f) Open and unbounded.

7. Let g(x) = 1 in [0, 1), g(x) = 2 in [1, 2]. Then g is discontinuous at x = 1, and the set {x : g(x) ≤ 1} = [0, 1) is
not closed. (Draw your own graph of g.)

13.6

1. (a) The first-order conditions f ′
x(x, y, z) = 2 − 2x = 0, f ′

y(x, y, z) = 10 − 2y = 0, and f ′
x(x, y, z) = −2z = 0

have a unique solution (x, y, z) = (1, 5, 0), which must then be the maximum point. (b) The first-order conditions
are f ′

x(x, y, z) = −2x − 2y − 2z = 0, f ′
y(x, y, z) = −4y − 2x = 0, f ′

z(x, y, z) = −6z − 2x = 0. From the last
two equations we get y = − 1

2 x and z = − 1
3 x. Inserting this into the first equation we get −2x + x + 2

3 x = 0, and
thus x = 0, implying that y = z = 0. So (x, y, z) = (0, 0, 0) is the maximum point.

2. (a) f (x) = e−x2
and g(x) = F(f (x)) = ln(e−x2

) = −x2 both have a unique maximum at x = 0.
(b) Only x = 0 maximizes f (x). But g(x) = 5 is maximized at every point x because it is a constant.

3. By the chain rule, g′
i (x) = F ′(f (x))f ′

i (x) for i = 1, 2, . . . , n. Because F ′ �= 0 everywhere, the assertion follows.

4. f ′
x = −6x2+30x−36, f ′

y = 2−ey2
, f ′

z = −3+ez2
. The 8 stationary points are (x, y, z) = (3, ±√

ln 2, ±√
ln 3 ),

and (x, y, z) = (2, ±√
ln 2, ±√

ln 3 ), where all combinations of signs are allowed.

5. (a) Because F(u) = 1
2 (eu − e−u) is strictly increasing, the problem is equivalent to: max x2 + y2 − 2x subject to

(x, y) ∈ S. (b) The problem is equivalent to: max ln A + a1 ln x1 + · · · + an ln xn subject to x1 + · · · + xn = 1.
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13.7
1. (a) The profit is π = px−ax−bx2 − tx, which has a maximum at x∗ = (p−a− t)/2b, with π∗ = (p−a− t)2/4b.

(b) ∂π∗/∂p = 2(p − a − t)/4b = x∗. If we increase p by 1 dollar, then the optimal profit increases by x∗ dollars.
(For each of the x∗ units sold the revenue increases by 1 dollar.)

2. (a) π = p(K2/3 + L1/2 + T 1/3) − rK − wL − q, and K∗ = 8
27 p3r−3, L∗ = 1

4 p2w−2, T ∗ = 1
3
√

3
p3/2q−3/2

(b) Q∗ = 4
9 p2r−2 + 1

2 pw−1 + 1√
3
p1/2q−1/2, so ∂Q∗/∂r = − 8

9 p2r−3 = −∂K∗/∂p

3. (a) π = π(L, P, w, a) = Pa ln(L + 1) − wL, π ′
L = Pa/(L + 1) − w = 0 for L = aP/w − 1. Since

π ′′
LL = −aP/(L + 1)2 < 0 for all L, profit is maximized at L∗ = aP/w − 1.

(b) π ′
P (L∗, P , w, a) = a ln(L∗ +1) = a ln(aP/w), π ′

w(L∗, P , w, a) = −L∗ = 1−aP/w, and π ′
a(L

∗, P , w, a) =
P ln(L∗ + 1) = P ln(aP/w). The value function is π∗(P, w, a) = π(L∗, P , w, a) = aP ln(L∗ + 1) − wL∗ =
aP ln(aP/w)−aP+w = aP ln a+aP ln P−aP ln w−aP+w. Then ∂π∗/∂P = a ln a+a ln P+aP/P−a ln w−
a = a ln(aP/w). ∂π∗/∂w = −aP/w+1. Finally, ∂π∗/∂a = P ln a+aP/a+P ln P−P ln w−P = P ln(aP/w).
The envelope theorem is confirmed in all cases.

4. ∂Q∗/∂r = (∂/∂r)
(
∂π̂∗/∂p

) = (∂/∂p)
(
∂π̂∗/∂r

) = (∂/∂p)(−K∗) = −∂K∗/∂p. The other equalities are proved
in a similar way.

5. (a) See SM. (b) Suppressing the fact that the partials are evaluated at (K∗, L∗), we get

∂K∗

∂p
= −F ′

KF ′′
LL + F ′

LF ′′
KL

p(F ′′
KKF ′′

LL − (F ′′
KL)2)

,
∂L∗

∂p
= −F ′

LF ′′
KK + F ′

KF ′′
LK

p(F ′′
KKF ′′

LL − (F ′′
KL)2)

,
∂K∗

∂r
= F ′′

LL

p(F ′′
KKF ′′

LL − (F ′′
KL)2)

,

∂L∗

∂r
= −F ′′

LK

p(F ′′
KKF ′′

LL − (F ′′
KL)2)

,
∂K∗

∂w
= −F ′′

KL

p(F ′′
KKF ′′

LL − (F ′′
KL)2)

,
∂L∗

∂w
= F ′′

KK

p(F ′′
KKF ′′

LL − (F ′′
KL)2)

.

(c) We see that ∂K∗/∂r and ∂L∗/∂w are both negative. Since we have no information about the sign of F ′′
KL, the

signs of the other partials are not determined by the sufficient conditions for profit maximization. We observe that
∂K∗/∂w = ∂L∗/∂r , since F ′′

KL = F ′′
LK .

6. (a) First-order conditions: (i) R′
1 − C ′

1 + s = 0, (ii) R′
2 − C ′

2 − t = 0. (b) π ′′
11 = R′′

11 − C ′′
11 < 0 and D =

π ′′
11π

′′
22 − (π ′′

12)
2 = (R′′

11 − C ′′
11)(R

′′
22 − C ′′

22) − (R′′
12 − C ′′

12)
2 > 0. For (c) and (d) see SM.

Review Problems for Chapter 13
1. The first-order conditions f ′

1(x, y) = −4x + 2y + 18 = 0 and f ′
2(x, y) = 2x − 2y − 14 = 0 are satisfied at

(x, y) = (2, −5). Moreover, f ′′
11 = −4, f ′′

12 = 2, and f ′′
22 = −2, so f ′′

11f
′′
22 − (f ′′

12)
2 = 4. The conditions in (a) in

Theorem 13.2.1 are satisfied.)

2. (a) (Q1, Q2) = (500, 200) (b) P1 = 105

3. (a) Stationary points where P ′
1(x, y) = −0.2x − 0.2y + 47 = 0 and P ′

2(x, y) = −0.2x − 0.4y + 48 = 0. It
follows that x = 230 and y = 5. Moreover, P ′′

11 = −0.2 ≤ 0, P ′′
12 = −0.2, and P ′′

22 = −0.4 ≤ 0. Since also
P ′′

11P
′′
22 − (P ′′

12)
2 = 0.04 ≥ 0, (230, 5) maximizes profit. (b) With x + y = 200, and so y = 200 − x, the new

profit function is π̂(x) = f (x, 200 − x) = −0.1x2 + 39x + 1000. This function is easily seen to have maximum
at x = 195. Then y = 200 − 195 = 5.

4. (a) Stationary points at (0, 0 and (3, 9/2). (b) (0, 0), ( 1
2

√
2,

√
2), (− 1

2

√
2, −√

2) (c) (0, 0), (0, 4), (2, 2), and
(−2, 2).

5. Stationary points are where f ′
x(x, y, a) = 2ax − 2 = 0 and f ′

y(x, y, a) = 2y − 4a = 0, or x = x∗(a) = 1/a

and y = y∗(a) = 2a. The value function is f ∗(a) = a(1/a)2 − 2(1/a) + (2a)2 − 4a(2a) = −(1/a) − 4a2. Thus
(d/da)f ∗(a) = (1/a2) − 8a. On the other hand (∂/∂a)f (x, y, a) = x2 − 4y = (1/a2) − 8a at (x∗(a), y∗(a)).
This verifies the envelope theorem.

6. (a) K∗ = (ap/r)1/(1−a), L∗ = (bp/w)1/(1−b), T ∗ = (cp/q)1/(1−c). For (b) and (c) see SM.
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7. (a) f ′
1 = ex+y + ex−y − 3

2 , f ′
2 = ex+y − ex−y − 1

2 , f ′′
11 = ex+y + ex−y, f ′′

12 = ex+y − ex−y, f ′′
22 = ex+y + ex−y .

It follows that f ′′
11 ≥ 0, f ′′

22 ≥ 0, and f ′′
11f

′′
22 − (f ′′

12)
2 = (ex+y + ex−y)2 − (ex+y − ex−y)2 = 4ex+yex−y = 4e2x ≥ 0,

so f is convex.

(b) At the stationary point, ex+y = 1 and ex−y = 1
2 , so x + y = 0 and x − y = − ln 2. The stationary point is

therefore (x, y) = (− 1
2 ln 2, 1

2 ln 2), where f (x, y) = 1
2 (3 + ln 2). Because f is convex, this is the minimum.

8. (a) (0, 0) saddle point, (5/6, −5/12) local maximum point. (b) f ′′
11 = 2 − 6x ≤ 0 ⇐⇒ x ≥ 1/3, while

f ′′
22 = −2 ≤ 0, and f ′′

11f
′′
22 − (f ′′

12)
2 = 12x − 5 ≥ 0 ⇐⇒ x ≥ 5/12. We conclude that f is concave if and only if

x ≥ 5/12. The largest value of f in S is 125/432, obtained at (5/6, −5/12).

9. (a) f ′
1(x, y) = x − 1 + ay, f ′

2(x, y) = a(x − 1) − y2 + 2a2y, which are both 0 at (x, y) = (1 − a3, a2).
For (b) and (c), see SM.

10. (a) p = C ′
x(x

∗, y∗) and q = C ′
y(x

∗, y∗) are the familiar conditions that at the optimum the price of each good should
equal marginal cost. (b) With a simplified notation, at the optimum (x∗, y∗), π̂ ′

x = F + xF ′
x + yG′

x − C ′
x = 0

and π̂ ′
y = xF ′

y + G + yG′
y − C ′

y = 0. The interpretation is that marginal revenue = marginal cost, as usual,
with the twist that a change in output of either good affects revenue in the other market as well. (c) The profit
function is π = x(a − bx − cy) + y(α − βx − γy) − Px − Qy − R, and the first-order conditions are ∂π/∂x =
a − 2bx − cy − βy − P = 0, ∂π/∂y = −cx + α − βx − 2γy − Q = 0.
(d) ∂2π/∂x2 = −2b, ∂2π/∂y2 = −2γ , ∂2π/∂x∂y = −(β + c). The direct partials of order 2 are negative and
	 = (∂2π/∂x2)(∂2π/∂y2) − (∂2π/∂x∂y)2 = 4γ b − (β + c)2, so the conclusion follows.

Chapter 14

14.1
1. (a) L(x, y) = xy − λ(x + 3y − 24). The first-order conditions L′

1 = y − λ = 0, L′
2 = x − 3λ = 0 imply that

x = 3y. Inserted this into the constraint yields 3y + 3y = 24, so y = 4, and then x = 12. (b) Using (∗∗) in
Example 3 with a = b = p = 1, q = 3, and m = 24, we have x = 1

2 (24/1) = 12, y = 1
2 (24/3) = 4.

2. With L = −40Q1 + Q2
1 − 2Q1Q2 − 20Q2 + Q2

2 − λ(Q1 + Q2 − 15), the first-order conditions are: L′
1 =

−40+2Q1−2Q2−λ = 0, L′
2 = −2Q1−20+2Q2−λ = 0. It follows that −40+2Q1−2Q2 = −2Q1−20+2Q2,

and so Q1 −Q2 = 5. This equation and the constraint together give the solution Q1 = 10, Q2 = 5, with λ = −30.

3. (a) According to (∗∗) in Example 3, x = 3
10 m and y = 1

10 m. (b) x = 10, y = 6 250 000 (c) x = 8/3, y = 1

4. (a) (x, y) = (4/5, 8/5) with λ = 8/5. (b) (x, y) = (8, 4) with λ = 16. (c) (x, y) = (50, 50) with λ = 250.

5. The budget constraint is 2x + 4y = 1000, so with L(x, y) = 100xy + x + 2y − λ(2x + 4y − 1000), the first-order
conditions are L′

1 = 100y + 1 − 2λ = 0 and L′
2 = 100x + 2 − 4λ = 0. From these equations, by eliminating λ,

we get x = 2y, which inserted into the constraint gives 2x + 2x = 1000. So x = 250 and y = 125.

6. m = awT0/(a + b), l = bT0/(a + b)

7. The problem is: max −0.1x2 − 0.2xy − 0.2y2 + 47x + 48y − 600 subject to x + y = 200.
With L(x, y) = −0.1x2 − 0.2xy − 0.2y2 + 47x + 48y − 600 − λ(x + y − 200), the first-order conditions are
L′

1 = −0.2x − 0.2y + 47 − λ = 0 and L′
2 = −0.2x − 0.4y + 48 − λ = 0. Eliminating x and λ yields y = 5, and

then the budget constraint gives x = 195, with λ = 7.

8. (a) P(x, y) = (96 − 4x)x + (84 − 2y)y − 2x2 − 2xy − y2 = −6x2 − 3y2 − 2xy + 96x + 84y

(b) P ′
x(x, y) = −12x − 2y + 96, P ′

y(x, y) = −6y − 2x + 84. The only stationary point is (x, y) = (6, 12).
(c) With L(x, y) = −6x2 − 3y2 − 2xy + 96x + 84y − λ(x + y − 11), L′

1 = −12x − 2y + 96 − λ = 0,
L′

2 = −6y − 2x + 84 − λ = 0. Eliminating λ yields 10x − 4y = 12. The constraint is x + y = 11. Solving
these two equations simultaneously gives x = 4, y = 7. Since P(4, 7) = 673 < P(6, 12) = 792, the production
restriction reduces profit by 119.
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9. (a) x∗(p, m) = aγ p−γ where γ = 1/(1 − a), and y∗(p, m) = m − aγ p1−γ . (b)–(d) see SM.

10. (a) x(p, q, m) = [m + q ln(q/p)]/(p + q), y(p, q, m) = [m + p ln(p/q)]/(p + q) (b) Direct verification.

14.2
1. According to (∗∗) in Example 14.1.3, the solution is x∗ = 3m/8, y∗ = m/12, with λ = 9m3/512. The value

function is f ∗(m) = (x∗)3y∗ = 9m4/2048, so we see that df ∗(m)/dm = 9m3/512 = λ.

2. (a) With L = rK+wL−λ(
√

K+L−Q), the first-order conditions are L′
K = r−λ/2

√
K∗ = 0, L′

L = w−λ = 0.
Inserting λ from the last equation into the first yields

√
K∗ = w/2r . Then K∗ = w2/4r2 and from the constraint

L∗ = Q−w/2r . (b) The value function is C∗(Q) = rK∗ +wL∗ = wQ−w2/4r , and so dC∗(Q)/dQ = w = λ.

3. (a) x + 2y = a yields y = 1
2 a − 1

2 x, and then x2 + y2 = x2 + ( 1
2 a − 1

2 x)2 = 5
4 x2 − 1

2 ax + 1
4 a2. This quadratic

function has a minimum at x = a/5, and then y = 2a/5. (b) L(x, y) = x2 + y2 − λ(x + 2y − a). The necessary
conditions are L′

1 = 2x − λ = 0, L′
2 = 2y − 2λ = 0, implying that 2x = y. From the constraint, x = a/5 and

then y = 2a/5, λ = 2a/5. (c) See Fig. A14.2.3. Find the point on the straight line x + 2y = a which has the
smallest distance from the origin. The corresponding maximization problem has no solution.

y

x

(a/5, 2a/5)

a

a/2

Figure A14.2.3

4. (a) x∗ = 4, y∗ = 24, λ = 1/4. (b) ŷ = 97/4, x̂ = 4. 	U = 105/4 − 104/4 = 1/4, the value of the Lagrange
multiplier from (a). (There is exact equality here because U is linear in one of the variables.)
(c) x∗ = q2/4p2, y∗ = m/q − q/4p. (Note that y∗ > 0 if and only if m > q2/4p.)

5. (a) First-order conditions: (i) α/(x∗ −a) = λp; (ii) β/(y∗ −b) = λq. Hence px∗ = pa+α/λ and qy∗ = qb+β/λ.
Use the budget constraint to eliminate λ. The expressions for px∗ and qy∗ follow.
(b) U ∗ = α[ln α + ln(m − (ap + bq)) − ln p] + β[ln β + ln(m − (ap + bq)) − ln q]. The results follow.

6. f (x, T ) = − 1
6 αxT 5 + 1

12 xT 4 + 1
6 xT 3, g(x, T ) = 1

6 xT 3. The solution of (∗) is x = 384α3M , T = 1/4α,
f ∗(M) = M + M/16α, with λ = 1 + 1/16α. Clearly, ∂f ∗(M)/∂M = λ, which confirms (2).

14.3
1. (a) (2, 2) and (−2, −2) are the only possible solutions of the maximization problem, and (−2, 2) and (2, −2) are the

only possible solutions of the minimization problem. (b) (3, −1) solves the maximization problem and (−3, 1)

solves the minimization problem.

2. (a) Maximum at (x, y, λ) = (−4, 0, 5/4), minimum at (x, y, λ) = (4/3, ±4
√

2/3, 1/4).
(b) Minimum points: (

4√2, 1 − 1
2

√
2) and (− 4√2, 1 − 1

2

√
2)

3. (a) L = x + y − λ(x2 + y − 1). The equations L′
1 = 1 − 2λx = 0, L′

2 = 1 − λ = 0, and x2 + y = 1 have the
solution x = 1/2, y = 3/4, and λ = 1. (b) See Fig. A14.3.3. The minimization problem has no solution because
f (x, 1−x2) = x +1−x2 → −∞ as x → ∞. (c) New solution: x = 0.5 and y = 0.85. The change in the value
function is f ∗(1.1) − f ∗(1) = (0.5 + 0.85) − (0.5 + 0.75) = 0.1. Because λ = 1, one has λ · dc = 1 · 0.1 = 0.1.
So, in this case, (14.2.3) is satisfied with equality. (This is because of the special form of the functions f and g.)
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4. (a) x = 6, y = 2 (b) The approximate change is 1.
y

x−1 1

y = 1 − x2
( 1

2 , 3
4 )

x + y = 1
2

x + y = 5
4

y

x

√
x + √

y = 5

2x + 3y = 75

2x + 3y = 50

P
(25, 0)

2x + 3y = 30

(0, 25)

Figure A14.3.3 Figure A14.4.3

14.4
1. L(x, y) = xy − λ(x + y − 2), so the first-order conditions are y − λ = 0, x − λ = 0, with the unique solution

x = y = λ = 1 satisfying the constraint x + y = 2. Then, when λ = 1, one has L(2, 2) = 2 > L(1, 1) = 1, so
(1, 1) is not a maximum point for L. (In fact, L(x, y) has a saddle point at (1, 1).)

2. The problem with systems of three equations and two unknowns is not that they are merely difficult to solve but
that they are usually inconsistent—i.e., it is impossible to solve them. The equations f ′

x(x, y) = f ′
y(x, y) = 0 are

NOT valid at the optimal point.

3. (a) With L = 2x + 3y − λ(
√

x + √
y − 5), L′

1(x, y) = 2 − λ/2
√

x = 0, L′
2(x, y) = 3 − λ/2

√
y = 0. Thus

y = 4x/9, so x = 9 and y = 4. (b) See Fig. A14.4.3. Move the line 2x + 3y = c as far as possible in the
north-east direction. So the solution is at (x, y) = (0, 25). (c) g(x, y) is continuously differentiable only on the
set A of (x, y) such that x > 0 and y > 0, so the theorem does not apply at the point (x, y) = (0, 25).

4. The minimum is 1 at (x, y) = (−1, 0).

14.5
1. L = 10x1/2y1/3 − λ(2x + 4y − m) is concave in (x, y) (Problem 13.2.8), so Theorem 14.5.1 applies.

2. With L = ln x + ln y − λ(px + qy − m), L′
x = 1/x − pλ, L′

y = 1/y − qλ, L′′
xx = −1/x2, L′′

xy = 0, and
L′′

yy = −1/y2. Moreover, g′
x = p and g′

y = q. Hence D(x, y, λ) = −q2/x2 − p2/y2 < 0. Condition (A) in
Theorem 14.5.2 is satisfied.

3. D(x, y, λ) = 10, so Theorem 14.5.2 tells us that (a/5, 2a/5) is a local minimum.

4. U ′′
11(x, y) = a(a − 1)xa−2 ≤ 0, U ′′

22(x, y) = a(a − 1)ya−2 ≤ 0, and U ′′
12(x, y) = 0, so U is concave. The solution

is x = mp1/(a−1)/R, y = mq1/(a−1)/R, where R = pa/(a−1) + qa/(a−1).

14.6
1. (a) L(x, y, z) = x2 + y2 + z2 − λ(x + y + z − 1), so L′

x = 2x − λ = 0, L′
y = 2y − λ = 0, L′

z = 2z − λ = 0. It
follows that x = y = z. The only solution of the necessary conditions is (1/3, 1/3, 1/3) with λ = 2/3.
(b) The problem is to find the shortest distance from the origin to a point in the plane x+y+z = 1. The corresponding
maximization problem has no solution.

2. x = 1/2

1/2 + 1/3 + 1/4

390

4
= 45, y = 1/3

1/2 + 1/3 + 1/4

390

3
= 40, z = 1/4

1/2 + 1/3 + 1/4

390

6
= 15

3. (a) With the Lagrangian L = x + √
y − 1/z − λ(px + qy + rz − m), the first-order conditions are:

(i) ∂L/∂x = 1 − λp = 0; (ii) ∂L/∂y = 1
2 y−1/2 − λq = 0; (iii) ∂L/∂z = z−2 − λr = 0.
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(b) From the equations in (a) we get λ = 1/p, and then 1
2 y−1/2 = q/p, and so y = p2/4q2, and finally, z = √

p/r .
Inserting these values of y and z in the budget constraint and solving for x gives x = m/p − p/4q − √

r/p.
(c) Straightforward substitution. (d) ∂U∗/∂m = 1/p = λ, as expected from Section 14.2.

4. The Lagrangian is L = α ln x + β ln y + (1 − α − β) ln(L − l) − λ(px + qy − wl), which is stationary when:
(i) L′

x = α/x∗ − λp = 0; (ii) L′
y = β/y∗ − λq = 0; (iii) L′

l = −(1 − α − β)/(L − l∗) + λw = 0. From (i) and
(ii), qy∗ = (β/α)px∗, while (i) and (iii) yield l∗ = L − [(1 − α − β)/wα]px∗. Insertion into the budget constraint
and solving for x∗ yields x∗ = αwL/p, y∗ = βwL/q, and l∗ = (α + β)L.

5. The constraints reduce to h + 2k + l = 0 and 2h − k − 3l = 0, so k = −h and l = h. But then x2 + y2 +
z2 = 200 + 3h2 ≥ 200 for all h, so f is maximized for h = 0. Then k = l = 0 also, and we conclude that
(x, y, z) = (10, 10, 0) solves the minimization problem.

6. Here L = a2
1x

2
1 + · · · + a2

nx
2
n − λ(x1 + · · · + xn − 1). Necessary conditions are that L′

j = 2a2
j xj − λ = 0,

j = 1, . . . , n, and so xj = λ/2a2
j . Inserted into the constraint, this implies that 1 = 1

2 λ(1/a2
1 + · · · + 1/a2

n). Thus,
for j = 1, . . . , n, we have xj = 1/a2

j (1/a2
1 + · · · + 1/a2

n) = 1/a2
j

∑n
i=1(1/a2

i ). If at least one ai is 0, the minimum
value is 0, which is attained by letting a corresponding xi be 1, with the other xj all equal to 0.

7. (x, y, z) = (0, 0, 1) with λ = −1/2 and μ = 1 yields the minimum, (x, y, z) = (4/5, 2/5, −1/5) with λ = 1/2
and μ = 1/5 yields the maximum.

8. (a) xj = ajm/pj (a1 + · · · + an) for k = 1, . . . , n.

(b) xj = mp
−1/(1−a)

j

/ n∑
i=1

p
−a/(1−a)

i for j = 1, . . . , n.

14.7
1. (a) With L = x + a ln y − λ(px + qy − m), L′

1 = 1 − λp = 0, L′
2 = a/y∗ − λq = 0. Thus λ = 1/p,

which inserted into the second equality yields y∗ = ap/q. From the budget constraint we get x∗ = m/p − a. The
Lagrangian is concave, so this is the solution. (b) U ∗ = x∗ + a ln y∗ = m/p − a + a ln a + a ln p − a ln q. Then
∂U∗/∂p = −m/p2 + a/p, ∂U ∗/∂q = −a/q, ∂U ∗/∂m = 1/p, and ∂U ∗/∂a = ln a + ln p − ln q. On the other
hand, ∂L/∂p = −λx, ∂L/∂q = −λy, ∂L/∂m = λ, and ∂L/∂a = ln y. When we evaluate these four partials at
(x∗, y∗), we see that the envelope theorem is confirmed.

2. The minimum point is (x∗, y∗, z∗) = (a, 2a, 9a), where a = −√
b/6, with λ = −3/

√
b. The value of the objective

function is f ∗(b) = x∗ + 4y∗ + 3z∗ = −6
√

b, and df ∗(b)/db = −3/
√

b = λ.

3. (a) x = aM/α, y = bM/β, z = cM/γ , λ = 1/2M , where M = √
L/
√

a2/α + b2/β + c2/γ . (The first-order
conditions give x = a/2λα, y = b/2λβ, z = c/2λγ . Substituting in the constraint and solving for λ gives the
solution.) (b) We find that M = √

L/5, and the given values of x, y, and z follow. For L = 100 one has M = 2
and λ = 1/4. The increase in the maximal value as L increases from 100 to 101, is approximately λ · 1 = 0.25.
The actual increase is 5(

√
101 − √

100 ) ≈ 0.249378.

4. (a)
(

1
4

√
15, 0, 1

8

)
and

(− 1
4

√
15, 0, 1

8

)
(with λ = 1) both solve the maximization problem, while

(
0, 0, − 1

2

)
solves

the minimization problem. (b) 	f ∗ ≈ λ	c = 1 · 0.02 = 0.02

5. K∗ = 21/3r−1/3w1/3Q4/3, L∗ = 2−2/3r2/3w−2/3Q4/3, C∗ = 3 · 2−2/3r2/3w1/3Q4/3, λ = 24/3r2/3w1/3Q1/3.
The equalities (∗) are easily verified.

6.
∂K∗

∂w
= ∂

∂w

(
∂C∗

∂r

)
= ∂

∂r

(
∂C∗

∂w

)
= ∂L∗

∂r
, using the first and second equalities in (∗) in Example 3.

7. (a) With L = √
x + ay − λ(px + qy − m), the first-order conditions for (x∗, y∗) to solve the problem are

(i) L′
x = 1/2

√
x∗ − λp = 0, (ii) L′

y = a − λq = 0. Thus λ = a/q, and x∗(p, q, a, m) = q2/4a2p2,
y∗(p, q, a, m) = m/q − q/4a2p. The Lagrangian is concave in (x, y), so this is the solution. The indirect utility
function is U∗(p, q, a, m) = √

x∗ + ay∗ = q/4ap + am/q.
(b) The partial derivatives of U ∗ w.r.t. the parameters are ∂U ∗/∂p = −q/4ap2, ∂U∗/∂q = 1/4ap − am/q2,
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∂U ∗/∂m = a/q, and ∂U∗/∂a = −q/4a2p+m/q. On the other hand, with L(x, y, p, q, a, m) = √
x+ay−λ(px+

qy−m), the partial derivatives of L evaluated at (x∗, y∗) are ∂L∗/∂p = −λx∗ = −(a/q)(q2/4a2p2) = −q/4ap2,
∂L∗/∂q = −λy∗ = −(a/q)(m/q − q/4a2p) = 1/4ap − am/q2, ∂L∗/∂m = λ, and ∂L∗/∂a = y∗ =
m/q − q/4a2p. The envelope theorem is confirmed in all cases.

14.8
1. (a) With L = −x2 − y2 − λ(x − 3y + 10), (2) and (3) yield (i) L′

x = −2x − λ = 0; (ii) L′
y = −2y + 3λ = 0;

(iii) λ ≥ 0 with λ = 0 if x − 3y < −10. Suppose λ = 0. Then (i) and (ii) imply x = y = 0, contradicting
x − 3y ≤ −10. Thus λ > 0 and from (iii), x − 3y = −10. Furthermore, (i) and (ii) imply λ = −2x = 2

3 y,
so y = −3x. Inserting this into x − 3y = −10 yields x = −1, and then y = 3. Since the Lagrangian is easily
seen to be concave, the solution is (x, y) = (−1, 3). (b) See Fig. A14.8.1. The solution is the point on the line
x − 3y = −10 that is closest to the origin.

y

x-10 -5 -1

3
2
1

x - 3y � -10

Figure A14.8.1

2. (a) The Kuhn–Tucker conditions yield (i) 1
2
√

x
−λp = 0, (ii) 1

2
√

y
−λq = 0, (iii) λ ≥ 0, and λ = 0 if px + qy < m.

Clearing fractions in (i) and (ii) gives 1 = 2λp
√

x = 2λq
√

y, from which we infer that x, y, λ are all positive, and
also that y = p2x/q2. Because λ > 0, the budget equation px + qy = m holds, implying that x = mq/(pq +p2).
The corresponding value for y is easily found, and the demand functions are

x = x(p, q, m) = mq

p(p + q)
, y = y(p, q, m) = mp

q(p + q)

These demand functions solve the problem because L(x, y) is easily seen to be concave.
(b) It is easy to see that the demand functions are homogeneous of degree 0, as expected.

3. (a) With L = 4 − 1
2 x2 − 4y − λ(6x − 4y − a), the Kuhn–Tucker conditions are: (i) ∂L/∂x = −x − 6λ = 0;

(ii) ∂L/∂y = −4 + 4λ = 0; (iii) λ ≥ 0 (λ = 0 if 6x − 4y < a).
(b) From (ii), λ = 1, so (i) gives x = −6. From (iii) and the given constraint, y = −9 − 1

4 a. The Lagrangian is
concave, so we have found the solution. (c) V (a) = a + 22, so V ′(a) = 1 = λ.

4. (a) L(x, y) = x2 +2y2 −x−λ(x2 +y2 −1). The Kuhn–Tucker conditions: (i) 2x−1−2λx = 0; (ii) 4y−2λy = 0;
(iii) λ ≥ 0 with λ = 0 if x2 + y2 < 1. (b) From (ii), y(2 − λ) = 0, so either (I) y = 0 or (II) λ = 2.
(I) y = 0. If λ = 0, then from (i), x = 1/2 and (x, y) = (1/2, 0) is a candidate for optimum (since it satisfies all
the Kuhn–Tucker conditions). If y = 0 and λ > 0, then from (iii) and x2 + y2 ≤ 1, x2 + y2 = 1. But then x = ±1,
so (x, y) = (±1, 0) are candidates, with λ = 1/2 and 3/2, respectively.
(II) λ = 2. Then from (i), x = −1/2 and (iii) gives y2 = 3/4, so y = ±√

3/2. So (−1/2, ±√
3/2) are the

two remaining candidates with λ = 2. The maximum value is 9/4 at (−1/2,
√

3/2) and at (−1/2, −√
3/2). The

extreme value theorem confirms that this is the solution.

5. (a) For 0 < a < 1, the solution is x = √
a, y = 0, and λ = a−1/2 − 1; for a ≥ 1, it is x = 1, y = 0, and λ = 0.

Because the Lagrangian is concave, these give the respective maxima. (b) For a ∈ (0, 1), f ∗(a) = 2
√

a − a, and
df ∗(a)/da = λ. If a ≥ 1, then f ∗(a) = 1, so df ∗(a)/da = 0 = λ.

6. With L = aQ − bQ2 − αQ − βQ2 + λQ, the Kuhn–Tucker conditions for Q∗ to solve the problem are:
(i) dL/dQ = a − α − 2(b + β)Q∗ + λ = 0; (ii) λ ≥ 0, with λ = 0 if Q∗ > 0. By Theorem 14.8.1, these
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conditions are also sufficient because the Lagrangian is concave. We find that Q∗ = (a − α)/2(b + β) and λ = 0
if a > α, whereas Q∗ = 0 and λ = α − a if a ≤ α. (See also Example 4.6.2.)

14.9

1. (a) Writing the constraints as g1(x, y) = x + e−x − y ≤ 0 and g2(x, y) = −x ≤ 0, the Lagrangian is L =
1
2 x − y − λ1(x + e−x − y) − λ2(−x). The Kuhn–Tucker conditions are then: (i) 1

2 − λ1(1 − e−x) + λ2 = 0;
(ii) −1 + λ1 = 0; (iii) λ1 ≥ 0, with λ = 0 if x + e−x < y; (iv) λ2 ≥ 0, with λ = 0 if x > 0. (b) From (ii),
λ1 = 1, so from (iii), x + e−x = y. Either x = 0 or x > 0. In the latter case, (iv) implies that λ2 = 0. Then (i)
implies 1

2 − (1 − e−x) = 0, or e−x = 1
2 . Hence x = ln 2, and so y = x + e−x = ln 2 + 1

2 . If x = 0, then (i)
implies λ2 = − 1

2 , which contradicts λ2 ≥ 0. We conclude that (x, y) = (ln 2, ln 2 + 1
2 ) is the only point satisfying

the Kuhn–Tucker conditions, with (λ1, λ2) = (1, 0). (By sketching the constraint set and studying the level curves
1
2 x − y = c, it is easy to see that the point we found solves the problem.)

2. If m ≤ px̄/α, then x∗ = mα/p and y∗ = (1 − α)m/q, with λ = 1/m and μ = 0.
If m > px̄/α, then x∗ = x̄ and y∗ = (m − px̄)/q, λ = (1 − α)/(m − px̄), and μ = (αm − px̄)/x̄(m − px̄).

3. (a) The admissible set is the shaded region in Fig. A14.9.3. (b) (x∗, y∗) = (−1, 5)

y

1

2

3

4

5

6

7

x−2 −1 1 2 3 4 5 6 7

II

(−1, 5)

I

III

(3, 1)

y

x

x + ay = c

1

x + y = 0

1

x2 + y2 = 1

Figure A14.9.3 Figure A14.9.4

4. (a) The admissible set and one of the level curves for x + ay are shown in Fig. A14.9.4.

(b) (x∗, y∗) =
{ (

1
2

√
2, − 1

2

√
2
)

if a ≤ −1(
1/

√
1 + a2, a/

√
1 + a2

)
if a > −1

5. (x, y) = (4−2/3, 4−1/3)

6. (a) See Fig. A14.9.6. (b) Solution: (x∗, y∗) = (ln(3/2), 2/3), with λ = 3[ln(3/2) + 1/2], μ = 3 ln(3/2) + 5/6.

7. (a) With L = xz + yz − λ(x2 + y2 + z2 − 1), the conditions are (i) z − 2λx = 0; (ii) z − 2λy = 0;
(iii) x + y − 2λz = 0; (iv) λ ≥ 0, with λ = 0 if x2 + y2 + z2 < 1. (b) If λ = 0, there is a stationary point at
x = y = z = 0, but this is not a maximum. If λ > 0 then (i) and (ii) imply that x = y = z/2λ. Next, (iii) implies
that z/λ = 2λz, so λ2 = 1/2, so λ = 1

2

√
2 because λ > 0. Finally, (iv) implies that x2 +y2 +z2 = z2/2λ2 +z2 = 1,

so z2 = 1/2. The maximum points are at ( 1
2 , 1

2 , 1
2

√
2) and (− 1

2 , − 1
2 , − 1

2

√
2), with λ = 1

2

√
2. The extreme value

theorem guarantees the existence of a maximum.
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y

1

2

x1 2

y = 2/3

y = e−x

(x∗, y∗)

Figure A14.9.6

14.10

1. (a) With L(x, y) = x + ln(1 + y) − λ(16x + y − 495), the K–T conditions for (x∗, y∗) to be a solution are:

(i) L′
1(x

∗, y∗) = 1 − 16λ ≤ 0 ( = 0 if x∗ > 0) (ii) L′
2(x

∗, y∗) = 1

1 + y∗ − λ ≤ 0 ( = 0 if y∗ > 0)

(iii) λ ≥ 0 , with λ = 0 if 16x∗ + y∗ < 495 (iv) x∗ ≥ 0, y∗ ≥ 0 (v) 16x∗ + y∗ ≤ 495.
(b) Note that the Lagrangian is concave, so a point that satisfies the K–T conditions will be a maximum point. From
(i), λ ≥ 1/16 > 0, so (iii) and (v) imply (vi) 16x∗ + y∗ = 495. Suppose x∗ = 0. Then (v) gives y∗ = 495, and
from (ii), λ = 1/496, contradicting λ ≥ 1/16. Hence, x∗ > 0, and so by (i), λ = 1/16. Suppose y∗ = 0. Then (ii)
implies λ ≥ 1, contradicting λ = 1/16. Thus y∗ > 0, and so from (ii), y∗ = 15 and then (v) yields x∗ = 30. So
the only solution to the K–T conditions is (x∗, y∗) = (30, 15), with λ = 1/16.
(c) Utility will increase by approximately λ · 5 = 5/16. (Actually, the new solution is (30 5

16 , 15), and the increase
in utility is exactly 5/16. This is because the utility function has a special “quasi-linear” form.)

2. (x, y) = (1, 0) is the only point satisfying all the conditions.

3. The only possible solution is (x∗
1 , x∗

2 , k∗) = (1/2, 3/4, 3/4), with λ = 0 and μ = 3/2.

Review Problems for Chapter 14

1. (a) With λ as the Lagrange multiplier, the first-order conditions imply 3 − 2λx = 0 and 4 − 2λy = 0, so 3y = 4x.
Inserting these into the constraint yields x2 = 81, so x = ±9. Since the Lagrangian is concave, the solution is at
x = 9, y = 12, with λ = 1/6. (b) Using (14.2.3), f ∗(225 − 1) − f ∗(225) ≈ λ(−1) = −1/6.

2. (a) x = 2m/5p, y = 3m/5q (b) x = m/3p, y = 2m/3q (c) x = 3m/5p, y = 2m/5q

3. (a) π = xp(x) + yq(y) − C(x, y). The first-order conditions (i) p(x∗) = C ′
1(x

∗, y∗) − x∗p′(x∗) and (ii) q(y∗) =
C ′

2(x
∗, y∗)−y∗q ′(y∗). See SM for the economic interpretations. (b) With L = xp(x)+yq(y)−C(x, y)−λ(x +

y − m), the first-order conditions for (x̂, ŷ) to solve the problem are L′
1 = p(x̂) + x̂p′(x̂) − C ′

1(x̂, ŷ) − λ = 0,
L′

2 = q(ŷ) + ŷq ′(ŷ) − C ′
2(x̂, ŷ) − λ = 0.

4. (a) The Lagrangian isL(x, y) = U(x, y)−λ[py−w(24−x)]. The first-order conditions implypU ′
1 = wU ′

2 = λwp,
which immediately yields (∗∗). (b) Differentiating (∗) and (∗∗) w.r.t. w gives py ′

w = 24 − x − wx ′
w and

p(U ′′
11x

′
w +U ′′

12y
′
w) = U ′

2 +w(U ′′
21x

′
w +U ′′

22y
′
w). Solving these equations yields the given formula for x ′

w = ∂x/∂w.

5. (a) x = −2
√

b, y = 0 solves the maximization problem. x = 4/3, y = ±√
b − 4/9 solves the minimization

problem. (b) For x = −2
√

b, y = 0, f ∗(b) = 4b + 4
√

b + 1. Since λ = 4 + 2/
√

b, the suggested equality is
easily verified.

6. (a) With L(x, y) = v(x) + w(y) − λ(px + qy − m), the first-order conditions yield v′(x) = λp and w′(y) = λq.
Thus v′(x)/w′(y) = p/q. (b) Since L′′

xx = v′′(x), L′′
yy = w′′(y), and L′′

xy = 0, we see that the Lagrangian is
concave.



Essential Math. for Econ. Analysis, 4th edn EME4_Z01.TEX, 16 May 2012, 14:24 Page 722

722 A N S W E R S T O T H E P R O B L E M S

7. (a) The first-order conditions imply that 2x − 2 = 2y − 2, so x = y. Inserting this into the constraint equation and
squaring, then simplifying, one obtains the second equation in (∗).
(b) ∂x/∂a = 1/2x(3x + b), ∂2x/∂a2 = − 1

4 (6x + b)[x(3x + b)]−3, and ∂x/∂b = −x/2(3x + b).

8. For a ≥ 5, (x, y) = (2, 1) with λ = 0. For a < 5, (x, y) = (2
√

a/5,
√

a/5), with λ = √
5/a − 1.

9. (a) With L = xy−λ1(x
2+ry2−m)−λ2(−x+1), the Kuhn–Tucker conditions for (x∗, y∗) to solve the problem are:

(i) L′
1 = y∗ − 2λ1x

∗ + λ2 = 0; (ii) L′
2 = x∗ − 2rλ1y

∗ = 0; (iii) λ1 ≥ 0, with λ1 = 0 if (x∗)2 + r(y∗)2 < m;
(iv) λ2 ≥ 0, with λ2 = 0 if x∗ > 1; (v) (x∗)2 + r(y∗)2 ≤ m; (vi) x∗ ≥ 1

(b) Solution: For m ≥ 2, x∗ = √
m/2 and y∗ = √

m/2r , with λ1 = 1/2
√

r and λ2 = 0. For 1 < m < 2, x∗ = 1,
y∗ = √

(m − 1)/r , with λ1 = 1/2
√

r(m − 1) and λ2 = (2 − m)/
√

r(m − 1). (c) See SM.

10. With the Lagrangian L = R(Q) − C(Q) − λ(−Q), the first-order conditions for Q∗ to solve the problem are:
(i) R′(Q∗) − C ′(Q∗) + λ = 0; (ii) λ ≥ 0, with λ = 0 if Q∗ > 0. These conditions are also sufficient for optimality
because the Lagrangian is concave in Q. A sufficient (and necessary) condition for Q∗ = 0 to be optimal is that
π ′(0) ≤ 0, or equivalently, R′(0) ≤ C ′(0). (Draw a figure.)

11. (a) The maximization problem is: max(−rK − wL) subject to −√
KL ≤ −Q. With the Lagrangian L = −rK −

wL − λ(−√
KL + Q), the Kuhn–Tucker conditions for (K∗, L∗) to solve the problem are:

(i) L′
K = −r + λ(

√
L∗/2

√
K∗) = 0; (ii) L′

L = −w + λ(
√

K∗/2
√

L∗) = 0; (iii) λ ≥ 0 (λ = 0 if
√

K∗L∗ > Q).
Obviously λ = 0 would contradict (i) and (ii), so λ > 0 and (iv)

√
K∗L∗ = Q. Eliminating λ from (i) and (ii), we

find L∗ = rK∗/w. Then (iv) yields K∗ = Q
√

w/r and L∗ = Q
√

r/w.
(b) c∗(r, w, Q) = rK∗ + wL∗ = 2Q

√
rw, so ∂c∗/∂r = Q

√
w/r = K∗. If the price of capital r increases

by 1, then the minimum cost will increase by about K∗, the optimal choice of capital input. The equation
∂c∗/∂w = Q

√
r/w = L∗ has a similar interpretation.

Chapter 15
15.1

1. (a), (c), (d), and (f) are linear, (b) and (e) are nonlinear.

2. Yes, it is linear in a, b, c, and d.

3. 2x1 + 4x2 + 6x3 + 8x4 = 2

5x1 + 7x2 + 9x3 + 11x4 = 4

4x1 + 6x2 + 8x3 + 10x4 = 8

4. The system is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x2 + x3 + x4 = b1

x1 + x3 + x4 = b2

x1 + x2 + x4 = b3

x1 + x2 + x3 = b4

, with solution

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 = − 2
3 b1 + 1

3 (b2 + b3 + b4)

x2 = − 2
3 b2 + 1

3 (b1 + b3 + b4)

x3 = − 2
3 b3 + 1

3 (b1 + b2 + b4)

x4 = − 2
3 b4 + 1

3 (b1 + b2 + b3)

(Adding the 4 equations, then dividing by 3, gives x1 + x2 + x3 + x4 = 1
3 (b1 + b2 + b3 + b4). Subtracting each of

the original equations in turn from this new equation gives the expressions for x1, . . . , x4. Systematic elimination
of the variables starting by eliminating (say) x4 is an alternative solution method.)

5. (a) The commodity bundle owned by individual j . (b) ai1 + ai2 + · · · + ain is the total stock of commodity i. The
first case is when i = 1. (c) p1a1j + p2a2j + · · · + pmamj

6. The solution is x = 93.53, y ≈ 482.11, s ≈ 49.73, and c ≈ 438.31.

15.2

1. A =
( 1 0 0

0 1 0
0 0 1

)
2. A + B =

(
1 0
7 5

)
, 3A =

(
0 3
6 9

)
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3. u = 3 and v = −2. (Equating the elements in row 1 and column 3 gives u = 3. Then, equating those in row 2 and
column 3 gives u − v = 5 and so v = −2. The other elements then need to be checked, but this is obvious.)

4. A + B =
(

1 0 4
2 4 16

)
, A − B =

(−1 2 −6
2 2 −2

)
, and 5A − 3B =

(−3 8 −20
10 12 8

)

15.3

1. (a) AB =
(

0 −2
3 1

)(−1 4
1 5

)
=
(

0 · (−1) + (−2) · 1 0 · 4 + (−2) · 5
3 · (−1) + 1 · 1 3 · 4 + 1 · 5

)
=
(−2 −10

−2 17

)

and BA =
(

12 6
15 3

)
. (b) AB =

(
26 3

6 −22

)
and BA =

( 14 6 −12
35 12 4
3 3 −22

)

(c) AB =
( 0 0 0

0 4 −6
0 −8 12

)
and BA = (16), a 1 × 1 matrix. (d) AB is not defined. BA =

(−1 4
3 4
4 8

)

2. (i)

(−1 15
−6 −13

)
(ii) AB =

(
0 0
0 0

)
(iii) From (ii) it follows that C(AB) =

(
0 0
0 0

)
.

3. A + B =
( 4 1 −1

9 2 7
3 −1 4

)
, A − B =

(−2 3 −5
1 −2 −3

−1 −1 −2

)
, AB =

( 5 3 3
19 −5 16
1 −3 0

)
, BA =

( 0 4 −9
19 3 −3
5 1 −3

)
,

(AB)C = A(BC) =
( 23 8 25

92 −28 76
4 −8 −4

)

4. (a)

(
1 1
3 5

)(
x1

x2

)
=
(

3
5

)
(b)

( 1 2 1
1 −1 1
2 3 −1

)(
x1

x2

x3

)
=
( 4

5
1

)
(c)

(
2 −3 1
1 1 −1

)( x1

x2

x3

)
=
(

0
0

)

5. (a) A − 2I =
(

0 2
1 3

)
. The matrix C must be 2 × 2. With C =

(
c11 c12

c21 c22

)
, we need

(
0 2
1 3

)(
c11 c12

c21 c22

)
=(

1 0
0 1

)
, or

(
2c21 2c22

c11 + 3c21 c12 + 3c22

)
=
(

1 0
0 1

)
. It follows that c11 = −3/2, c12 = 1, c21 = 1/2, and c22 = 0.

(b) B − 2I =
(

0 0
3 0

)
, so the first row of any product matrix (B − 2I)D must be (0, 0). Hence, no such matrix D

can possibly exist.

6. (a) The product AB is defined only if B has n rows. And BA is defined only if B has m columns. So B must be an

n × m matrix. (b) B =
(

w − y y

y w

)
, for arbitrary y, w.

7. T(Ts) =
( 0.85 0.10 0.10

0.05 0.55 0.05
0.10 0.35 0.85

)( 0.25
0.35
0.40

)
=
( 0.2875

0.2250
0.4875

)

15.4

1. A(B + C) = AB + AC =
(

3 2 6 2
7 4 14 6

)
2. (ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz) (a 1 × 1 matrix)

3. It is straightforward to show that (AB)C and A(BC) are both equal to the 2 × 2 matrix D = (dij )2×2 whose four
elements are dij = ai1b11c1j + ai1b12c2j + ai2b21c1j + ai2b22c2j for i = 1, 2 and j = 1, 2.

4. (a)

( 5 3 1
2 0 9
1 3 3

)
(b) (1, 2, −3)
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5. Equality in (a) as well as in (b) if and only if AB = BA. ((A + B)(A − B) = A2 − AB + BA − B2 �= A2 − B2

unless AB = BA. The other case is similar.)

6. (a) Direct verification by matrix multiplication. (b) AA = (AB)A = A(BA) = AB = A, so A is idempotent.
Then just interchange A and B to show that B is idempotent. (c) As the induction hypothesis, suppose that Ak = A,
which is true for k = 1. Then Ak+1 = AkA = AA = A, which completes the proof by induction.

7. If P3Q = PQ, then P5Q = P2(P3Q) = P2(PQ) = P3Q = PQ.

8. (a) Direct verification. (b) A =
(

1 1
−1 −1

)
(c) See SM.

15.5

1. A′ =

⎛
⎜⎝

3 −1
5 2
8 6
3 2

⎞
⎟⎠, B′ = (0, 1, −1, 2), C′ =

⎛
⎜⎝

1
5
0

−1

⎞
⎟⎠

2. A′ =
(

3 −1
2 5

)
, B′ =

(
0 2
2 2

)
, (A + B)′ =

(
3 1
4 7

)
, (αA)′ =

(−6 2
−4 −10

)
, AB =

(
4 10

10 8

)
,

(AB)′ =
(

4 10
10 8

)
= B′A′, and A′B′ =

(−2 4
10 14

)
. Verifying the rules in (2) is now very easy.

3. Equation (1) implies that A = A′ and B = B′.

4. Symmetry requires a2 − 1 = a + 1 and a2 + 4 = 4a. The second equation has the unique root a = 2, which also
satisfies the first equation.

5. No! For example:

(
0 0
0 1

)(
1 1
1 1

)
=
(

0 0
1 1

)
.

6. (A1A2A3)
′ = (A1(A2A3))

′ = (A2A3)
′A′

1 = (A′
3A′

2)A
′
1 = A′

3A′
2A′

1. For the general case use induction.

7. (a) Direct verification. (b)

(
p q

−q p

)(
p −q

q p

)
=
(

p2 + q2 0
0 p2 + q2

)
=
(

1 0
0 1

)
⇐⇒ p2 + q2 = 1.

(c) If P′P = Q′Q = In, then (PQ)′(PQ) = (Q′P′)(PQ) = Q′(P′P)Q = Q′InQ = Q′Q = In.

8. (a) TS =
(

p3 + p2q 2p2q + 2pq2 pq2 + q3

1
2 p3 + 1

2 p2 + 1
2 p2q p2q + pq + pq2 1

2 pq2 + 1
2 q2 + 1

2 q3

p3 + p2q 2p2q + 2pq2 pq2 + q3

)
= S because p + q = 1.

A similar argument shows that T2 = 1
2 T + 1

2 S. To derive the formula for T3, multiply each side of the last equation
on the left by T.

(b) The appropriate formula is Tn = 21−nT + (1 − 21−n)S.

15.6
1. (a) Gaussian elimination yields(

1 1 3
3 5 5

) −3
← ∼

(
1 1 3
0 2 −4

)
1/2

∼
(

1 1 3
0 1 −2

) ←
−1

∼
(

1 0 5
0 1 −2

)
The solution is therefore x1 = 5, x2 = −2. (b) Gaussian elimination yields( 1 2 1 4

1 −1 1 5
2 3 −1 1

) −1 −2
←
←

∼
( 1 2 1 4

0 −3 0 1
0 −1 −3 −7

)
−1/3 ∼

( 1 2 1 4
0 1 0 −1/3
0 −1 −3 −7

) ←
1 −2

←

∼
( 1 0 1 14/3

0 1 0 −1/3
0 0 −3 −22/3

)
−1/3

∼
( 1 0 1 14/3

0 1 0 −1/3
0 0 1 22/9

) ←

−1
∼
( 1 0 0 20/9

0 1 0 −1/3
0 0 1 22/9

)

The solution is therefore: x1 = 20/9, x2 = −1/3, x3 = 22/9
(c) Solution: x1 = (2/5)s, x2 = (3/5)s, x3 = s, with s an arbitrary real number.
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2. Using Gaussian elimination to eliminate x from the second and third equations, and then y from the third equation,

we arrive at the following augmented matrix:

( 1 1 −1 1
0 1 −3/2 −1/2
0 0 a + 5/2 b − 1/2

)
.

For any z, the first two equations imply that y = − 1
2 + 3

2 z and x = 1 − y + z = 3
2 − 1

2 z. From the last equation
we see that for a �= − 5

2 , there is a unique solution with z = (b − 1
2 )
/
(a + 5

2 ). For a = − 5
2 , there are no solutions

if b �= 1
2 , but there is one degree of freedom if b = 1

2 (with z arbitrary).

3. For c = 1 and for c = −2/5 the solution is x = 2c2 − 1 + t , y = s, z = t , w = 1 − c2 − 2s − 2t , for arbitrary s

and t . For other values of c there are no solutions.

4. (a) Move the first row down to row number three and use Gaussian elimination. There is a unique solution if and
only if a �= 3/4. (b) If b1 �= 1

4 b3 there is no solution. If b1 = 1
4 b3, there is an infinite set of solutions that take the

form x = −2b2 + b3 − 5t , y = 3
2 b2 − 1

2 b3 + 2t , z = t , with t ∈ �.

15.7

1. a + b =
(

5
3

)
, a − b =

(−1
−5

)
, 2a + 3b =

(
13
10

)
, and −5a + 2b =

(−4
13

)
2. a + b + c = (−1, 6, −4), a − 2b + 2c = (−3, 10, 2), 3a + 2b − 3c = (9, −6, 9)

3. By the definitions of vector addition and multiplication of a vector by a real number, the left-hand side of the equation
is the vector (3x − 5, 3y + 10, 3z + 15). Since two vectors are equal if and only if they are component-wise equal,
this vector equation is equivalent to the equation system 3x − 5 = 4, 3y + 10 = 1, and 3z + 15 = 3, with the
obvious solution x = 3, y = −3 , z = −4.

4. (a) xi = 0 for all i. (b) Nothing, because 0 · x = 0 for all x.

5. We need to find numbers t and s such that t (2, −1) + s(1, 4) = (4, −11). This vector equation is equivalent
to (2t + s, −t + 4s) = (4, −11). Equating the two components gives the system (i) 2t + s = 4
(ii) −t + 4s = −11. This system has the solution t = 3, s = −2, so (4, −11) = 3(2, −1) − 2(1, 4).

6. 4x − 2x = 7a + 8b − a, so 2x = 6a + 8b, and x = 3a + 4b.

7. a · a = 5, a · b = 2, and a · (a + b) = 7. We see that a · a + a · b = a · (a + b).

8. The inner product of the two vectors is x2 + (x − 1)x + 3 · 3x = x2 + x2 − x + 9x = 2x2 + 8x = 2x(x + 4),
which is 0 for x = 0 and x = −4.

9. x = (5, 7, 12), u = (20, 18, 25), u · x = 526

10. (a) The firm’s revenue is p · z. Its costs are p · x. (b) Profit = revenue – costs = p · z − p · x = p · (z − x) = p · y.
If p · y < 0, the firm makes a loss equal to −p · y.

11. (a) Input vector =

(
0
1

)
(b) Output vector =

(
2
0

)
(c) Cost = (1, 3)

(
0
1

)
= 3 (d) Revenue = (1, 3)

(
2
0

)
= 2

(e) Value of net output = (1, 3)

(
2

−1

)
= 2 − 3 = −1. (f) Loss = cost − revenue = 3 − 2 = 1, so profit = −1.

15.8
1. a + b = (3, 3) and − 1

2 a = (−2.5, 0.5). See Fig. A15.8.1.

2. (a) λ = 0 gives x = (−1, 2) = b, λ = 1/4 gives x = (0, 7/4), λ = 1/2 gives x = (1, 3/2), λ = 3/4 gives
x = (2, 5/4), and λ = 1 gives x = (3, 1) = a. See Fig. A15.8.2. (b) When λ runs through [0, 1], x will trace out
the line segment joining the end points of a and b in Fig. A15.8.2. See SM.
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y

x

1

1

(−2, 4)

b
a + b

a
(5, −1)

− 1
2 a(−2.5, 0.5)

(3, 3)

y

x

1

−1 1 2 3

b
a

λ = 0
λ = 1/4

λ = 1/2
λ = 3/4

λ = 1

Figure A15.8.1 Figure A15.8.2

3. ‖a‖ = 3, ‖b‖ = 3, ‖c‖ = √
29. Also, |a · b| = 6 ≤ ‖a‖ · ‖b‖ = 9

4. (a) x1(1, 2, 1) + x2(−3, 0, −2) = (x1 − 3x2, 2x1, x1 − 2x2) = (5, 4, 4) when x1 = 2 and x2 = −1.
(b) x1 and x2 would have to satisfy x1(1, 2, 1) + x2(−3, 0, −2) = (−3, 6, 1). Then x1 − 3x2 = −3, 2x1 = 6, and
x1 − 2x2 = 1. The first two equations yield x1 = 3 and x2 = 2; then the last equation is not satisfied.

5. The pairs of vectors in (a) and (c) are orthogonal; the pair in (b) is not.

6. The vectors are orthogonal if and only if their inner product is 0—that is, if and only if x2 − x − 8 − 2x + x =
x2 − 2x − 8 = 0, which is the case for x = −2 and x = 4.

7. If P is orthogonal and ci and cj are two different columns of P, then c′
icj is the element in row i and column j of

P′P = I, so c′
icj = 0. If ri and rj are two different rows of P, then rir′

j is the element in row i and column j of
PP′ = I′ = I, so again rir′

j = 0.

8. (‖a‖ + ‖b‖)2 = ‖a‖2 + 2‖a‖ · ‖b‖ + ‖b‖2, whereas ‖a + b‖2 = (a + b) · (a + b) = ‖a‖2 + 2a · b + ‖b‖2. It
follows that (‖a‖ + ‖b‖)2 − ‖a + b‖2 = 2(‖a‖ · ‖b‖ − a · b) ≥ 0 by the Cauchy–Schwarz inequality (2).

15.9
1. (a) x1 = 3t + 10(1 − t) = 10 − 7t , x2 = (−2)t + 2(1 − t) = 2 − 4t , and x3 = 2t + (1 − t) = 1 + t

(b) x1 = 1, x2 = 3 − t , and x3 = 2 + t

2. (a) To show that a lies on L, put t = 0. (b) The direction of L is given by (−1, 2, 1), and the equation of P is
(−1)(x1 − 2) + 2(x2 − (−1)) + 1 · (x3 − 3) = 0, or −x1 + 2x2 + x3 = −1.
(c) We must have 3(−t + 2) + 5(2t − 1) − (t + 3) = 6, and so t = 4/3. Thus P = (2/3, 5/3, 13/3).

3. x1 − 3x2 − 2x3 = −3 4. 2x + 3y + 5z ≤ m, with m ≥ 75.

5. (a) Direct verification. (b) (x1, x2, x3) = (−2, 1, −1) + t (−1, 2, 3) = (−2 − t, 1 + 2t, −1 + 3t)

Review Problems for Chapter 15

1. (a) A =
(

2 3 4
3 4 5

)
(b) A =

(
1 −1 1

−1 1 −1

)

2. (a) A − B =
(

3 −2
−2 2

)
(b) A + B − 2C =

(−3 −4
−2 −8

)
(c) AB =

(−2 4
2 −3

)
(d) C(AB) =

(
2 −1
6 −8

)
(e) AD =

(
2 2 2
0 2 3

)
(f) DC is not defined.

3. (a) 2A − 3B =
(

7 −6
−5 5

)
(b) (A − B)′ =

(
3 −2

−2 2

)
(c) and (d): (C′A′)B′ = C′(A′B′) =

(−6 5
−4 5

)

(e) Not defined. (f) D′D =
( 2 4 5

4 10 13
5 13 17

)
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4. (a)

(
2 −5
5 8

)(
x1

x2

)
=
(

3
5

)
(b)

⎛
⎜⎝

1 1 1 1
1 3 2 4
1 4 8 0
2 0 1 −1

⎞
⎟⎠
⎛
⎜⎝

x

y

z

t

⎞
⎟⎠ =

⎛
⎜⎝

a

b

c

d

⎞
⎟⎠ (c)

(
a 1 a + 1
1 2 1
3 4 7

)(
x

y

z

)
=
(

b1

b2

b3

)

5. A + B =
( 0 −4 1

8 6 4
−10 9 15

)
, A − B =

( 0 6 −5
−2 2 6
−2 5 15

)
, AB =

( 13 −2 −1
0 3 5

−25 74 −25

)
,

BA =
(−33 1 20

12 6 −15
6 4 18

)
, (AB)C = A(BC) =

( 74 −31 −48
6 25 38

−2 −75 −26

)

6. The matrix products on the left-hand side are

(
2a + b a + b

2x x

)
and

(
a b

2a + x 2b

)
, whose difference is(

a + b a

x − 2a x − 2b

)
. Equating this to the matrix

(
2 1
4 4

)
on the right-hand side yields a + b = 2, a = 1,

x − 2a = 4, and x − 2 = 4. It follows that a = b = 1, x = 6.

7. (a) A2 =
(

a2 − b2 2ab b2

−2ab a2 − 2b2 2ab

b2 −2ab a2 − b2

)
(b) (C′BC)′ = C′B′(C′)′ = C′(−B)C = −C′BC. A is skew-

symmetric if and only if a = 0. (c) A′
1 = 1

2 (A′ + A′′) = 1
2 (A′ + A) = A1, so A1 is symmetric. It is equally

easy to prove that A2 is skew-symmetric, as well as that any square matrix A is therefore the sum A1 + A2 of a
symmetric matrix A1 and a skew-symmetric matrix A2.

8. (a)

(
1 4 1
2 2 8

) −2
← ∼

(
1 4 1
0 −6 6

)
−1/6

∼
(

1 4 1
0 1 −1

) ←
−4

∼
(

1 0 5
0 1 −1

)
The solution is x1 = 5, x2 = −1. (b) Solution: x1 = 3/7, x2 = −5/7, x3 = −18/7.
(c) Solution: x1 = (1/14)x3, x2 = −(19/14)x3, where x3 is arbitrary. (One degree of freedom.)

9. We use the Gaussian method:( 1 a 2 0
−2 −a 1 4
2a 3a2 9 4

) 2 −2a

←
←

∼
( 1 a 2 0

0 a 5 4
0 a2 9 − 4a 4

)
−a

←
∼
( 1 a 2 0

0 a 5 4
0 0 9 − 9a 4 − 4a

)

For a = 1, the last equation is superfluous and the solution is x = 3t − 4, y = −5t + 4, z = t , with t arbitrary.
If a �= 1, we have (9 − 9a)z = 4 − 4a, so z = 4/9. The two other equations then become x + ay = −8/9 and
ay = 16/9. If a = 0, there is no solution. If a �= 0, the solution is x = −8/3, y = 16/9a, and z = 4/9.

10. ‖a‖ = √
35, ‖b‖ = √

11, and ‖c‖ = √
69. Also, |a · b| = |(−1) · 1 + 5 · 1 + 3 · (−3)| = | − 5| = 5, and√

35
√

11 = √
385 is obviously greater than 5, so the Cauchy–Schwarz inequality is satisfied.

11. (a) To produce a, put λ = 1/2. To produce b would require 6λ + 2 = 7, −2λ + 6 = 5, and −6λ + 10 = 5, but
these equations have no solution. For (b) and (c) see SM.

12. Because PQ = QP + P, multiplying on the left by P gives P2Q = (PQ)P + P2 = (QP + P)P + P2 = QP2 + 2P2.
See SM for details of how to repeat this argument for higher powers of P.

Chapter 16

16.1
1. (a) 3·6−2·0 = 18 (b) ab−ba = 0 (c) (a+b)2−(a−b)2 = 4ab (d) 3t2t−1−3t−12t = 3t−12t−1(3−2) = 6t−1

2. See Fig. A16.1.2. The shaded parallelogram has area 3 · 6 = 18 =
∣∣∣∣ 3 0

2 6

∣∣∣∣.
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(3, 0)

(2, 6)

Figure A16.1.2

3. (a) Cramer’s rule gives x =

∣∣∣∣ 8 −1
5 −2

∣∣∣∣∣∣∣∣ 3 −1
1 −2

∣∣∣∣
= −16 + 5

−6 + 1
= 11

5
, y =

∣∣∣∣ 3 8
1 5

∣∣∣∣∣∣∣∣ 3 −1
1 −2

∣∣∣∣
= 15 − 8

−6 + 1
= 7

−5
= −7

5
.

(b) x = 4 and y = −1 (c) x = a + 2b

a2 + b2
, y = 2a − b

a2 + b2
, (a2 + b2 �= 0)

4. The numbers a and b must satisfy a + 1 = 0 and a − 3b = −10, so a = −1 and b = 3.

5. Expanding the determinant, (2 − x)(−x) − 8 = 0, that is x2 − 2x − 8 = 0, so x = −2 or x = 4.

6. The matrix product is AB =
(

a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)
, implying that

|AB| = (a11b11 + a12b21)(a21b12 + a22b22) − (a11b12 + a12b22)(a21b11 + a22b21). On the other hand, |A||B| =
(a11a22 − a12a21)(b11b22 − b12b21). A tedious process of expanding each expression, then cancelling four terms in
the expression of |A||B|, reveals that the two expressions are equal.

7. If A = B =
(

1 0
0 1

)
, then |A + B| = 4, whereas |A| + |B| = 2. (A and B can be chosen almost arbitrarily.)

8. Write the system as

{
Y − C = I0 + G0

−bY + C = a
. Then Cramer’s rule yields

Y =

∣∣∣∣ I0 + G0 −1
a 1

∣∣∣∣∣∣∣∣ 1 −1
−b 1

∣∣∣∣
= a + I0 + G0

1 − b
, C =

∣∣∣∣ 1 I0 + G0

−b a

∣∣∣∣∣∣∣∣ 1 −1
−b 1

∣∣∣∣
= a + b(I0 + G0)

1 − b

The expression for Y is most easily found by substituting the second equation into the first, and then solving for Y .
Then use C = a + bY to find C.

9. (a) X1 = M2 because nation 1’s exports are nation 2’s imports. Similarly, X2 = M1.
(b) Substituting for X1, X2, M1, M2, C1, and C2 gives: (i) Y1(1 − c1 + m1) − m2Y2 = A1;
(ii) Y2(1 − c2 + m2) − m1Y1 = A2. Using Cramer’s rule with D = (1 − c2 + m2)(1 − c1 + m1) − m1m2 yields

Y1 = [A2m2 + A1(1 − c2 + m2)]/D, Y2 = [A1m1 + A2(1 − c1 + m1)]/D

(c) Y2 increases when A1 increases.

16.2
1. (a) −2 (b) −2 (c) adf (d) e(ad − bc)

2. AB =
(−1 −1 −1

7 13 13
5 9 10

)
, |A| = −2, |B| = 3, |AB| = |A| · |B| = −6
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3. (a) x1 = 1, x2 = 2, and x3 = 3 (b) x1 = x2 = x3 = 0 (c) x = 1, y = 2, and z = 3

4. By Sarrus’s rule the determinant is (1 + a)(1 + b)(1 + c) + 1 + 1 − (1 + b) − (1 + a) − (1 + c), which reduces to
the given expression.

5. tr(A) = a + b − 1 = 0 and thus b = 1 − a. Also, |A| = −2ab = 12, and so −2a(1 − a) = 12, or a2 − a − 6 = 0.
The roots of this equation are a = 3 and a = −2. Thus the solutions are (a, b) = (3, −2) or (a, b) = (−2, 3).

6. By Sarrus’s rule, the determinant is (1 − x)3 + 8 + 8 − 4(1 − x) − 4(1 − x) − 4(1 − x) = −x3 + 3x2 + 9x + 5 =
(5 − x)(x + 1)2, so x = −1 or x = 5.

7. (a) |At | = 2t2 − 2t + 1 = 2(t − 1
2 )2 + 1

2 > 0 for all t . (Alternatively, show that the quadratic polynomial has no

real zeros.) (b) A3
t =

( 1 2t − 2t2 t − t2

4t − 4 5t − 4 −t2 + 4t − 3
2 − 2t t2 − 4t + 3 t3 − 2t + 2

)
. We find that A3

t = I3 for t = 1.

8. Y = (a − bd + A0)/[1 − b(1 − t)], C = (a − bd + A0b(1 − t))/[1 − b(1 − t)],
T = [t (a + A0) + (1 − b)d]/[1 − b(1 − t)]

16.3
1. (a) 1 · 2 · 3 · 4 = 24 (b) d − a (c) 1 · 1 · 1 · 11 − 1 · 1 · 4 · 4 − 1 · (−3) · 1 · 3 − 2 · 1 · 1 · 2 = 0

2. With A =

⎛
⎜⎜⎝

a11 a12 . . . a1n

0 a22 . . . a2n

...
...

. . .
...

0 0 . . . ann

⎞
⎟⎟⎠ and B =

⎛
⎜⎜⎝

b11 b12 . . . b1n

0 b22 . . . b2n

...
...

. . .
...

0 0 . . . bnn

⎞
⎟⎟⎠,

the product AB is easily seen to be upper triangular, with the elements a11b11, a22b22, . . . , annbnn on the main
diagonal. The determinant |AB| is, according to (4), the product of the n numbers aiibii . On the other hand,
|A| = a11a22 · · · ann, and |B| = b11b22 · · · bnn, so the required equality follows immediately.

3. +a12a23a35a41a54. (Four lines between pairs of boxed elements rise as one goes to the right.)

4. −a15a24a32a43a51. (There are nine lines that rise to the right.)

5. Carefully examining the determinant reveals that its only nonzero term is the product of its diagonal elements. So
the equation is (2 − x)4 = 0, whose only solution is x = 2.

16.4

1. (a) AB =
(

13 16
29 36

)
, BA =

(
15 22
23 34

)
, A′B′ =

(
15 23
22 34

)
, B′A′ =

(
13 29
16 36

)
(b) |A| = |A′| = −2 and |B| = |B′| = −2. So |AB| = 4 = |A| · |B| and |A′B′| = |A′| · |B′| = 4.

2. A′ =
( 2 1 1

1 0 2
3 1 5

)
, |A| = |A′| = −2

3. (a) 0 (one column has only zeros). (b) 0 (rows 1 and 4 are proportional). (c) (a1 − x)(−x)3 = x4 − a1x
3. (Use

the definition of a determinant and observe that at most one term is nonzero.)

4. |AB| = |A||B| = −12, 3|A| = 9, | − 2B| = (−2)3(−4) = 32, |4A| = 43|A| = 43 · 3 = 192, |A| + |B| = −1,
whereas |A + B| is not determined.

5. A2 =
(

a2 + 6 a + 1 a2 + 4a − 12
a2 + 2a + 2 3 8 − 2a2

a − 3 1 13

)
and |A| = a2 − 3a + 2.

6. (a) The first and the second columns are proportional, so the determinant is 0 by part E of Theorem 16.4.1.
(b) Add the second column to the third. This makes the first and third columns proportional.
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(c) The term x − y is a common factor for each entry in the first row. If x �= y, the first two rows are proportional.
If x = y, the first row has all elements 0. In either case the determinant is 0.

7. X′X =
( 4 3 2

3 5 1
2 1 2

)
and |X′X| = 10

8. By Sarrus’s rule, for example, |Aa | = a(a2 + 1) + 4 + 4 − 4(a2 + 1) − a − 4 = a2(a − 4), so |A1| = −3
and |A6

1| = |A1|6 = (−3)6 = 729. (Note how much easier this is than first finding A6
1 and then evaluating its

determinant.)

9. Because P′P = In, it follows from (16.4.1) and (16.3.4) that |P′||P| = |In| = 1. But |P′| = |P| by rule B in Theorem
16.4.1, so |P|2 = 1. Hence, |P| = ±1.

10. (a) Because A2 = In it follows from (16.4.1) that |A|2 = |In| = 1, and so |A| = ±1. (b) Direct verification by
matrix multiplication. (c) We have (In − A)(In + A) = In · In − AIn + InA − AA = In − A + A − A2 = In − A2,

and this expression equals 0 if and only if A2 = In.

11. (a) The first equality is true, the second is false. (The second equality becomes true if the factor 2 is replaced by
4.) (b) Generally false. (Both determinants on the right are 0, even if ad − bc �= 0.) (c) Both equalities are true.
(d) True. (The second determinant is the result of subtracting 2 times row 1 of the first determinant from its row 2.)

12. We want to show that B(PQ) = (PQ)B. Using the associative law for matrix multiplication, we get

B(PQ) = (BP)Q
(1)= (PB)Q = P(BQ)

(2)= P(QB) = (PQ)B.

This shows that PQ does indeed commute with B. (At (1) we used the fact that BP = PB, and at (2) we used
BQ = QB.)

13. Let A =
( 0 c b

c 0 a

b a 0

)
. Then compute A2 and recall (16.4.1).

14. Start by adding each of the last n − 1 rows to the first row. Each element in the first row then becomes na + b.
Factor this out of the determinant. Next, add the first row multiplied by −a to all the other n− 1 rows. The result is
an upper triangular matrix whose diagonal elements are 1, b, b, ..., b, with product equal to bn−1. The conclusion
follows easily.

16.5
1. (a) 2. (Subtract row 1 from both row 2 and row 3 to get a determinant whose first column has elements 1, 0, 0.

Then expand by the first column.) (b) 30 (c) 0. (Columns 2 and 4 are proportional.)

2. In each of these cases we keep expanding by the last (remaining) column. The answers are: (a) −abc (b) abcd

(c) 1 · 5 · 3 · 4 · 6 = 360

16.6

1. (a) Using (16.6.4):

(
3 0
2 −1

)
·
(

1/3 0
2/3 −1

)
=
(

1 0
0 1

)
. (b) Use (16.6.4).

2. AB =
( 1 0 0

a + b 2a + 1/4 + 3b 4a + 3/2 + 2b

0 0 1

)
= I if and only if a + b = 4a + 3/2 + 2b = 0 and 2a + 1/4 +

3b = 1. This is true if and only if a = −3/4 and b = 3/4.

3. (a)

(
x

y

)
=
(

2 −3
3 −4

)−1(
3
5

)
=
(−4 3

−3 2

)(
3
5

)
=
(

3
1

)
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(b)

(
x

y

)
=
(−4 3

−3 2

)(
8
11

)
=
(

1
−2

)
(c)

(
x

y

)
=
(−4 3

−3 2

)(
0
0

)
=
(

0
0

)

4. From A3 = I, it follows that A2A = I, so A−1 = A2 = 1
2

( −1
√

3
−√

3 −1

)
.

5. (a) |A| = 1, A2 =
( 0 1 1

1 1 2
1 1 1

)
, A3 =

( 1 1 2
2 2 3
1 2 2

)
. Direct verification yields A3 − 2A2 + A − I3 = 0.

The last equality is equivalent to A(A2 − 2A + I3) = A(A − I3)
2 = I3, so A−1 = (A − I3)

2.

(b) Choose P = (A − I3)
−1 =

( 0 0 1
1 0 1
0 1 0

)
, so that A = [(A − I3)

2]−1 = P2. The matrix −P also works.

6. (a) AA′ =
(

21 11
11 10

)
, |AA′| = 89, and (AA′)−1 = 1

89

(
10 −11

−11 21

)
. (b) No, AA′ is always symmetric by

Example 15.5.3. Then (AA′)−1 is symmetric by Note 2.

7. (a) A2 = (PDP−1)(PDP−1) = PD(P−1P)DP−1 = PDIDP−1 = PD2P−1.
(b) Suppose the formula is valid for m = k. Then Ak+1 = AAk = PDP−1(PDkP−1) = PD(P−1P)DkP−1

= PDIDkP−1 = PDDkP−1 = PDk+1P−1.

8. B2 + B = I, B3 − 2B + I = 0, and B−1 = B + I =
(

1/2 5
1/4 1/2

)
.

9. Let B = X(X′X)−1X′. Then A2= (Im − B)(Im − B) = Im − B − B + B2. Here B2= (X(X′X)−1X′)(X(X′X)−1X′)
= X(X′X)−1(X′X)(X′X)−1X′ = X(X′X)−1X′ = B. Thus, A2 = Im − B − B + B = Im − B = A.

10. AB =
(−7 0

−2 10

)
, so CX = D − AB =

(−2 3
−6 7

)
. But C−1 =

( −2 1
3/2 −1/2

)
, so X =

(−2 1
0 1

)
.

11. (a) If C2 + C = I, then C(C + I) = I, and so C−1 = C + I = I + C.
(b) Because C2 = I − C, it follows that C3 = C2C = (I − C)C = C − C2 = C − (I − C) = −I + 2C. Moreover,
C4 = C3C = (−I + 2C)C = −C + 2C2 = −C + 2(I − C) = 2I − 3C.

16.7

1. (a)

(−5/2 3/2
2 −1

)
(b)

1

9

( 1 4 2
2 −1 4
4 −2 −1

)
(c) The matrix has no inverse.

2. The inverse is
1

|A|

(
C11 C21 C31

C12 C22 C32

C13 C23 C33

)
= 1

72

(−3 5 9
18 −6 18
6 14 −18

)
. 3. (I − A)−1 = 5

62

( 18 16 10
2 19 8
4 7 16

)

4. When k = r , the solution to the system is x1 = b∗
1r , x2 = b∗

2r , . . . , xn = b∗
nr .

5. (a) A−1 =
( −2 1

3/2 −1/2

)
(b)

( 1 −3 2
−3 3 −1

2 −1 0

)
(c) There is no inverse.

16.8
1. (a) x = 1, y = −2, and z = 2 (b) x = −3, y = 6, z = 5, and u = −5

2. The determinant of the system is equal to −10, so the solution is unique. The determinants in (2) are

D1 =
∣∣∣∣∣
b1 1 0
b2 −1 2
b3 3 −1

∣∣∣∣∣ , D2 =
∣∣∣∣∣

3 b1 0
1 b2 2
2 b3 −1

∣∣∣∣∣ , D3 =
∣∣∣∣∣

3 1 b1

1 −1 b2

2 3 b3

∣∣∣∣∣



Essential Math. for Econ. Analysis, 4th edn EME4_Z01.TEX, 16 May 2012, 14:24 Page 732

732 A N S W E R S T O T H E P R O B L E M S

Expanding each of these determinants by the column (b1, b2, b3), we find that D1 = −5b1 + b2 + 2b3, D2 = 5b1 −
3b2−6b3, D3 = 5b1−7b2−4b3. Hence, x1 = 1

2 b1− 1
10 b2− 1

5 b3, x2 = − 1
2 b1+ 3

10 b2+ 3
5 b3, x3 = − 1

2 b1+ 7
10 b2+ 2

5 b3.

3. Show that the determinant of the coefficient matrix is equal to −(a3 + b3 + c3 − 3abc), and use Theorem 16.8.2.

16.9

1. x1 = 1
4 x2 + 100, x2 = 2x3 + 80, x3 = 1

2 x1. Solution: x1 = 160, x2 = 240, x3 = 80.

2. (a) Let x and y denote total production in industries A and I, respectively. Then x = 1
6 x + 1

4 y + 60 and y =
1
4 x + 1

4 y + 60. So 5
6 x − 1

4 y = 60 and − 1
4 x + 3

4 y = 60. (b) The solution is x = 320/3 and y = 1040/9.

3. (a) No sector delivers to itself. (b) The total amount of good i needed to produce one unit of each good.
(c) This column vector gives the number of units of each good which are needed to produce one unit of good j .
(d) No meaningful economic interpretation. (The goods are usually measured in different units, so it is meaningless
to add them together. As the saying goes: “Don’t add apples and oranges!”)

4. 0.8x1 − 0.3x2 = 120 and −0.4x1 + 0.9x2 = 90, with solution x1 = 225 and x2 = 200.

5. The Leontief system for this three-sector model is

0.9x1 − 0.2x2 − 0.1x3 = 85

−0.3x1 + 0.8x2 − 0.2x3 = 95

−0.2x1 − 0.2x2 + 0.9x3 = 20

,

which does have the claimed solution.

6. The input matrix is A =
( 0 β 0

0 0 γ

α 0 0

)
. The sums of the elements in each column are less than 1 provided α < 1,

β < 1, and γ < 1, respectively. Then, in particular, the product αβγ < 1.

7. The quantity vector x0 must satisfy (∗) (In − A)x0 = b and the price vector p′
0 must satisfy (∗∗) p′

0(In − A) = v′.
Multiplying (∗∗) from the right by x0 yields v′x0 = (p′

0(In − A))x0 = p′
0((In − A)x0) = p′

0b.

Review Problems for Chapter 16

1. (a) 5(−2) − (−2)3 = −4 (b) 1 − a2 (c) 6a2b + 2b3 (d) λ2 − 5λ

2. (a) −4 (b) 1. (Subtract row 1 from rows 2 and 3. Then subtract twice row 2 from row 3. The resulting determinant
has only one nonzero term in its third row.) (c) 1. (Use exactly the same row operations as in (b).)

3. Transposing each side yields A−1 − 2I2 = −2

(
1 1
1 0

)
, so A−1 = 2I2 − 2

(
1 1
1 0

)
=
(

2 0
0 2

)
−
(

2 2
2 0

)
=(

0 −2
−2 2

)
. Hence, using (16.6.3), A =

(
0 −2

−2 2

)−1

= − 1
4

(
2 2
2 0

)
=
(−1/2 −1/2

−1/2 0

)
.

4. (a) |At | = t + 1, so At has an inverse if and only if t �= −1. (b) Multiplying the given equation from the right

by A1 yields BA1 + X = I3. Hence X = I3 − BA1 =
( 0 0 −1

0 0 −1
−2 −1 0

)
.
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5. |A| = (p + 1)(q − 2), |A + E| = 2(p − 1)(q − 2). A + E has an inverse for p �= 1 and q �= 2. Obviously, |E| = 0.
Hence |BE| = |B||E| = 0, so BE has no inverse.

6. The determinant of the coefficient matrix is

∣∣∣∣∣
−2 4 −t

−3 1 t

t − 2 −7 4

∣∣∣∣∣ = 5t2 −45t +40 = 5(t −1)(t −8). So by Cramer’s

rule, there is a unique solution if and only if t �= 1 and t �= 8.

7. We see that (I − A)(I + A + A2 + A3) = I + A + A2 + A3 − A − A2 − A3 − A4 = I − A4 = I. Then use (16.6.4).

8. (a) (In + aU)(In + bU) = I2
n + bU + aU + abU2 = In + (a + b + nab)U, because U2 = nU, as is easily verified.

(b) A−1 = 1

10

( 7 −3 −3
−3 7 −3
−3 −3 7

)
.

9. From the first equation, Y = B − AX. Inserting this into the second equation and solving for X, yields X =
2A−1B − C. Moreover, Y = AC − B.

10. (a) For a �= 1 and a �= 2, there is a unique solution. If a = 1, there is no solution. If a = 2, there are infinitely
many solutions. (b) When a = 1 and b1 − b2 + b3 = 0, or when a = 2 and b1 = b2, there are infinitely many
solutions.

11. (a) |A| = −2. A2 − 2I2 =
(

11 −6
18 −10

)
= A, so A2 + cA = 2I2 if c = −1.

(b) If B2 = A, then |B|2 = |A| = −2, which is impossible.

12. Note first that if A′A = In, then rule (16.6.5) implies that A′ = A−1, so AA′ = In. But then (A′B−1A)(A′BA) =
A′B−1(AA′)BA = A′B−1InBA = A′(B−1B)A = A′InA = A′A = In. By rule (16.6.5) again, it follows that
(A′BA)−1 = A′B−1A.

13. For once we use “unsystematic elimination”. Solve the first equation to get y = 3 − ax, then the second to get
z = 2 − x, and the fourth to get u = 1 − y. Substituting for all these in the third equation gives the result
3 − ax + a(2 − x) + b(1 − 3 + ax) = 6 or a(b − 2)x = −2a + 2b + 3. There is a unique solution provided that
a(b − 2) �= 0. The solution is:

x = 2b − 2a + 3

a(b − 2)
, y = 2a + b − 9

b − 2
, z = 2ab − 2a − 2b − 3

a(b − 2)
, u = 7 − 2a

b − 2

14. |B3| = |B|3. Because B is a 3 × 3-matrix, we have |−B| = (−1)3|B| = −|B|. Since B3 = −B, it follows that
|B|3 = −|B|, and so |B|(|B|2 + 1) = 0. The last equation implies |B| = 0, and thus B can have no inverse.

15. (a) The determinant on the left is equal to (a + x)d − c(b + y) = (ad − bc) + (dx − cy), and this is the sum of
the determinants on the right. (b) For simplicity look at the case r = 1.

16. For a �= b the solutions are x1 = 1
2 (a + b) and x2 = − 1

2 (a + b). If a = b, the determinant is 0 for all values of x.

Chapter 17

17.1

1. (a) From Fig. A17.1.1a we see that the solution is at the intersection of the two lines 3x1 +2x2 = 6 and x1 +4x2 = 4.
Solution: max = 36/5 for (x1, x2) = (8/5, 3/5). (b) From Fig.A17.1.1b we see that the solution is at the intersection
of the two lines u1 + 3u2 = 11 and 2u1 + 5u2 = 20. Solution: min = 104 for (u1, u2) = (5, 2).
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x2

1

2

3

x1
1 2 3 4

P

3x1 + 4x2 = c

u2

u1

5

5 10

10u1 + 27u2 = c

P

Figure A17.1.1a Figure A17.1.1b

2. (a) A graph shows that the solution is at the intersection of the lines −2x1 +3x2 = 6 and x1 +x2 = 5. Hence max =
98/5 for (x1, x2) = (9/5, 16/5). (b) The solution satisfies 2x1 + 3x2 = 13 and x1 + x2 = 6. Hence max = 49 for
(x1, x2) = (5, 1) (c) The solution satisfies x1 −3x2 = 0 and x2 = 2. Hence max = −10/3 for (x1, x2) = (2, 2/3).

3. (a) max = 18/5 for (x1, x2) = (4/5, 18/5). (b) max = 8 for (x1, x2) = (8, 0).
(c) max = 24 for (x1, x2) = (8, 0). (d) min = −28/5 for (x1, x2) = (4/5, 18/5).
(e) max = 16 for all (x1, x2) of the form (x1, 4 − 1

2 x1) where x1 ∈ [4/5, 8].
(f) min= −24 for (x1, x2) = (8, 0) (follows from the answer to (c)).

4. (a) No maximum exists. Consider Fig. A17.1.4. By increasing c, the dashed level curve x1 + x2 = c moves to the
north-east and so this function can take arbitrarily large values and still have points in common with the shaded set.
(b) Maximum at P = (1, 0). The level curves are the same as in (a), but the direction of increase is reversed.

x2

−1

1

2

3

4

x1−1 1 2 3 4 5 6

−x1 + 3x2 = 3

−x1 + x2 = −1

x1 + x2 = c

Figure A17.1.4

5. The slope of the line 20x1 + tx2 = c must lie between −1/2 (the slope of the flour border) and −1 (the slope of
the butter border). For t = 0, the line is vertical and the solution is the point D in Fig. 2 in the text. For t �= 0, the
slope of the line is −20/t . Thus, −1 ≤ −20/t ≤ −1/2, which implies that t ∈ [20, 40].

6. The LP problem is: max 700x + 1000y subject to

⎧⎪⎨
⎪⎩

3x + 5y ≤ 3900

x + 3y ≤ 2100

2x + 2y ≤ 2200

, x ≥ 0 , y ≥ 0

A figure showing the admissible set and an appropriate level line for the objective function will show that the solution
is at the point where the two lines 3x + 5y = 3900 and 2x + 2y = 2200 intersect. Solving these equations yields
x = 800 and y = 300. The firm should produce 800 sets of type A and 300 of type B.
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17.2
1. (a) (x1, x2) = (2, 1/2) and u∗

1 = 4/5. (b) (x1, x2) = (7/5, 9/10) and u∗
2 = 3/5.

(c) Multiplying the two ≤ constraints by 4/5 and 3/5, respectively, then adding, we obtain
(4/5)(3x1 + 2x2) + (3/5)(x1 + 4x2) ≤ 6 · (4/5) + 4 · (3/5), which reduces to 3x1 + 4x2 ≤ 36/5.

2. min 8u1 + 13u2 + 6u3 subject to

{
u1 + 2u2 + u3 ≥ 8

2u1 + 3u2 + u3 ≥ 9
, u1 ≥ 0, u2 ≥ 0, u3 ≥ 0

3. (a) min 6u1 + 4u2 subject to

{
3u1 + u2 ≥ 3

2u1 + 4u2 ≥ 4
, u1 ≥ 0, u2 ≥ 0

(b) max 11x1 + 20x2 subject to

{
x1 + 2x2 ≤ 10

3x1 + 5x2 ≤ 27
, x1 ≥ 0, x2 ≥ 0

4. (a) A graph shows that the solution is at the intersection of the lines x1 + 2x2 = 14 and 2x1 + x2 = 13. Hence
max = 9 for (x∗

1 , x∗
2 ) = (4, 5).

(b) The dual is min 14u1 + 13u2 subject to

{
u1 + 2u2 ≥ 1

2u1 + u2 ≥ 1
, u1 ≥ 0, u2 ≥ 0. A graph shows that the solution

is at the intersection of the lines u1 + 2u2 = 1 and 2u1 + u2 = 1. Hence min = 9 for (u∗
1, u

∗
2) = (1/3, 1/3).

17.3
1. (a) x = 0 and y = 3 gives max = 21. See Fig. A17.3.1a, where the optimum is at P .

(b) The dual problem is min 20u1 + 21u2 subject to

{
4u1 + 3u2 ≥ 2

5u1 + 7u2 ≥ 7
, u1 ≥ 0, u2 ≥ 0. It has the solution

u1 = 0 and u2 = 1, which gives min = 21. See Fig. A17.3.1b. (c) Yes.

y

x

P

2x + 7y = c

1

1

u2

u1
1

P 20u1 + 21u2 = c

Figure A17.3.1a Figure A17.3.1b

2. max 300x1 + 500x2 subject to

{
10x1 + 25x2 ≤ 10 000

20x1 + 25x2 ≤ 8 000
, x1 ≥ 0 , x2 ≥ 0

The solution can be found graphically. It is x∗
1 = 0, x∗

2 = 320, and the value of the objective function is 160 000,
the same value found in Example 17.1.2 for the optimal value of the primal objective function.

3. (a)The profit from sellingx1 small andx2 medium television sets is 400x1+500x2. The first constraint, 2x1+x2 ≤ 16,
says that we cannot use more hours in division 1 than the hours available. The other constraints have similar
interpretations. (b) max = 3800 for x1 = 7 and x2 = 2. (c) Division 1 should have its capacity increased.

17.4
1. According to formula (1), �z∗ = u∗

1 �b1 + u∗
2 �b2 = 0 · 0.1 + 1 · (−0.2) = −0.2.
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2. (a) max 300x1 + 200x2 subject to

⎧⎨
⎩

6x1 + 3x2 ≤ 54
4x1 + 6x2 ≤ 48 ,

5x1 + 5x2 ≤ 50
x1 ≥ 0, x2 ≥ 0

where x1 and x2 are the number of units produced of A and B, respectively. Solution: (x1, x2) = (8, 2).

(b) Dual solution: (u1, u2, u3) = (100/3, 0, 20). (c) Increase in optimal profit: 	π∗ = u∗
1 · 2 + u∗

3 · 1 = 260/3.

17.5

1. 4u∗
1 + 3u∗

2 = 3 > 2 and x∗ = 0; 5u∗
1 + 7u∗

2 = 7 and y∗ = 3 > 0. Also 4x∗ + 5y∗ = 15 < 20 and u∗
1 = 0;

3x∗ + 7y∗ = 21 and u∗
2 = 1 > 0. So (1) and (2) are satisfied.

2. (a) See Figure A17.5.2. The minimum is attained at (y∗
1 , y∗

2 ) = (3, 2).

(b) The dual is: max 15x1 + 5x2 − 5x3 − 20x4 s.t.

{
x1 + x2 − x3 + x4 ≤ 1

6x1 + x2 + x3 − 2x4 ≤ 2
, xj ≥ 0, j = 1, . . . , 4 .

The maximum is at (x∗
1 , x∗

2 , x∗
3 , x∗

4 ) = (1/5, 4/5, 0, 0). (c) If the first constraint is changed to y1 + 6y2 ≥ 15.1,
the solution of the primal is still at the intersection of the lines (1) and (2) in Fig. A17.5.2, but with (1) shifted
up slightly. The solution of the dual is completely unchanged. In both problems the optimal value increases by
(15.1 − 15) · x∗

1 = 0.02.

y2

5

10

y1
5 10 15

(3)

y1 + 2y2 = Z0

(1)
(3, 2)

(2)

(4)

Figure A17.5.2

3. (a) min 10 000y1 + 8 000y2 + 11 000y3 subject to

{
10y1 + 20y2 + 20y3 ≥ 300

20y1 + 10y2 + 20y3 ≥ 500
, y1 ≥ 0, y2 ≥ 0, y3 ≥ 0

(b) The dual is: max 300x1 + 500x2 subject to

⎧⎪⎨
⎪⎩

10x1 + 20x2 ≤ 10 000

20x1 + 10x2 ≤ 8 000

20x1 + 20x2 ≤ 11 000

, x1 ≥ 0, x2 ≥ 0

Solution: max = 255 000 for x1 = 100 and x2 = 450. Solution of the primal: min = 255 000 for (y1, y2, y3) =
(20, 0, 5). (c) The minimum cost will increase by 2000.

4. (a) For x3 = 0, the solution is x1 = x2 = 1/3. For x3 = 3, the solution is x1 = 1 and x2 = 2.
(b) Let zmax denote the maximum value of the objective function. If 0 ≤ x3 ≤ 7/3, then zmax(x3) = 2x3 + 5/3 for
x1 = 1/3 and x2 = x3 + 1/3. If 7/3 < x3 ≤ 5, then zmax(x3) = x3 + 4 for x1 = x3 − 2 and x2 = 5 − x3. If x3 > 5,
then zmax(x3) = 9 for x1 = 3 and x2 = 0. Because zmax(x3) is increasing, the maximum is 9 for x3 ≥ 5.
(c) The solution to the original problem is x1 = 3 and x2 = 0, with x3 as an arbitrary number ≥ 5.
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Review Problems for Chapter 17
1. (a) x∗ = 3/2, y∗ = 5/2. (A diagram shows that the solution is at the intersection of x + y = 4 and −x + y = 1.)

(b) The dual is min 4u1 + u2 + 3u3 subject to

{
u1 − u2 + 2u3 ≥ 1

u1 + u2 − u3 ≥ 2
, u1 ≥ 0, u2 ≥ 0, u3 ≥ 0.

Using complementary slackness, the solution of the dual is: u∗
1 = 3/2, u∗

2 = 1/2, and u∗
3 = 0.

2. (a) max −x1 + x2 subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−x1 + 2x2 ≤ 16

x1 − 2x2 ≤ 6

−2x1 − x2 ≤ −8

− 4x1 − 5x2 ≤ −15

, x1 ≥ 0, x2 ≥ 0. Maximum 8 at (x1, x2) = (0, 8).

(b) (y1, y2, y3, y4) = ( 1
2 (b + 1), 0, b, 0) for any b satisfying 0 ≤ b ≤ 1/5.

(c) The maximand for the dual becomes kx1 + x2. The solution is unchanged provided that k ≤ −1/2.

3. (a) x∗ = 0, y∗ = 4. (A diagram shows that the solution is at the intersection of x = 0 and 4x + y = 4.)
(b) The dual problem is:

max 4u1 + 3u2 + 2u3 − 2u4 subject to

{
4u1 + 2u2 + 3u3 − u4 ≤ 5

u1 + u2 + 2u3 + 2u4 ≤ 1
u1, u2, u3, u4 ≥ 0

By complementary slackness, its solution is: u∗
1 = 1, u∗

2 = u∗
3 = u∗

4 = 0.

x2

1000

2000

3000

4000

x1
1000 2000 3000 4000

500x1 + 250x2 = c

P

Figure A17.R.4

4. (a) See Fig. A17.R.4. The solution is at P , where (x1, x2) = (2000, 2000/3); (b) See SM. (c) a ≤ 1/24

5. (a) If the numbers of units produced of the three goods are x1, x2, and x3, the profit is 6x1 + 3x2 + 4x3, and the time
spent on the two machines is 3x1 + x2 + 4x3 and 2x1 + 2x2 + x3, respectively. The LP problem is therefore

max 6x1 + 3x2 + 4x3 subject to

{
3x1 + x2 + 4x3 ≤ b1

2x1 + 2x2 + x3 ≤ b2
, x1, x2, x3 ≥ 0

(b) The dual problem is obviously as given. Optimum at P = (y∗
1 , y∗

2 ) = (3/2, 3/4). (c) x∗
1 = x∗

2 = 25. For (d)
and (e) see SM.
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A

Absolute extreme point/value (see
Global extreme point/value)

Absolute risk aversion, 193
Absolute value, 30
Active constraint, 530
Adjoint of matrix, 610
Admissible set

LP, 627
NLP, 527, 532

Affine function, 397
Alien cofactor, 602
Annuity

due, 366
ordinary, 360, 366

Antiderivative, 294
Approximations

linear, 217, 441
quadratic, 222
higher-order, 223

Areas under curves, 299–301
Arithmetic mean, 29, 56, 397
Arithmetic series, 59
Associative law (of matrix

multiplication), 556
Asymptote, 238, 240, 244
Asymptotic stability

difference equations, 373
differential equations, 338

Augmented coefficient matrix, 568

Average cost, 133, 182
Average elasticity, 229
Average rate of change, 165

B

Bernoulli’s inequality, 78
Binding constraint, 530
Binomial coefficients, 57
Binomial formula, 57
Bordered Hessian, 516
Boundary point, 482, 488
Bounded interval, 29
Bounded set, 483, 488
Budget constraint, 69, 581
Budget plane (set), 69, 94, 394,

483, 581

C

Cardinality (of a set) 73
Cartesian coordinate system, 86
Cauchy–Schwarz inequality, 104,

576
CES function, 254, 406, 430, 435,

439
Chain rule

one variable, 184, 187
several variables, 412, 417, 418

Change of variables (in integrals),
319–322

Circle
area, circumference, 645
equation for, 147

Ck function, 403
Closed interval, 29
Closed set, 482, 488
Cobb–Douglas function, 254, 378,

390, 397, 404, 406, 407, 418,
429, 431, 433, 437, 500, 503,
514, 519, 524

Codomain, 151
Coefficient matrix, 549
Cofactor, 601
Cofactor expansion (of a

determinant), 589, 601, 603
Column (of a matrix), 548
Column vector, 548, 570
Compact set, 483, 488
Comparison test for convergence of

integrals, 327
Complement (of a set), 71
Complementary inequalities, 528
Complementary slackness,

LP, 639
NLP, 527, 533, 538

Completing the square, 42
Composite functions, 134, 418
Compound functions, 145
Compound interest, 6, 116, 345
Concave function

one variable, 190, 289



Essential Math. for Econ. Analysis, 4th edn EME4_Z02.TEX, 18 May 2012, 22:20 Page 740

740 I N D E X

Concave function (continued)
two variables, 467

Cone, 435, 646
Consistent system of equations, 450,

546
Constant returns to scale, 437
Consumer demand, 398
Consumer surplus, 313
Consumption function, 96
Continuous compounding, 349
Continuous depreciation, 116
Continuous function

one variable, 234,
n variables, 398
one-sided, 239
properties of, 235

Continuously differentiable, 403
Convergence

of general series, 357
of geometric series, 355
of integrals, 324–328
of sequences, 249

Convex function
one variable, 190, 289
two variables, 467

Convex polyhedron, 627
Convex set, 466
Correlation coefficient, 577
Counting rule, 449
Covariance (statistical), 479, 577
Cramer’s rule

two unknowns, 586
three unknowns, 590
n unknowns, 613

Critical point (see Stationary point)
Cross-partials, 401
Cubic function, 105
Cumulative distribution function,

310

D

Decreasing function, 84, 163
Decreasing returns to scale, 437
Deductive reasoning, 68
Definite integral, 302
Degrees of freedom, 450

linear systems, 567
Demand and supply, 97, 129, 130,

211–212, 422, 424, 428
Demand functions, 437, 500, 518
Denominator, 14

Dependent (endogenous) variable,
81, 378

Depreciation, 8, 98, 116, 350
Derivative (one variable)

definition, 158
higher order, 188, 192
left, 243
recipe for computing, 159
right, 243

Descartes’s folium, 256
Determinants

2 × 2, 586
3 × 3, 589
n × n, 594
by cofactors, 589, 601, 603
geometric interpretations, 587,

591
rules for, 596

Difference equations, 371–373
linear, 372

Difference of sets, 70
Difference-of-squares formula, 11
Differentiable function, 174
Differential equation, 330

for logistic growth, 333
for natural growth, 331
linear, 338
separable, 336

Differentials
one variable, 218
two variables, 444
n variables, 447
first (second) order, 448
geometric interpretation, 444
invariance of, 447
partial derivatives from, 445
rules for differentials, 219, 446

Differentiation, 174
Direct partials, 401
Discontinuous function, 234
Discounted value, 352

continuous income stream, 363
Discount factor (rate), 351
Discriminating monopolist, 464, 475
Discriminating monopsonist, 477
Disjoint sets, 71
Distance formula

in �, 30
in �2, 147
in �3, 395
in �n, 487

Distributive laws (of matrix multi-
plication), 556

Divergence
of general series, 357
of geometric series, 356
of integrals, 324–328
of sequences, 249

Dollar cost averaging, 38, 400
Domain (of a function)

general case, 151
one variable, 80, 83
two variables, 377, 379
n variables, 396

Dot product (of vectors), 571
Double sums, 59
Doubling time, 115, 121
Duality theorem (LP), 634
Dual problem (LP), 631, 632
Duopoly, 464, 481

E

e (=2.7182818284590 . . .), 117,
201, 250

Economic growth, 337, 340, 341
Effective interest rate, 347, 348, 350
Elastic function, 231
Elasticities,

one variable, 230
two variables, 406
n variables, 407
logarithmic derivatives, 231, 406,

407
rules for, 232

Elasticity of substitution, 429, 430,
435

Elementary operations, 566
Elements

of a matrix, 548
of a set, 69

Ellipse, 148
Ellipsoid, 394
Empty set, 71
Endogenous variables, 39, 81, 378,

456
Engel elasticities, 232
Entries (of a matrix), 548
Envelope theorems, 492, 523
Equilibrium

demand theory, 97
difference equations, 373
differential equations, 338
equation system, 456

Equivalence, 62–63
Equivalence arrow (⇐⇒), 63
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Euclidean n-dimensional space
(�n), 399, 575

Euler’s theorem for homogeneous
functions

two variables, 431
n variables, 436

Even function, 135
Exhaustion method, 299
Exogenous variables, 39, 81, 378,

456
Exp, 117
Exponential distribution, 324, 329
Exponential function, 114–117, 194,

196
properties of, 116, 196

Extreme points and values
one variable, 260, 281
two variables, 462
n variables, 487

Extreme points (LP), 628
Extreme value theorem

one variable, 270
two variables, 484
n variables, 488

F

Factorials, 58
Factoring, 12
Feasible set

LP, 627
NLP, 537, 532

First-derivative test
global extrema, 263
local extrema, 282

First-order conditions (FOC)
one variable, 261
two variables, 462, 470
n variables, 488
with equality constraints, 499,

516, 519
with inequality constraints, 527,

533, 538
FMEA, xiii
Fractional powers, 19
Freedom, degrees of, 450, 567
Functions

one variable, 80
two variables, 377
n variables, 396
composite, 134, 418
compound, 145
concave, 190, 289, 467

continuous, 234, 398
convex, 190, 289, 467
cubic, 105
decreasing, 84, 163
differentiable, 174
discontinuous, 234
even, 135
exponential, 114–117, 194, 196
general concept, 151
graph of, 87, 387, 399
homogeneous, 431, 435
homothetic, 438
increasing, 84, 163
inverse, 138, 152, 214
linear, 89, 397
logarithmic, 122, 123, 197, 200
log-linear, 216, 231, 397
odd, 136
one-to-one, 137, 152
polynomial, 106
power, 112, 201
quadratic, 99
rational, 110
symmetric, 135, 136

Fundamental theorem of algebra,
106

Future value of continuous income
stream, 363

Future value (of an annuity)
continuous, 363
discrete, 361

G

Gaussian density function, 118, 328,
330

Gaussian elimination, 565–569
Gauss–Jordan method, 568
Generalized power rule, 184
Geometric mean, 29, 397
Geometric series, 353–355
Giffen good, 97
Global extreme point/value

one variable, 260, 281
two variables, 462
n variables, 487

Graph of a function
one variable, 87
two variables, 387
n variables, 399

Graph of an equation, 143, 393, 424
Greek alphabet, 647
Growth factor, 7, 8

Growth towards a limit, 332

H

Hadamard product, 551
Half-open interval, 29
Harmonic mean, 29, 397, 400
Harmonic series, 357
Hessian matrix, 401

bordered, 516
Higher-order derivatives

one variable, 188, 192
two variables, 384–385
n variables, 401–402
of composite functions, 414, 416

Higher-order polynomial
approximations, 223

Homogeneous functions
two variables, 431
n variables, 435
geometric interpretations, 433,

434
Homogeneous systems of linear

equations, 614–615
Homothetic functions, 438
Hotelling’s lemma, 493
Hyperbola, 110, 149
Hyperplane, 399, 581
Hypersurface, 399

I

Idempotent matrix, 562
Identity matrix, 559
Iff (if and only if), 63
Image (of a function), 152
Implication, 62
Implication arrow (�⇒), 62
Implicit differentiation, 207, 420,

421, 425, 427
Improper integrals, 324–328
Improper rational function, 110
Inactive constraint, 530
Income distribution, 310–312
Inconsistent (system of equations),

450, 546
Increasing function, 84, 163
Increasing returns to scale, 437
Increment (of a function), 444
Incremental cost, 166
Indefinite integral, 294
Independent (exogenous) variable,

81, 378, 456
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Indeterminate form, 251, 253
Indifference curve, 502
Indirect proof, 67
Indirect utility function, 523
Individual demand functions, 518
Induction proof, 75
Inductive reasoning, 68
Inelastic function, 231
Inequalities, 24–27
Infinite geometric series, 355
Infinite sequence, 249
Infinity (∞), 30, 238
Inflection point, 287

test for, 287
Inner product (of vectors), 571

rules for 572
Input–output model of Leontief,

616–619
Insoluble integrals, 307
Instantaneous rate of change, 165
Integer, 1
Integer roots (of polynomial equa-

tions), 107
Integral

definite, 302
improper, 324–328
indefinite, 294
infinite limits, 324–326
Newton–Leibniz, 307
Riemann integral, 307
unbounded integrand, 326–328

Integrand, 294
Integrating factor, 339
Integration,

by parts, 315–317
by substitution, 319–322
of rational functions, 322

Interest rate, 7, 345
Interior (of a set), 488
Interior point, 482, 488
Intermediate value theorem, 245
Internal rate of return, 369
Intersection (of sets), 70
Interval, 29
Invariance of the differential, 447
Inverse functions

formula for the derivative, 214
general definition, 138, 152
geometric characterization, 140

Inverse matrix, 604
by elementary operations, 611
general formula, 610
properties of, 607

Invertible matrix, 604
Investment projects, 369
Involutive matrix, 600
Irrational numbers, 3, 250
Irremovable discontinuity, 234
IS–LM model, 457
Isoquant, 390, 399

K

Kernel (of a composite function),
134

Kink in a graph, 243
Kuhn–Tucker necessary conditions,

528, 533, 538

L

Laffer curve, 80
Lagrange multiplier method

one constraint, 499, 516
several constraints, 519
economic interpretations, 504,

522
NLP, 527, 533, 538

Lagrange’s
form of the remainder, 226, 228,

274
theorem, 511

Lagrangian, 498, 516, 519, 527,
533, 538

Laspeyres’s price index, 54
Law of natural growth, 331–332
LCD (least common denominator),

16
Left continuous, 239
Left derivative, 243
Left limit, 239
Lemniscate, 210
Length (of a vector), 488, 576
Leontief matrix, 618
Leontief model, 616–619
Level curve, 388
Level surface, 399
L’Hôpital’s rule, 252, 253
Limits, 169–173, 237–243

at infinity, 240
ε–δ definition, 243
one-sided, 238–239
rules for, 171

Line
in �2, 89
in �3, 578–579

in �n, 579
Linear algebra, 545
Linear approximation

one variable, 217
two variables, 441
n variables, 441

Linear combination of vectors, 570
Linear difference equation, 372
Linear differential equation, 338
Linear expenditure systems, 398,

506
Linear function,

one variable, 89
n variables, 397

Linear inequalities, 93
Linear models, 95
Linear regression, 478–480
Linear systems of equations

two variables, 46–47
n variables, 546
in matrix form, 555

Local extreme point/value
one variable, 281
two variables, 470

Logarithmic differentiation, 200
Logarithms

natural, 119, 122
properties of, 120, 123, 200
with bases other than e, 123

Logical equivalence, 62–63
Logistic

differential equation, 333
function, 333
growth, 333

Log-linear relations, 216, 231, 397
Lower triangular matrix, 595
LP (linear programming), 623
Luxury good, 408

M

Macroeconomic models, 38–39,
50, 210–213, 220, 256, 451,
454–455, 457–458, 547, 588,
592

Main diagonal (of a matrix), 548
Malthus’s law, 332
Mapping, 152
Marginal

cost (MC), 166
product, 167, 404
propensity to consume, 96, 167
propensity to save (MPS), 168
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rate of substitution (MRS), 428,
439

tax rate, 168
utility, 523

Mathematical induction, 75–76
Matrix, 548

adjoint, 610
Hessian, 401
idempotent, 562
identity, 559
inverse, 604, 610
involutive, 600
lower triangular, 595
multiplication, 553
nonsingular, 605
order of, 548
orthogonal, 564
powers of, 558
product, 553
singular, 605
skew-symmetric, 583
square, 548
symmetric, 563
transpose, 562
upper triangular, 566, 594
zero, 550

Maximum and minimum (global)
one variable, 259, 281
two variables, 466, 470
n variables, 487

Maximum and minimum (local)
one variable, 281
two variables, 462
n variables, 489

Mean
arithmetic, 29, 56, 397
geometric, 29, 397
harmonic, 29, 397, 400

Mean income, 311
Mean value theorem, 273
Members (elements) of a set, 69
Minimum (see Maximum and min-

imum)
Minor, 601
Mixed partials, 401
Monopolist (discriminating), 464,

475
Monopoly problem, 101, 268
Monopsonist (discriminating), 477
Mortgage repayment, 366, 373
MRS (marginal rate of substitution),

428, 439
Multiplier–accelerator model, 372

N

Natural exponential function, 117,
194

properties of, 196
Natural logarithm, 119–123

properties of, 120
Natural number, 1
n-ball, 488
Necessary conditions, 63
Nerlove–Ringstad production

function, 428
Net investment, 315
Newton–Leibniz integral, 307
Newton quotient, 158
Newton’s binomial formula, 57
Newton’s law of cooling, 335
Newton’s method (approximate

roots), 247
convergence, 248

NLP (see Nonlinear programming)
Nonnegativity constraints

in LP, 627
in NLP, 537–540

Nonsingular matrix, 605
Nontrivial solution, 614
Norm (of a vector), 488, 576
Normal (Gaussian) distribution, 118,

328, 330
n-space (�n), 399, 575
nth-order derivative, 192
nth power, 4
nth root, 20
Numerator, 14
n-vector, 396, 548, 570

O

Objective function (LP), 627
Odd function, 136
Oil extraction, 183, 309
One-sided continuity, 239
One-sided limits, 238–239
One-to-one function, 137, 152
Open interval, 29
Open set, 482, 488
Optimal value function (see Value

function)
Order (of a matrix), 548
Ordered pair, 87
Ordinary least-square estimates, 479
Orthogonality in econometrics, 577
Orthogonal matrix, 564

Orthogonal projection, 578
Orthogonal vectors, 576

P

Paasche’s price index, 54
Parabola, 99
Paraboloid, 389
Parameter, 38
Pareto’s income distribution, 177,

311
Partial derivatives

two variables, 381–384
n variables, 400–403
geometric interpretation, 390–391
higher-order, 384–385, 401–402

Partial elasticities
two variables, 406
n variables, 407
as logarithmic derivatives, 406,

407
Pascal’s triangle, 58
Peak load pricing, 540
Perfectly competitive firm, 102
Perfectly elastic/inelastic function,

231
Periodic decimal fraction, 3
Periodic rate (of interest), 345
Plane

in �3, 393, 580
in �n, 581

Point–point formula, 92
Point–slope formula, 91
Pollution and welfare, 405, 413–414
Polynomial, 106
Polynomial division, 108–109
Population growth, 114–115
Postmultiply (a matrix), 554
Power function, 112, 201
Power rule for differentiation, 176
Powers of matrix, 558
Premultiply (a matrix), 554
Present (discounted) value, 352, 360

continuous income stream, 362
of an annuity, 360

Price adjustment mechanism, 339
Price elasticity of demand, 229, 408
Price indices, 53, 54
Primal problem, (LP) 631, 632
Principle of mathematical induction,

76
Producer surplus, 314
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Production functions, 191, 289, 378,
390, 404, 428, 433, 437, 439,
445, 459

Profit function, 133, 493
Profit maximization, 276, 285, 463,

464, 472, 493
Proof

by induction, 75
direct, 67
indirect, 67

Proper rational function, 110
Proportional rate of change, 165
Pyramid, 646
Pythagoras’s theorem, 647

Q

Quadratic approximation, 222
Quadratic equations, 41
Quadratic formula, 43
Quadratic function, 99
Quadratic identities, 10

R

Range (of a function)
one variable, 80, 83
two variables, 378
general case, 152

Rate of change, 165
Rate of extraction, 309
Rate of interest, 7, 345
Rate of investment, 166
Rational function, 110
Rational number, 2
Real number, 3
Real wage rate, 182
Recurring decimal fraction, 3
Rectangular distribution, 329
Reduced form (of a system of

equations), 39, 456
Relative extreme point/value (see

Local extreme point/value)
Relative rate of change, 165
Relative risk aversion, 193
Remainder theorem, 106
Removable discontinuity, 234
Revenue function, 133
Riemann integral, 307
Right continuous, 239
Right derivative, 243
Right limit, 239
Risk aversion, 193

�n, 399, 575
Roots

of polynomial equations, 106
of quadratic equations, 43

Row (of a matrix), 548
Row vector, 548, 570
Roy’s identity, 524
Rule of 70, 218

S

Saddle point, 462, 470
second-order conditions for, 471

Sarrus’s rule, 591
Scalar product (of vectors), 571
Search model, 426
Second-derivative test (global)

one variable, 264
two variables, 466
with constraints, 516, 528

Second-derivative test (local)
one variable, 283
two variables, 471
with constraint, 515

Second-order conditions (global)
one variable, 264
two variables, 466
with constraints, 516, 528

Second-order conditions (local)
one variable, 283
two variables, 471
with constraints, 515

Separable differential equations, 336
Sequence (infinite), 249
Series (general), 357
Set difference (minus), 70
Shadow price, 504, 522, 636
Shephard’s lemma, 525
Sign diagram, 25
Singular matrix, 605
Skew-symmetric matrix, 583
Slope

of a curve, 156
of a level curve, 420
of a straight line, 89, 90

Sphere
equation for, 395
surface area, volume, 646

Square matrix, 548
Square root, 19
Stability

difference equations, 373
differential equations, 338

Stationary point
one variable, 260
two variables, 462
n variables, 488

Straight line depreciation, 98
Straight line

point–point formula of, 92
point–slope formula of, 91
slope of, 89, 90

Strictly concave (convex) function,
290

Strictly increasing (decreasing)
function, 84, 163

Strict maximum/minimum point,
260

local, 470
Structural form (of a system of

equations), 39, 456
Subset, 70
Substitutes (in consumption), 406
Sufficient conditions, 63
Summation formulas

binomial, 57
finite geometric series, 354
infinite geometric series, 355
other sums, 57

Summation notation, 51
Supply and demand (see Demand

and supply)
Supply curve, 102
Surface, 393, 399
Symmetric function, 100, 135, 136
Symmetric matrix, 563

T

Tangent, 157–158
Tangent plane, 442
Target (of a function), 151
Taylor polynomial, 223, 225
Taylor’s formula, 226
Total derivative, 412
Transformation, 152
Translog cost function, 440
Transpose of a matrix, 562

rules for, 563
Triangle, 645
Triangle inequality, 34, 578
Trivial solution, 614

U

Uniform distribution, 329
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Union (of sets), 70
Unit elastic function, 231
Universal set, 71
Upper triangular matrix, 566, 594
Utility function, 398
Utility maximization, 501–502,

518–519

V

Value function,
equality constraints, 504, 522
inequality constraint, 536
unconstrained, 491, 492

Variance (statistical), 56, 479, 577

Vectors, 548, 570
angle between, 577
column, 548, 570
geometric interpretation,

573–576
inner (scalar) product of, 571
linear combination of, 570
norm (length), 488, 576
orthogonal, 576
row, 548, 570

Venn diagram, 72
Vertex (of a parabola), 99
Vertical asymptote, 238
Vertical-line test, 144

W

Wicksell’s law, 459
w.r.t. (with respect to), 161

Y

y-intercept, 90
Young’s theorem, 402

Z

Zero (0), division by, 3
Zero matrix, 550
Zero of a polynomial, 106
Zeros of a quadratic function, 43
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